
Distributed Computing

through

Combinatorial Topology
Copyright 2013 Herlihy, Kozlov, and Rajsbaum All rights reserved

Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum

October 10, 2013

2

Contents

I Fundamentals 17

1 Introduction 19

1.1 Concurrency Everywhere . 20

1.1.1 Distributed Computing and Topology 21

1.1.2 Our Approach . 23

1.1.3 Two Ways of Thinking about Concurrency 26

1.2 Distributed Computing . 28

1.2.1 Processes and Protocols 28

1.2.2 Communication . 28

1.2.3 Failures . 29

1.2.4 Timing . 30

1.2.5 Tasks . 30

1.3 Two Classic Distributed Computing Problems 31

1.3.1 The Muddy Children Problem 32

1.3.2 The Coordinated Attack Problem 36

1.4 Chapter Notes . 41

1.5 Exercises . 42

2 Two-Process Systems 45

2.1 Elementary Graph Theory . 46

2.1.1 Graphs, Vertices, Edges and Colorings 46

2.1.2 Simplicial Maps and Connectivity 47

2.1.3 Carrier Maps . 47

2.1.4 Composition of Maps 48

2.2 Tasks . 49

2.2.1 Example: Coordinated Attack 50

2.2.2 Example: Consensus 51

2.2.3 Example: Approximate Agreement 52

2.3 Models of Computation . 54

3

4 CONTENTS

2.3.1 The Protocol Graph 54

2.3.2 The Alternating Message-Passing Model 56

2.3.3 The Layered Message-Passing Model 57

2.3.4 The Layered Read-Write Model 60

2.4 Approximate Agreement . 61

2.5 Two-Process Task Solvability 65

2.6 Chapter Notes . 66

2.7 Exercises . 68

3 Elements of Combinatorial Topology 71

3.1 Basic Concepts . 72

3.2 Simplicial Complexes . 74

3.2.1 Abstract Simplicial Complexes and Simplicial Maps . 75

3.2.2 The Geometric View 77

3.2.3 The Topological View 78

3.3 Standard Constructions . 79

3.3.1 Star . 80

3.3.2 Link . 80

3.3.3 Join . 80

3.4 Carrier Maps . 83

3.4.1 Chromatic Complexes 86

3.5 Connectivity . 87

3.5.1 Path Connectivity . 87

3.5.2 Simply Connected Spaces 88

3.5.3 Higher-Dimensional Connectivity 89

3.6 Subdivisions . 90

3.6.1 Stellar Subdivision . 90

3.6.2 Barycentric Subdivision 90

3.6.3 Standard Chromatic Subdivision 92

3.6.4 Subdivision Operators 94

3.6.5 Mesh-Shrinking Subdivision Operators 95

3.7 Simplicial and Continuous Approximations 96

3.8 Chapter Notes . 100

3.9 Exercises . 100

II Colorless Tasks 105

4 Colorless Wait-free Computation 107

4.1 Operational Model . 108

CONTENTS 5

4.1.1 Overview . 108

4.1.2 Processes . 110

4.1.3 Configurations and Executions 111

4.1.4 Colorless Tasks . 112

4.1.5 Protocols for Colorless Tasks 114

4.2 Combinatorial Model . 119

4.2.1 Colorless Tasks Revisited 119

4.2.2 Examples of Colorless Tasks 121

4.2.3 Protocols Revisited . 124

4.2.4 Protocol Composition 125

4.2.5 Single-Layer Colorless Protocol Complexes 128

4.2.6 Multi-Layer Protocol Complexes 131

4.3 Wait-Free Colorless Immediate Snapshots 133

4.3.1 Colorless Task Solvability 133

4.3.2 Applications . 134

4.4 Chapter Notes . 139

4.5 Exercises . 140

5 Solvability of Colorless Tasks 145

5.1 Overview . 146

5.2 t-Resilient Layered Snapshot Protocols 148

5.3 Layered Snapshots with k-Set Agreement 153

5.4 Adversaries . 156

5.5 Message-Passing Protocols . 160

5.5.1 Set Agreement . 161

5.5.2 Barycentric Agreement 162

5.5.3 Solvability Condition 164

5.6 Decidability . 165

5.6.1 Paths and Loops . 165

5.6.2 Loop Agreement . 167

5.6.3 Examples of Loop Agreement Tasks 168

5.6.4 Decidability for Layered Snapshot Protocols 170

5.6.5 Decidability with k-Set Agreement 171

5.7 Chapter Notes . 171

5.8 Exercises . 173

6 Byzantine Colorless Computation 177

6.1 Byzantine failures . 177

6.2 Byzantine Communication Abstractions 179

6.3 Byzantine Set Agreement . 183

6 CONTENTS

6.4 Byzantine Barycentric Agreement 184

6.5 Byzantine Task Solvability . 185

6.6 Byzantine Shared Memory . 187

6.7 Chapter Notes . 188

6.8 Exercises . 189

7 Simulations and Reductions 191

7.1 Motivation . 192

7.2 Combinatorial Setting . 193

7.3 Applications . 196

7.4 BG-Simulation . 198

7.4.1 Safe Agreement . 198

7.4.2 The Simulation . 200

7.5 Conclusions . 202

7.6 Chapter Notes . 203

7.7 Exercises . 204

III General Tasks 207

8 Read-Write Model for General Tasks 209

8.1 Overview . 210

8.2 Tasks . 211

8.3 Examples of Tasks . 213

8.3.1 Consensus . 214

8.3.2 Approximate Agreement 216

8.3.3 Set Agreement . 217

8.3.4 Chromatic Agreement 219

8.3.5 Weak Symmetry Breaking 220

8.3.6 Renaming . 220

8.4 Protocols . 221

8.4.1 Single-Layer Immediate Snapshot Protocols 222

8.4.2 Multi-Layer Protocols 226

8.4.3 Protocol Composition 228

8.5 Chapter Notes . 228

8.6 Exercises . 230

9 Manifold Protocols 233

9.1 Manifold Protocols . 234

9.1.1 Subdivisions and Manifolds 234

CONTENTS 7

9.1.2 Composition of Manifold Protocols 237

9.2 Layered Immediate Snapshot Protocols 241

9.2.1 Properties of Single-Layer Protocol Complexes 241

9.2.2 One-Layer Protocol Complexes are Manifolds 244

9.3 No Set Agreement from Manifold Protocols 247

9.3.1 Sperner’s Lemma . 248

9.3.2 Application to Set Agreement 251

9.4 Set Agreement vs Weak Symmetry-Breaking 253

9.4.1 Comparing the Powers of Tasks 253

9.4.2 Weak Symmetry-Breaking from Set Agreement 254

9.4.3 Weak Symmetry-Breaking does not Implement Set
Agreement . 256

9.5 Chapter Notes . 262

9.6 Exercises . 263

10 Connectivity 267

10.1 Consensus and Path-Connectivity 268

10.2 Immediate Snapshot Model and Connectivity 269

10.2.1 Critical Configurations 269

10.2.2 The Nerve Graph . 271

10.2.3 Reasoning about Layered Executions 272

10.2.4 Application . 276

10.3 k-Set Agreement and (k − 1)-Connectivity 277

10.4 Immediate Snapshot Model and k-Connectivity 278

10.4.1 The Nerve Lemma . 278

10.4.2 Reachable Complexes and Critical Configurations . . . 279

10.5 Chapter Notes . 282

10.6 Exercises . 284

11 General Wait-Free Computability 285

11.1 Inherently Colored Tasks . 285

11.1.1 Hourglass task . 286

11.2 Solvability for Colored Tasks 290

11.3 Algorithm Implies Map . 293

11.4 Map Implies Algorithm . 293

11.4.1 Basic Concepts from Point-Set Topology 294

11.4.2 Geometric Complexes 295

11.4.3 Colors and Covers . 296

11.4.4 Construction . 301

11.5 A Sufficient Topological Condition 304

8 CONTENTS

11.6 Chapter Notes . 309

11.7 Exercises . 309

IV Advanced Topics 317

12 Renaming and Oriented Manifolds 319

12.1 An Upper Bound: Renaming with 2n+ 1 Names 321

12.1.1 An Existence Proof . 321

12.1.2 An Explicit Protocol 324

12.2 Weak Symmetry-Breaking . 326

12.3 The Index Lemma . 327

12.4 Binary Colorings . 332

12.5 A Lower Bound for 2n-Renaming 334

12.6 Chapter Notes . 336

12.7 Exercises . 337

13 Shellability and Task Solvability 341

13.1 Shellability . 342

13.1.1 Basic Definitions and Facts 342

13.2 Examples . 344

13.3 Pseudospheres . 346

13.4 Carrier Maps and Shellable Complexes 349

13.5 Applications . 353

13.5.1 Asynchronous Message-Passing 353

13.5.2 Synchronous Message-Passing 355

13.5.3 Asynchronous Snapshot Memory 359

13.5.4 Semi-Synchronous Message-Passing 361

13.6 Chapter Notes . 372

13.7 Exercises . 373

14 Colored Simulations and Reductions 375

14.1 Model . 376

14.2 Shared-Memory Models . 377

14.3 Trivial Reductions . 380

14.4 Layered Snapshot from Read-Write 381

14.5 Immediate Snapshot from Snapshot 383

14.6 Immediate Snapshot from Layered Immediate Snapshot . . . 384

14.7 Snapshot from Layered Snapshot 389

14.8 Chapter Notes . 393

CONTENTS 9

14.9 Exercises . 393

15 Classifying Loop Agreement Tasks 395
15.1 The Fundamental Group . 396

15.1.1 Basic Definitions . 396
15.1.2 A Representation of the Fundamental Group Associ-

ated with a Spanning Tree. 397
15.2 Algebraic Signatures . 399
15.3 Main Theorem . 401

15.3.1 Map Implies Protocol 401
15.3.2 Protocol Implies Map 402

15.4 Applications . 404
15.5 Torsion Classes . 406
15.6 Conclusions . 406
15.7 Chapter Notes . 407
15.8 Exercises . 407

16 Immediate Snapshot Subdivisions 409
16.1 A glimpse of discrete geometry 409

16.1.1 Polytopes . 409
16.1.2 Schlegel Diagrams . 410
16.1.3 Schlegel diagrams of cross-polytopes 411
16.1.4 Extending Subdivisions of Simplices 413

16.2 Chapter Notes . 415
16.3 Exercises . 415
For my parents, David and Patricia Herliy, and for Liuba, David, and

Anna.
To Esther, David, Judith, and Eva-Maria.
Dedicated to the memory of my grandparents Itke and David, Anga and

Sigmund, and to the memory of my PhD advisor Shimon Even.

10 CONTENTS

Acknowlegments

We thank all the students, colleagues, and friends who helped improve this
book: Hagit Attiya, Irina Calciu, Armando Castañeda, Lisbeth Fajstrup,
Eli Gafni, Rachid Guerraoui, Damien Imbs, Petr Kuznetsov, Hammurabi
Mendez, Martin Raussen, Michel Raynal, Nir Shavit, Christine Tasson,
Corentin Travers, Mark R. Tuttle, [more names here]

Especially thanks to Eli Gafni, for his many insights on the more algo-
rithmic views in this book.

11

12 CONTENTS

Preface

This book is intended to serve both as a textbook for an undergraduate
or graduate course in theoretical distributed computing, or as a reference
for researchers who are, or wish to become active in this area. Previously,
the material covered here was scattered across a collection of conference and
journal publications, often terse, and using different notations and terminol-
ogy. Here, we have assembled a self-contained explanation of the mathemat-
ics for computer science readers, and the computer science for mathematics
readers.

Each of these chapters includes exercises. We think it is essential for
readers to spend time solving these problems. Readers should have some fa-
miliarity with basic discrete mathematics, including induction, sets, graphs,
and continuous maps. We have also included mathematical notes addressed
to readers who wish to explore the deeper mathematical structures behind
this material.

The first three chapters cover the fundamentals of combinatorial topol-
ogy, and how it helps us to understand distributed computing. While the
mathematical notions underlying our computational models are elementary,
some notions of combinatorial topology, such as simplices, simplicial com-
plexes, and levels of connectivity, may be unfamiliar to readers with a back-
ground in computer science. We explain these notions from first principles,
starting with Chapter 1, where we provide an intuitive introduction to the
new approach developed in the book. In Chapter 2 we describe the approach
in more detail for the case of a system consisting of two processes only. Ele-
mentary graph theory is the only mathematics needed, which is well-known
to both computer scientists and mathematicians.

The graph theoretic notions of Chapter 2 are essentially one-dimensional
simplicial commplexes, and they provide a smooth introduction to Chap-
ter 3, where most of the topological notions used in the book are presented.
While similar material can be found in many topology texts, our treatment
here is different. In most texts, the notions needed to model computation are

13

14 CONTENTS

typically intermingled with a substantial body of other material, and it can
be difficult for beginners to extract relevant notions from the rest. Readers
with a background in combinatorial topology may wish to skim this chapter
to review concepts and notations.

The next four chapters are intended to form the core of an advanced
undergraduate course in distributed computing. The mathematical frame-
work is self-contained, in the sense that all concepts used in this section are
defined in the first three chapters.

In this part of the book we concentrate on the so-called colorless tasks,
a large class of coordination problems that have received a great deal of
attention in the research literature. In Chapter 4, we describe our basic
operational and combinatorial models of computation. We define tasks, and
asynchronous, fault-tolerant, wait-free shared-memory protocols. This chap-
ter explains how the mathematical language of combinatorial topology (such
as simplicial complexes and maps) can be used to describe concurrent com-
putation, and to identify the colorless task which can be solved by these pro-
tocols. In Chapter 5, we apply these mathematical tools to study colorless
task solvability by more powerful protocols. We first consider computational
models in which processes fail by crashing (unexpectedly halting). We give
necessary and sufficient conditions for solving colorless tasks in a range of
different computational models, encompassing different crash-failure mod-
els, and different forms of communication. In Chapter 6, we show how the
same mathematical notions can be extended to deal with Byzantine failures,
where faulty processes, instead of crashing, can display arbitrary behavior.
In Chapter 7, we show how to use reductions to transform results about one
model of computation to results about others.

Chapters 8 though 11 are intended to form the core of a graduate course.
Here, too, the mathematical framework is self-contained, although we expect
a slightly higher level of mathematical sophistication. In this part, we turn
our attention to general tasks, a broader class of problems than the color-
less tasks covered earlier. In Chapter 8, we describe how the mathematical
framework previously used to model colorless tasks can be generalized, and
an Chapter 9 we consider manifold tasks, a subclass of tasks with a par-
ticularly nice geometric structure. We state and prove Sperner’s Lemma
for manifolds, and use this to derive a separation result showing that some
problems are inherently “harder” than others. In Chapter 10, we focus on
how computation affects connectivity, informally described as the question
whether the combinatorial structures that model computations have “holes”.
We treat connectivity in an axiomatic way, avoiding the need to make ex-
plicit mention of homology or homotopy groups. In Chapter 11, we put these

CONTENTS 15

pieces together to give necessary and sufficient conditions for solving gen-
eral tasks in various models of computation. Here notions from elementary
point-set topology, such as open covers and compactness are used.

The final part of the book covers a range of advanced topics, providing
an opportunity to delve into more advanced topics to to learn additional
notions from topology. These chapters can be read in any order, mostly after
having studied Chapter 8. Chapter 12 examines the renaming task, and uses
combinatorial theorems such as the Index Lemma to derive lower bounds on
this task. Chapter 13 uses the notion of shellability to show that a number of
models of computation that appear to be quite distinct can be analyzed with
the same formal tools. Chapter 14 examines simulations and reductions for
general tasks, showing that the shared-memory models used interchangeably
in this book really are equivalent. Chapter 15 draws a connection between
a certain class of tasks and the Word Problem for finitely-presented groups,
giving a hint of the richness of the universe of tasks that are studied in
distributed computing. Finally, Chapter 16 uses Schlegel diagrams to prove
basic topological properties about our core models of computation.

16 CONTENTS

Part I

Fundamentals

17

Chapter 1

Introduction

Non Print Material 1. Abstract: This book is about the theoretical foun-
dations of concurrency. For us, a distributed system is a collection of sequen-
tial computing entities, called processes, that cooperate to solve a problem,
called a task. The processes may communicate by message passing, shared
memory, or any other mechanism. Each process runs a program that de-
fines how and when it communicates with other processes. Collectively these
programs define a distributed algorithm or protocol. It is a challenge to de-
sign efficient distributed algorithms in the presence of failures, unpredictable
communication, and unpredictable scheduling delays. Understanding when
a distributed algorithm exists to solve a task, and why, or how efficient such
an algorithm can be, is the aim of the book.

Key Words: distributed computing, message passing, muddy children,
shared memory, tasks, timing, two generals problem.

Concurrency is confusing. Most people who find it easy to follow sequen-
tial procedures, such as preparing an omelette from a recipe, find it much
harder to pursue concurrent activities, such as preparing a ten-course meal
with limited pots and pans, all while speaking to a friend on the telephone.
Our difficulties in reasoning about concurrent activities are not merely psy-
chological: there are simply too many ways in which such activities can
interact. Small disruptions and uncertainties can compound and cascade,
and we are often ill-prepared to foresee the consequences. A new approach,
based on topology, helps us to understand concurrency.

19

20 CHAPTER 1. INTRODUCTION

1.1 Concurrency Everywhere

Modern computer systems are becoming more and more concurrent. Nearly
every activity in our society depends on the Internet, where distributed
databases communicate with one another and with human beings. Even
seemingly simple everyday tasks require sophisticated distributed algo-
rithms. When a customer asks to withdraw money from an automatic teller
machine, the banking system must either both provide the money and debit
that account, or do neither, all in the presence of failures and unpredictable
communication delays.

Concurrency is not limited to wide area networks. As transistor sizes
shrink, processors become harder and harder to cool. Higher clock speeds
produce greater heat, so processor manufacturers have essentially given up
trying to make processors significantly faster. Instead, they have focused
on making processors more parallel. Today’s laptop typically contains a
multicore processor that encompasses several processing units (cores) that
communicate via a shared memory. Each core is itself likely to be multi-
threaded, meaning that the hardware internally divides its resources among
multiple concurrent activities. The laptop may also rely on a specialized,
internally-parallel graphics processing unit (GPU), and may communicate
over a network with a “cloud” of other machines for services such as file
storage or electronic mail. Like it or not, our world is full of concurrency.

This book is about the theoretical foundations of concurrency. For us,
a distributed system1, is a collection of sequential computing entities, called
processes, that cooperate to solve a problem, called a task. The processes
may communicate by message passing, shared memory, or any other mecha-
nism. Each process runs a program that defines how and when it communi-
cates with other processes. Collectively these programs define a distributed
algorithm or protocol. It is a challenge to design efficient distributed algo-
rithms in the presence of failures, unpredictable communication, and un-
predictable scheduling delays. Understanding when a distributed algorithm
exists to solve a task, and why, or how efficient such an algorithm can be,
is the aim of the book.

1 The term distributed system is often used for a concurrent system in which the
participants are geographically far apart. We do not emphasize this distinction, so we use
“distributed computing” and “concurrent computing” more-or-less interchangeably.

1.1. CONCURRENCY EVERYWHERE 21

Figure 1.1: Topologically identical objects.

1.1.1 Distributed Computing and Topology

In the past decade, exciting new techniques have emerged for analyzing
distributed algorithms. These techniques are based on notions adapted from
topology, a field of mathematics concerned with properties of objects that
are innate, in the sense of being preserved by continuous deformations such
as stretching or twisting, although not by discontinuous operations such as
tearing or gluing. For a topologist, a cup and a torus are the same object;
Figure 1.1 shows how one can be continuously deformed into the other. In
particular, we use ideas adapted from combinatorial topology, a branch of
topology that focuses on discrete constructions. For example, a sphere can
be approximated by a figure made out of flat triangles, as illustrated in
Figure 1.2.

Although computer science itself is based on discrete mathematics, com-
binatorial topology and its applications may still be unfamiliar to many
computer scientists. For this reason, we provide a self-contained, elemen-
tary introduction to the concepts from combinatorial topology needed to
analyze distributed computing. Conversely, while the systems and mod-
els used here are standard in computer science, they may be unfamiliar to
readers with a background in applied mathematics. For this reason, we
also provide a self-contained, elementary description of standard notions of
distributed computing.

22 CHAPTER 1. INTRODUCTION

Figure 1.2: Starting with a shape constructed from two two pyramids, we
successively subdivide each triangle into smaller triangles. The finer the
degree of triangulation, the closer this structure approximates a sphere.

Distributed computing encompasses a wide range of systems and models.
At one extreme, there are tiny graphical processing units (GPUs) and spe-
cialized devices, in which large arrays of simple processors work in lock-step.
In the middle, desktops and servers contain many multithreaded, multicore
processors, which use shared memory communication to work on common
tasks. At the other extreme, “cloud” computing and peer-to-peer systems
may encompass thousands of machines that span every continent. These
systems appear to have little in common besides the common concern with
complexity, failures and timing. Yet, the aim of this book is to reveal the
astonishing fact that they do have much in common, more specifically, that
computing in a distributed system is essentially a form of stretching one ge-
ometric object to make it fit into another in a way determined by the task.
Indeed, topology provides the common framework that explains essential
properties of these models.

We proceed to give a very informal overview of our approach. Later, we
will give precise definitions for terms like “shape” and “hole”, but for now,
we appeal to the reader’s intuition.

1.1. CONCURRENCY EVERYWHERE 23

1.1.2 Our Approach

The book describes the essential properties of distributed systems in terms of
general results that hold for all (or most) models, restricting model-specific
reasoning as much as possible. What are the essential properties of a distri-
buted system?

Local views. First, each process has only a a local view of the current state
of the world. That is, a process is uncertain about the views of the
other processes. For example, it may not know whether another pro-
cess has received a message, or if a value written to a shared memory
has been read by another process.

Evolution of local views. Second, processes communicate with one an-
other. Each communication modifies local views. If they communicate
everything they know, and the communication is flawless and instanta-
neous, they end up with identical local views, eliminating uncertainty.
The systems we study are interesting precisely because this is usu-
ally not the case, either because processes communicate only part of
what they know (for efficiency), or communication is imperfect (due
to delays or failures).

A process’s local view is sometimes called its local state.

Figure 1.3 presents a simple example. There are two processes, each with
a three-bit local view. Each process “knows” that the other’s view differs
by one bit, but it does not “know” which one. The left-hand side of the
figure shows the possible views of the processes. Each view is represented as
a vertex, colored black for one process, and white for the other, with a label
describing what the process “knows.” A pair of views is joined by an edge if
those views can coexist. The graph consisting of all the vertices and edges
outlines a cube. It represents in one single combinatorial object the initial
local views of the processes, and their uncertainties: each vertex belongs
to three edges, because the process corresponding to the vertex considers
possible that the other process is in one of those three initial states.

Suppose now that each process then sends its view to the other via an un-
reliable medium that may lose at most one of the messages. The right-hand
side of the figure shows the graph of new possible views and uncertainties.
The figure’s bottom focuses on one particular edge, the relation between
views 110 and 111. That edge splits into three edges, corresponding to the
three possibilities: Black learns White’s view, but not vice-versa, each learns
the other’s, and White learns Black’s view, but not vice-versa. An innate

24 CHAPTER 1. INTRODUCTION

000

110 111

001

101 100

011 010

110 111 110 111 110
111

111
110

a b c

Figure 1.3: The left-hand side of the figure shows the possible views of two
processes, each with a three-bit local view, labeled black for one process, and
white for the other. A pair of views is joined by an edge if those views can
coexist. Each process then sends its view to the other, but communication
is unreliable, and at most one message may be lost. The new set of possible
views appears on the right. The bottom view focuses on the changing re-
lation between views 110 and 111. After communicating, each process may
or may not have learned the other’s views. At edge a, White learns Black’s
view, but not vice-versa, while at edge b, each learns the other’s view, and
at edge c, Black learns White’s view, but not vice-versa. Unreliable com-
munication leaves the structure of the left and right-hand sides essentially
unchanged.

property of this model is that, while unreliable communication adds new
vertices to the graph, it does not change its overall shape, which is still a
cube. Indeed, no matter how many times the processes communicate, the
result is still a cube.

1.1. CONCURRENCY EVERYWHERE 25

000

110 111

001

101 100

011 010

110 111 111
110

110
111

Figure 1.4: If we replace the unreliable communication of Fig. 1.3 with
perfectly reliable communication, then the structure of the left and right-
hand sides looks quite different.

Figure 1.4 shows the same transformation, except that the processes use
a reliable communication medium that does not drop messages. At the end
of a communication round, each process knows the other’s view. Reliable
communication changes the overall shape, transforming a cube into a set of
disconnected edges.

The key idea is that we represent all possible local views of processes at
some time as a single, static, combinatorial geometric object, called a sim-
plicial complex. For the case of two processes, the complex is just a graph.
The complex is obtained by “freezing” all possible interleavings of opera-
tions and failure scenarios up to some point in time. Second, we analyze
the model-specific evolution of a system by considering how communication
changes this complex. Models differ in terms of their reliability and timing
guarantees (processing and communication delays). These properties are
often reflected as “holes” in the simplicial complex induced by communi-

26 CHAPTER 1. INTRODUCTION

Task

Inputs OutputsSpecification

Protocol

computation decision

Figure 1.5: Geometric representation of a task specification and a protocol.

cation: in our simple example, unreliable communication leaves the overall
cubic shape unchanged, while reliable communication tears “holes” in the
cube’s edges. The model-dependent theorems specify when the holes are
introduced (if at all) and their type. The model-independent theorems say
which tasks can be solved (or how long it takes to solve them), solely in
terms of the “holes” of the complex.

The appeal of this approach is that it reduces the difficult problem of
reasoning about computations that unfold in time to the more tractable
problem of reasoning about static combinatorial structures. Equally im-
portant, we can call upon a vast literature of results in combinatorial and
algebraic topology.

1.1.3 Two Ways of Thinking about Concurrency

Consider a distributed system trying to solve a task. The initial views of the
processes are just the possible inputs to the task, and are described by an

1.1. CONCURRENCY EVERYWHERE 27

input complex X . The outputs that the processes are allowed to produce, as
specified by the task, are described by the output complex, Y. Distributed
computation is just a way to stretch, fold, and possibly tear X , in ways
that depend on the specific model, with the goal of transforming X into a
form that can be mapped to Y. We can think of this map as a continuous
map from the space occupied by the transformed X into Y, where the task’s
specification describes which parts of the transformed X must map to which
parts of Y. See Figure 1.5.

This approach is particularly well-suited for impossibility results. Topol-
ogy excels at using invariants to prove that two structures are fundamentally
different, in the sense no continuous map from one to the other can preserve
certain structures. For example, consider the task shown schematically in
Figure 1.5. The input complex is represented by a two-dimensional disk,
and the output complex is represented by an annulus (a two-dimensional
disk with a hole). Assume the task specification requires the boundary of
the input disk to be mapped around the boundary of the output annulus.
In a model where the input complex can be arbitrarily stretched, but not
torn, it is impossible to map the transformed input to the annulus without
“covering” the hole, i.e., producing outputs in the hole, and hence illegal.
In such a model this task is not solvable.

Instead, as suggested by the figure, this task requires a more powerful
computational model that tears holes in the input, but with no need to tear
the complex into disconnected pieces. An even more powerful model that
tears the model into disjoint parts would also suffice, but would be stronger
than necessary.

The approach is so powerful because the above explanations go both
ways. A task is solvable in a given model of computation, if and only if,
the input complex can be arbitrarily stretched, adding “holes” as permit-
ted by the model, to map the transformed input to the output complex,
and sending regions of the transformed input complex to regions of the out-
put complex, as specified by the task. Thus, we get two different ways of
thinking about concurrency: operational and topological. With its powers
of abstraction and vast armory of prior results, topology can abstract away
from model-dependent detail to provide a concise mathematical framework
unifying many classical models. Classic distributed computing techniques
combine with topology, to obtain a solid, powerful theoretical foundation
for concurrency.

28 CHAPTER 1. INTRODUCTION

1.2 Distributed Computing

The literature on distributed computing includes a bewildering array of dif-
ferent models, encompassing different choices of communication, failures,
and timing models. Not all possible combinations of these choices make
sense, but many of them do. Here we briefly describe the different mod-
els. Our description here is informal and intended to motivate later formal
models.

1.2.1 Processes and Protocols

A system is a collection of processes, together with a communication environ-
ment such as shared read-write memory, other shared objects, or message
queues. A process represents a sequential computing entity, modeled for-
mally as a state machine. Each process executes a finite protocol. It starts
in an initial state, and takes steps until it either fails, meaning it halts and
takes no additional steps, or it halts, usually because it has completed the
protocol. Each step typically involves local computation, as well as com-
municating with other processes through the environment provided by the
model. Processes are deterministic: each transition is determined by the
process’s current state and the state of the environment.

The processes run concurrently. Formally, we represent concurrency by
interleaving process steps. This interleaving is typically non-deterministic,
although the timing properties of the model can restrict possible interleav-
ings.

The protocol state is given by the non-faulty processes’ views and the
environment’s state. An execution is a sequence of process state transitions.
An execution carries the system from one state to another, as determined
by which processes take steps, and which communication events occur.

1.2.2 Communication

Perhaps the most basic communication model is message-passing. Each pro-
cess sends messages to other processes, receives messages sent to it by the
other processes, performs some internal computation, and changes state.
Usually we are interested in whether a task can be solved, instead of how ef-
ficiently it can be solved; thus we assume processes follow a full-information
protocol, which means that each process sends its entire local state to every
process in every round.

1.2. DISTRIBUTED COMPUTING 29

In some systems, messages are delivered through communication chan-
nels that connect pairs of processes, and a graph describes the network of
pairs of processes that share a channel. To send a message from one process
to another that are not directly connected by a channel, a routing protocol
must be designed. In this book we are not interested in the many issues
raised by the network structure. Instead, we abstract away this layer, and
assume processes communicate directly with each other, so we can concen-
trate on task computability, which is not really affected by the network
layer.

In shared-memory models, processes communicate by applying opera-
tions to objects in shared memory. The simplest kind of shared-memory
object is read-write memory, where the processes share an array of memory
locations. There are many models for read-write memory. Memory variables
may encompass a single bit, a fixed number of bits, or an arbitrary number.
A variable that may be written by a single process, but read by all processes,
is called singe-writer. If the variable can be written by all processes, it is
called multi-writer. Fortunately, all such models are equivalent in the sense
that any one can be implemented from any other. From these variables, in
turn, one can implement an atomic snapshot memory : an array where each
process writes its own array entry and can atomically read (take a snapshot
of) the entire memory array.

In models that more accurately reflect today’s multiprocessor architec-
tures, read-write memory augmented with shared objects such as stacks,
queues, test-and-set variables, or objects of arbitrary abstract type. (Many
such synchronization primitives cannot be implemented directly in read-
write memory, and must be provided by the underlying hardware.)

1.2.3 Failures

The theory of distributed computing is largely about what can be accom-
plished in the presence of timing uncertainty and failures. In some timing
models, such failures can eventually be detected, while in other models, a
failed process is indistinguishable from a slow process.

In the most basic model, the goal is to provide wait-free algorithms that
solve particular tasks when any number of processes may fail. The wait-free
failure model is very demanding, and sometimes we are willing to settle for
less. A t-resilient algorithm is one that works correctly when the number of
faulty processes does not exceed a value t. A wait-free algorithm for n + 1
processes is n-resilient.

A limitation of these classical models is that they implicitly assume that

30 CHAPTER 1. INTRODUCTION

processes fail independently. In a distributed system, however, failures may
be correlated for processes running on the same node, in the same network
partition, or managed by the same provider. In a multiprocessor system,
failures may be correlated for processes running on the same core, the same
process, or the same card. To model these situations, it is natural to intro-
duce the notion of an adversary scheduler that can cause certain subsets of
processes to fail.

In this book, we consider only crash failures, in which a faulty process
simply halts and falls silent. We consider Byzantine failures, where a faulty
process can display arbitrary (or malicious) behavior, in Chapter 6.

1.2.4 Timing

As we will see, the most basic timing model is asynchronous, where processes
run at arbitrary, unpredictable speeds, and there is no bound on process
step time. In this case, a failed process cannot be distinguished from a slow
process. In synchronous timing models, all non-faulty processes take steps at
the same time. In synchronous models, it is usually possible to detect process
failures. In between there are semi-synchronous models, where there is an
upper bound on how long it takes for a non-faulty process to communicate
with another. In such models, a failed process can be detected following a
(usually lengthy) timeout.

1.2.5 Tasks

The question of what it means for a function to be computable is one of the
deepest questions addressed by computer science. In sequential systems,
computability is understand through the Church-Turing Thesis: anything
that can be computed, can be computed by a Turing Machine. The Church-
Turing thesis lead to the remarkable discovery that most functions from
integers to integers are not computable2. Moreover, many specific functions,
such as the famous “halting problem”, are also known to be not computable.

In distributed computing, where computations require coordination
among multiple participants, computability questions have a different flavor.
Here, too, there are many problems which are not computable, but these
computability failures reflect the difficulty of making decisions in the face of
ambiguity, and have little to do with the inherent computational power of in-
dividual participants. If the participants could reliably and instantaneously

2The set of Turing machines is countable, and each one computes a functions from
integers to integers. However, the set of functions from integers to integers is not countable.

1.3. TWO CLASSIC DISTRIBUTED COMPUTING PROBLEMS 31

communicate with one another, then each one could learn the complete sys-
tem state, and perform the entire computation by itself. In any realistic
model of distributed computing, however, each participant initially knows
only part of the global system state, and uncertainties caused by failures
and unpredictable timing limit each participant to an incomplete picture.

In sequential computing, a function can be defined by an algorithm, or
more precisely, a Turing machine, that starts with a single input, computes
for a finite duration, and halts with a single output. In sequential computing
one often studies non-deterministic algorithms, where there is more than one
output allowed for each input. In this case, instead of functions, relations
are considered.

In distributed computing, the analog of a function is called a task. An
input to a task is distributed: only part of the input is given to each pro-
cess. The output from a task is also distributed: only part of the output is
computed by each process. The task specification states which outputs can
be produced in response to each input. A protocol is a concurrent algorithm
to solve a task: initially each process knows its own part of the input, but
not the others’. Each process communicates with the others, and eventually
halts with its own output value. Collectively, the individual output values
form the task’s output. Unlike a function, which deterministically carries a
single input value to a single output value, an interesting task specification
is non-deterministic, a relation that carries each input value assignment to
multiple possible output value assignments.

1.3 Two Classic Distributed Computing Problems

Distributed algorithms are more challenging than their sequential counter-
parts because each process has only a limited view of the overall state of the
computation. This uncertainty begins at the very beginning. Each process
starts with its own private input, which could come from a person, such
as a request to withdraw a sum from a cash machine, or could come from
another application, such as a request to enqueue a message in a buffer.
One process typically does not know the inputs of other processes, some-
times even who the other processes are. As the computation proceeds, the
processes communicate with each other, but uncertainty may persist due
to non-deterministic delays or failures. Eventually, despite such lingering
uncertainty, each process must decide a value and halt in such a way that
the collective decisions form a correct output for the given inputs, for the
task at hand.

32 CHAPTER 1. INTRODUCTION

To highlight these challenges, we now examine two classic distributed
computing problems. These problems are simple and idealized, but each
one is well known, and illustrates principles that will recur throughout this
book. For each problem, we consider two kinds of analysis. First, we look
at the conventional, operational analysis, in which we reason about the
computation as it unfolds in time. Second, we look at the new, combinatorial
approach to analysis, in which all possible executions are captured in one or
more static, topological structures. For now, our exposition is informal and
sketchy, the intention is to motivate essential ideas, still quite simple, that
will be described in detail later on.

1.3.1 The Muddy Children Problem

When reasoning about concurrency we often end up talking about what a
process “knows,” what it knows about what other processes know, and so on.
The following problem has been used to motivate the use of logic to reason
formally about knowledge. We encounter a synchronous model where the
uncertainty begins at the very beginning, and then diminishes in a simple
way as the computation proceeds.

A group of children is playing in the garden, and some of them
end up with mud on their foreheads. Each child can see the other
children’s foreheads, but not its own. At noon, their teacher sum-
mons the children and says: “At least one of you has a muddy
forehead. You are not allowed to communicate with one another
about it in any manner. But whenever you become certain that
you are dirty, you must announce it to everybody, exactly on
the hour. The children resume playing normally, and nobody
mentions the state of anyone’s forehead. There were six muddy
children, and at 6:00 they all announce themselves. How does
this work?

The usual operational explanation is by induction on the number of children
that are dirty, say k. If k = 1, then, as soon as the teacher speaks, the unique
muddy child knows she is muddy, since there are no other muddy children.
At 1:00 she announces herself. If k = 2 and A and B are dirty, then at 1:00,
A notices that B does not announce himself, and reasons that B must see
another dirty child, which can only be A. Of course, B follows the same
reasoning, and they announce themselves at 2:00. A similar argument is
done for any k.

1.3. TWO CLASSIC DISTRIBUTED COMPUTING PROBLEMS 33

all cleanall clean

00⊥ 0⊥ 0
⊥00

0⊥1 01⊥

⊥00

⊥01 ⊥1 0

⊥11

1⊥ 010⊥

all dirty

⊥11
1⊥1 11⊥

all dirty

Figure 1.6: Input configurations for the muddy children problem. Each
vertex is labeled with a child’s name (color) and input vector, and every solid
triangle represents a possible configuration (squares are holes). Every vertex
lies in exactly two triangles, reflecting each child’s degree of uncertainty
about the actual situation.

By contrast, the combinatorial approach, which we will now explore, pro-
vides a geometric representation of the problem’s input values, and evolving
knowledge about those input values. In particular, it gives a striking answer
to the following seeming paradox: the information conveyed by the teacher,
that there is a muddy child, seems to add nothing to what everyone knows,
and yet is somehow essential to solving the problem.

A child’s input is its initial state of knowledge. If there are n+1 children,
then we represent a child’s input as an (n + 1)-element vector. The input
for child i has 0 in position j 6= i if child j is clean, and 1 if child j is
dirty. Because child i does not know its own status, its input vector has ⊥
in position i.

34 CHAPTER 1. INTRODUCTION

Figure 1.7: How muddy children configurations evolve. Just before noon,
every child’s vertex lies on two triangles, reflecting its uncertainty about
its status. At noon, when the teacher announces that at least one child is
dirty, the top triangle is eliminated, exposing three vertices where some child
knows its status. At 1:00, if no child announces, the top tier of triangles
is eliminated, exposing more such vertices. Every hour on the hour, if the
configuration is not resolved, additional vertices are exposed.

For three children, conveniently named Black, White, and Gray, the pos-
sible initial configurations are shown in Figure 1.6. Each vertex represents a
child’s possible input. Each vertex is labeled with an input vector, and col-
ored either, black, white, or gray, to identify the corresponding child. Each
possible configuration is represented as a solid triangle, linking compatible
states for the three children, meaning that the children can be in these states
simultaneously. The triangle at the very top represents the configurations
where all three children are clean, the one at the bottom where they are all
dirty, and the triangles in between represent configurations where some are
clean and some are dirty.

1.3. TWO CLASSIC DISTRIBUTED COMPUTING PROBLEMS 35

Notice that in contrast to Figure 1.3, where we had a 1-dimensional
complex consisting of vertices and edges (i.e. a graph) representing the
possible configurations for two processes, for three processes we use a 2-
dimensional complex, consisting of vertices, edges and triangles.

Inspecting this figure reveals something important: each vertex belongs
to exactly two triangles. This geometric fact reflects each child’s uncertainty
about the actual situation: its own knowledge (represented by its vertex) is
compatible with two possible situations, one where it is dirty, and one where
it is clean.

Figure 1.7 shows how the children’s uncertainty evolves over time. At
11:59 AM, no child can deduce its status from its input. At noon, however,
when the teacher announces that at least one child is dirty, the all-clean
triangle at the top is eliminated. Now there are three vertices that belong
to a single triangle: 00⊥, 0⊥0, ⊥00. Any child whose input matches one
of these vertices, and only those, will announce itself at 1:00. Since every
triangle contains at most one such vertex, exactly one child will make an an-
nouncement. If nobody says anything at 1:00, then the top tier of triangles
is eliminated, and now there are more vertices that are included in exactly
one triangle. Since every triangle containing such a vertex has exactly two
of them, exactly two children will make an announcement, and so on.

The muddy children puzzle, like any distributed task, requires the par-
ticipants to produce outputs. Each child must announce whether it is clean
or dirty. In Figure 1.8 these decisions are represented as binary values, 0
or 1. In the triangle at the top, all three children announce they are clean,
while at the bottom all three announce they are dirty.

The appeal of the combinatorial approach is that all possible behaviors
are captured statically in a single structure, such as the one appearing in
Fig. 1.6. Inspecting this figure helps solve the mystery why it is so important
that the teacher announces that some child is dirty. Without it, every vertex
remains ambiguously linked to two triangles, and no evolution is possible.
Interestingly, any announcement by the teacher that eliminates one or more
triangles would allow each child eventually to determine his status.

Of course, the computational model implicit in this puzzle is highly ide-
alized. Communication is synchronous: every hour on the hour, every child
knows the time, and decides whether to speak. Communication never fails,
so if nothing is heard from a child on the hour, is because nothing was said,
and if something was said, everybody hears it. No one cheats or naps, and
the children reason perfectly.

In this situation, uncertainties come from the partial knowledge inherent
in the inputs, and from the limited form of communication (a child cannot

36 CHAPTER 1. INTRODUCTION

all cleanall clean

00⊥ 0⊥ 0
⊥00

000

0⊥1 01⊥

⊥00
001

100
010

⊥01 ⊥1 0

011

100

⊥11

1⊥ 010⊥101 110
011

all dirty

⊥11
1⊥1 11⊥

111 all dirty111

Figure 1.8: Output configurations for the muddy children problem. Each
vertex is labeled with a child’s name (color) and decision value, indicating
whether the child is clean or muddy. Every edge lies in exactly two triangles.

tell other children what it sees). The system can evolve in only one way:
each triangle either survives until the next hour, or it is eliminated. When
we replace idealized children with concurrent processes, there may be many
more possible ways for the system to evolve, reflecting non-deterministic
interleavings and failures. In such a case, instead of either persisting or
vanishing, a triangle may be replaced by several triangles, each representing
a possible new configuration.

1.3.2 The Coordinated Attack Problem

Here is another classic problem. In many distributed systems, we need to
ensure that two things happen together or not at all. For example, a bank
needs to ensure that if a customer tries to transfer money from one account
to another, then either both account balances are modified, or neither one

1.3. TWO CLASSIC DISTRIBUTED COMPUTING PROBLEMS 37

is changed (and an error is reported). This kind of coordination task turns
out to be impossible if either the communication or the participants are
sufficiently unreliable.

The following idealized problem captures the nature of the difficulty.
Simply put, it shows that it is impossible for two participants to agree on a
rendez-vous time by exchanging messages that may fail to arrive. As in the
muddy children problem, the difficulty is inherent in the initial system state,
where the participants have not yet agreed on a meeting time. (Naturally,
if both had agreed earlier when to rendez-vous, they can simply show up at
that time, with no communication.)

Two army divisions, one commanded by General Alice and one
by General Bob, are camped on two hilltops overlooking a valley.
The enemy is camped in the valley. If both divisions attack si-
multaneously, they will win, but if only one division attacks by
itself, it will be defeated. As a result, neither general will attack
without a guarantee that the other will attack at the same time.
In particular, neither general will attack without communication
from the other.

At the time they deploy on the hilltops, the generals have not
agreed on whether or when to attack. Now Alice decides to sched-
ule an attack. The generals can communicate only by messen-
gers. Normally, it takes a messenger exactly one hour to get
from one encampment to the other. However, it is possible that
he will get lost in the dark or, worse yet, be captured by the en-
emy. Fortunately, on this particular night, all the messengers
happen to arrive safely. How long will it take Alice and Bob to
coordinate their attack?

To rule out the trivial solution in which both generals simply refrain from
attacking, we will require that if all messages are successfully delivered, then
Alice and Bob must agree on a time to attack. If enough messages are lost,
however, Alice and Bob may refrain from attacking, but both must do so.

The standard operational way of analyzing this problem goes as follows.
Suppose Bob receives a message at 1:00 PM from Alice saying “attack at
dawn”. Should Bob schedule an attack? Although her message was in fact
delivered, Alice has no way of knowing. She must therefore consider it
possible that Bob did not receive the message (in which case Bob does not
plan to attack). Hence Alice cannot decide to attack given her current state
of knowledge. Knowing this, and not willing to risk attacking alone, Bob
will not attack based solely on Alice’s message.

38 CHAPTER 1. INTRODUCTION

Naturally, Bob reacts by sending an acknowledgment back to Alice,
which arrives at 2:00 PM. Will Alice plan to attack? Unfortunately, Al-
ice’s predicament is similar to Bob’s predicament at 1:00 PM. This time
it is Bob who does not know whether his acknowledgment was delivered.
Since Bob knows that Alice will not attack with his acknowledgment, Bob
cannot attack as long as Alice might not have received his acknowledgment.
Therefore, Alice cannot yet decide to attack.

So Alice sends an acknowledgment back to Bob. Similar reasoning shows
that this message, too, is not enough. It is not hard to see that no number
of successfully delivered acknowledgments will be enough to ensure that the
generals can attack safely. The key insight is that the difficulty is not caused
by what actually happens (all messages do arrive) but by the uncertainty
regarding what might have happened. In the scenario we just considered,
communication is flawless, but coordination is still impossible.

Here is how to consider this problem using the combinatorial approach,
encompassing all possible scenarios in a single geometric object, a graph.

Alice has two possible initial states: she intends to attack either at dawn,
or at noon the next day. The top structure on Figure 1.9 depicts each state
as a black vertex. Bob has only one possible initial state: he await’s Alice’s
order. This state is the white vertex linking the two edges, representing
Bob’s uncertainty whether he is in a world where Alice intends to attack at
dawn, on the left, or in a world where she intends to attack at noon, on the
right.

At noon, Alice sends a message with her order. The second graph in
Fig. 1.9 shows the possible configurations one hour later, at 1:00 PM in
each of the possible worlds. Either her message arrives, or it does not. (We
can ignore scenarios where the message arrives earlier or later, because if
agreement is impossible if messages always arrive on time, then it is im-
possible even if they do not. We will often rely on this style of argument.)
The three white vertices represent Bob’s possible states. On the left, Bob
receives a message to attack at dawn, on the right, to attack at noon, and in
the middle, he receives no message. Now Alice is the one who is uncertain
whether Bob received her last message.

The bottom graph in Fig. 1.9 shows a subset of the possible configura-
tions an hour later, at 2:00 PM, when Bob’s 1:00 PM acknowledgment may
or may not have been received. We can continue this process for an arbi-
trary number of rounds. In each case, it is not hard to see that the graph
of possible states forms a line. At time t, there will be 2t+ 2 edges. At one
end, an initial “attack at dawn” message is followed by successfully-delivered
acknowledgments, and at the other end, an initial “attack at noon” message

1.3. TWO CLASSIC DISTRIBUTED COMPUTING PROBLEMS 39

Attack at dawn! Attack at noon!

NoonNoonNoonNoon

delivered deliveredlost

1 00 PM1 00 PM1:00 PM1:00 PM

delivered lost deliveredlost

2:00 PM2:00 PM

Figure 1.9: Evolution of the possible executions for the Coordinated At-
tack problem. (The 2:00 PM graph shows only a subset of the possible
executions.)

is followed by successfully-delivered acknowledgments. In the states in the
middle, however, messages were lost.

If it were possible to reach agreement after t message exchanges, we
could then label each vertex with an attack order, either “dawn” or “noon”.
Because both generals must agree on the attack time, both vertices of each
edge must be labeled with the same attack time. Here is the problem:
the graph is connected : starting at one edge, where both generals agree to
attack at dawn, we can follow a path of edges to the other edge, where
both generals agree to attack at noon. One of the edges we traverse must
switch from dawn to noon, representing a state where the two generals make
incompatible decisions. This impossibility result holds no matter what rules
the generals use to make their decisions, and no matter how many messages
they send.

This observation depends on a topological property of the graph, namely

40 CHAPTER 1. INTRODUCTION

input graph
Attack at dawn! Attack at noon!

delivered deliveredlostdelivered deliveredlost

protocol graph

Attack at dawn! Attack at noon!
decision

mapmap

Don’t attack!
output graph
Don t attack!

Figure 1.10: The input, output, and protocol graphs for the Coordinated
Attack problem illustrate why the problem is not solvable.

that it is always connected. In Figure 1.10 this is more explicitly repre-
sented. At the top, the complex of possible inputs to the task is a connected
graph consisting of two edges, while at the bottom the output complex is
a disconnected graph consisting of two disjoint edges. In the middle, the
protocol complex after sending one message is a larger connected graph,
one that “stretches” the input graph by subdividing its edges into “smaller”
edges. As in Figure 1.5, the task specification restricts which parts of the
subdivided input graph can be mapped into which parts of the output graph:
the endpoints of the subdivided graph should be mapped to different edges
of the output graph, corresponding to the desired time of attack.

1.4. CHAPTER NOTES 41

1.4 Chapter Notes

The topological approach to distributed computing has its origins in the
well-known paper by Fischer, Lynch, and Paterson [56], where it was shown
that there is no fault-tolerant message-passing protocol for the consensus
task (that we will study in detail later on), a problem closely related to
coordinated attack, even if only one process may crash. In this paper, pro-
cess uncertainties (as described in this chapter) were identified as the main
ingredient for the impossibility result. Furthermore, chains of uncertainties
forming a graph, and the connectivity of this graph, were the basis of the
proof. Another paper was required to extend the result to shared mem-
ory systems, by Loui and Abu-Amara [112]. Later on, Biran, Moran and
Zaks [19], used the graph connectivity arguments to provide a characteri-
zation of the tasks solvable in a message passing system where at most one
process may crash, and even on the time needed to solve a task [21].

Three papers presented at the ACM Symposium on Theory of Comput-
ing in 1993 [23, 92, 136] (journal versions in [93, 137]) realized that when
more than one process may crash, a generalization of graph connectivity
to higher dimensional connectivity is needed. The discovery of the connec-
tion between distributed computing and topology was motivated by trying
to prove that the k-set agreement task is not wait-free solvable, requiring
processes to agree on at most k different values, a problem posed by Chaud-
huri [38]. Originally it was known that processes cannot agree on a single
value, even if only one process can crash. The techniques to prove this
result need graph connectivity notions, namely one dimensional connectiv-
ity only. In 1993 it was discovered that to prove that n processes cannot
agree on n − 1 of their input values, wait-free, requires general topological
connectivity notions. sergio: added this para-

graphThe connection between distributed computing and topology was also
discovered in the 1990s, from an homotopy theory perspective, as described
by Fajstrup, Rauen and Eric Goubault [53]. It motivated the development
of the new field of directed algebraic topology described by Grandis [74].

The muddy children problem is also known as the cheating husbands
problem as well as other names. Fagin, Halpern, Moses and Vardi [52]
use this problem to describe the notion of common knowledge, and more
generally the idea of using formal logic to reason about what processes know.
Others who discuss this problem include Gamow and Stern [71], and Moses,
Dolev and Halpern [121].

The coordinated attack problem, also known as the Two Generals’ prob-
lem, was formally introduced by Jim Gray in [75], in the context of distri-

42 CHAPTER 1. INTRODUCTION

buted databases. It appears often in introductory classes about computer
networking (particularly with regard to the Transmission Control Protocol),
database systems (with regard to commit/adopt protocols), and distributed
systems. It is also an important concept in epistemic logic and knowledge
theory, as discussed in Fagin, Halpern, Moses and Vardi [52]. It is related
to the more general Byzantine Generals’ Problem [109].

1.5 Exercises

Exercise 1.1. In the muddy children problem, describe the situation if the
teacher announces at noon:

• Child number one is dirty.

• There is an odd number of dirty children.

• There is an even number of dirty children.

For three children, redraw the pictures in Fig. 1.7.

Exercise 1.2. In the original version of the puzzle, before the teacher’s an-
nouncement, the children know there are at least 0 muddy children, and
in general, after k rounds, they know there are at least k muddy children.
Prove this invariant using the combinatorial approach, and do the same for
the corresponding invariant in each of the variants of the puzzle listed in
Exercise 1.1. Notice that to prove such a statement, you need to define
formally what “knowing” means, using the combinatorial approach.

Exercise 1.3. Consider a binary variable initialized to 0. The test-and-set
operation atomically sets that variable to 1, and returns its previous value.
(So the first process to call test-and-set receives 0, and all later processes
receive 1.) Draw the complex of possible results if two processes, A and B,
each calls test-and-set on the same variable. Do the same for three processes,
A, B, and C.

Hint: Each vertex should be labeled with a process name and a binary
value, and the result should look something like the first step of constructing
a Sierpinski triangle.

Exercise 1.4. Three processes, A, B, and C are assigned distinct values from
the set {0, 1, 2}. Draw the complex of all such possible assignments.

Hint: each vertex should be labeled with a process name and an integer
value, and your picture should look something like a “star of David”.

1.5. EXERCISES 43

Exercise 1.5. Three processes, A, B, and C are assigned distinct values from
the set {0, 1, 2, 3}. Draw the complex of all such possible assignments.

Hint: each vertex should be labeled with a process name and an integer
value, and your picture should be topologically equivalent to a torus.

Exercise 1.6. Consider three processes, A, B, and C, which are assigned
values from some set S. Find a set S, and a way of assigning values to
processes, such that the resulting complex is a Möbius strip.

44 CHAPTER 1. INTRODUCTION

Chapter 2

Two-Process Systems

Non Print Material 2. Abstract: This chapter is an introduction to how
techniques and models from combinatorial topology can be applied to dis-
tributed computing, by focusing exclusively on two-process systems. It ex-
plores several distributed computing models, still somewhat informally, to
illustrate the main ideas.

Key words: carrier map, coloring, decision map, edge, graph theory,
input graph, labeling, output graph, protocol graph, simplex, vertex.

This chapter is an introduction to how techniques and models from com-
binatorial topology can be applied to distributed computing, by focusing
exclusively on two-process systems. It explores several distributed comput-
ing models, still somewhat informally, to illustrate the main ideas.

For two-process systems, the topological approach can be expressed in
the language of graph theory. A protocol in a given model induces a graph.
A two-process task is specified in terms of a pair of graphs, one for the
processes’ possible inputs, and one for the legal decisions the processes can
take. Whether a two-process protocol exists for a task can be completely
characterized in terms of connectivity properties of these graphs. Moreover,
if a protocol exists, then that protocol is essentially a form of approximate
agreement. In later chapters we will see that when the number of processes
exceeds two, and the number of failures exceeds one, higher-dimensional
notions of connectivity are needed, and the language of graphs becomes
inadequate.

45

46 CHAPTER 2. TWO-PROCESS SYSTEMS

2.1 Elementary Graph Theory

It is remarkable that to obtain the characterization of two-process task solv-
ability, we need only a few notions from graph theory, namely maps between
graphs and connectivity.

2.1.1 Graphs, Vertices, Edges and Colorings

We define graphs in a way that can be naturally generalized to higher di-
mensions in later chapters.

Definition 2.1.1. A graph is a finite set S together with a collection G of
subsets of S, such that

(1) if X ∈ G, then |X| ≤ 2;

(2) for all s ∈ S, we have {s} ∈ G;

(3) if X ∈ G and Y ⊂ X, then Y ∈ G.

We use G to denote the entire graph. An element of G is called a simplex
(plural: simplices) of G. We say that a simplex σ has dimension |σ| − 1. A
0-dimensional simplex s ∈ S is called a vertex (plural: vertices) of G, while
a 1-dimensional simplex is called an edge of G. We denote the set of vertices
of G by V (G) (that is, V (G) := S), and we denote the set of edges of G by
E(G).

We say that a vertex is isolated if it does not belong to any edge. A
graph is called pure if either every vertex belongs to an edge, or none does.
In the first case, the graph is pure of dimension 1, while in the second it is
pure of dimension 0.

Assume C is a set. A coloring of a graph G is a function χ : V (G) → C,
such that for each edge {s0, s1} of G, χ(s0) 6= χ(s1). We say that a graph
is chromatic, or that it is colored by C, if it is equipped with a coloring
χ : V (G)→ C. Often we will color vertices with just two colors: C = {A,B},
where A and B are the names of the two processes.

More generally, given a set L, an L-labeling of G is defined as a function f
that assigns to each vertex an element of L, without any further conditions
imposed by the existence of edges. We say the graph is labeled by L. A
coloring is a labeling, but not vice-versa.

We frequently consider graphs which simultaneously have a coloring (de-
noted by χ) and a vertex labeling (denoted by f). Figure 2.1 shows four
such graphs, two “input” graphs at the top, and two “output” graphs at the

2.1. ELEMENTARY GRAPH THEORY 47

bottom. All are pure of dimension 1. In all figures, the coloring is shown as
black or white, and the labeling is shown as a number in or near the vertex.

For distributed computing, if s is a vertex in a labeled chromatic graph,
we denote by name(s) the value χ(s), and by view(s) the value f(s). More-
over, we assume that each vertex in a labeled chromatic graph is uniquely
identified by its values of name(·) and view(·). In Figure 2.1, for example,
each graph has a unique black vertex labeled 1.

2.1.2 Simplicial Maps and Connectivity

Labeling functions can be more elegantly defined as maps, namely functions
that satisfy some form of structure, from one graph to another. Given two
graphs G and H, a vertex map µ : V (G) → V (H) carries each vertex of
G to a vertex of H. However, for the map to preserve structure, it must
also carry edges to edges. The vertex map µ is a simplicial map if it also
carries simplices to simplices: that is, if {s0, s1} is a simplex in G, then
{µ(s0), µ(s1)} is a simplex of H. Notice that µ(s0) and µ(s1) need not be
distinct: the image of an edge may be a vertex. If, for s0 6= si, µ(s0) 6= µ(s1),
then the map is said to be rigid. In the terminology of graph theory, a rigid
simplicial map is called a graph homomorphism.

When G and H are chromatic, we usually assume that the simplicial
map µ preserves names: name(s) = name(µ(s)). Thus, chromatic simplicial
maps are rigid.

If s, t are vertices of a graph G, then a path from s to t is a sequence
of distinct edges σ0, . . . , σ` linking those vertices: s ∈ σ0, σi ∩ σi+1 6= ∅,
and t ∈ σ`. A graph is connected if there is a path between every pair of
vertices. The next claim is simple, but important. Intuitively, simplicial
maps are approximations of continuous maps.

Fact 2.1.2. The image of a connected graph G under a simplicial map is
connected.

2.1.3 Carrier Maps

While a simplicial map carries simplices to simplices, it is also useful in
the context of distributed computing to define maps that carry simplices to
subgraphs.

Definition 2.1.3. Given two graphs G and H, a carrier map Φ : G → 2H

takes each simplex σ ∈ G to a subgraph Φ(σ) of H, such that Φ satisfies
the following monotonicity property: for all σ, τ ∈ G, if σ ⊆ τ , then Φ(σ) ⊆
Φ(τ).

48 CHAPTER 2. TWO-PROCESS SYSTEMS

Notice, that for arbitrary edges σ, τ , we have

Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). (2.1.1)

The carrier map is strict if it satisfies

Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ). (2.1.2)

A carrier map Φ is called rigid if for every simplex σ in G of dimension d,
the subgraph Φ(σ) is pure of dimension d. For vertex s, Φ(s) is a (non-
empty) set of vertices, and if σ is an edge, then Φ(σ) is a graph where each
vertex is contained in an edge.

We say that a carrier map is connected if it sends each vertex to a non-
empty set of vertices, and each edge to a connected graph. Carrier maps
that are connected are rigid. Equation 2.1.1 implies the following property,
reminiscent of Fact 2.1.2.

Fact 2.1.4. If Φ is a connected carrier map from a connected graph G to a
graph H then the image of G under Φ, Φ(G), is a connected graph.

Note, that the image of G under Φ is simply the union of subgraphs Φ(σ)
taken over all simplices σ of G.
Definition 2.1.5. Assume we are given chromatic graphs G and H, and a car-
rier map Φ : G → 2H. We call Φ chromatic if it is rigid and for all σ ∈ G we
have χ(σ) = χ(Φ(σ)).

Here, for an arbitrary set S, we use the notation

χ(S) = {χ(s) | s ∈ S} .

When graphs are colored by process names (that is, by the function name(·)),
we say that Φ preserves names, or that Φ is name-preserving.

2.1.4 Composition of Maps

Simplicial maps and carrier maps compose. Let Φ be a carrier map from G
to H, and δ a simplicial map from H to a graph O. There is an induced
carrier map δ(Φ) from G to O, defined in the natural way: δ(Φ) sends a
simplex σ of G to the subgraph δ(Φ(σ)).

Fact 2.1.6. Let Φ be a carrier map from G to H, and δ be a simplicial map
from H to a graph O. Consider the carrier map δ(Φ) from G to O. If Φ is
chromatic and δ is chromatic, then δ(Φ) chromatic. If Φ is connected, then
so is δ(Φ).

2.2. TASKS 49

We will be interested in the composition of chromatic carrier maps. Let
Φ0 be a chromatic carrier map from G to H0 and Φ1 be a chromatic carrier
map from H0 to H1. The induced chromatic carrier map Φ from G to H1

is defined in the natural way: Φ(σ) is the union of Φ1(τ) over all simplices
τ ∈ Φ0(σ).

Fact 2.1.7. Let Φ0 be a chromatic carrier map from G to H0 and Φ1 be a
chromatic carrier map from H0 to H1. The induced chromatic carrier map
Φ from G to H1 is connected if both Φ0 and Φ1 are connected.

Proof. Let σ be a simplex of G, then K = Φ0(σ) is connected, so it is enough
to show that Φ1(K) is connected whenever K is connected.

If K is just a vertex, or if it has only one edge, we know that Φ1(K) is
connected, since Φ1 is a connected carrier map. We can then use induction
on the number of edges in K. Given K, if possible, pick an edge e ∈ K,
such that K \ {e} is still connected. Then Φ1(K) = Φ1(K \ {e}) ∪ Φ1(e),
where both Φ1(K \ {e}) and Φ1(e) are connected. On the other hand, the
intersection Φ1(K \ {e}) ∩Φ1(e) is non-empty, hence Φ1(K) is connected as
well.

If such an edge e does not exist, we know that the graph K does not have
any cycles, and is in fact a tree. In that case, we simply pick a leaf v and
an edge e adjacent to v. We then repeat the argument above, representing
Φ1(K) as the union Φ1(K \ {e, v}) ∪ Φ1(e).

2.2 Tasks

Let A,B be process names (sometimes “Alice” and “Bob”), V in a domain of
input values, and V out a domain of output values. A task for these processes
is a triple (I,O,∆), where

• I is a pure chromatic input graph of dimension 1 colored by {A,B}
and labeled by V in;

• O is a pure chromatic output graph of dimension 1 colored by {A,B}
and labeled by V out;

• ∆ is a name-preserving carrier map from I to O.

The input graph defines all the possible ways the two processes can start
the computation, the output graph defines all the possible ways they can
end, and the carrier map defines which input can lead to which outputs.
Each edge {(A, a), (B, b)} in I defines a possible input configuration (initial

50 CHAPTER 2. TWO-PROCESS SYSTEMS

system state) where A has input value a ∈ V in and B has input value
b ∈ V in. The processes communicate with one another, and each eventually
decides on an output value and halts. If A decides x, and B decides y, then
there is an output configuration (final system state) represented by an edge
{(A, x), (B, y)} in the output graph,

{(A, x), (B, y)} ∈ ∆({(A, a), (B, b)})

Moreover, if A runs solo, without ever hearing from B, it must decide a ver-
tex (A, x) in ∆((A, a)). Naturally, B is subject to the symmetric constraint.

The monotonicity condition of the carrier map ∆ has a simple opera-
tional interpretation. Suppose A runs solo starting on vertex s0, without
hearing from B, and halts, deciding on a vertex t0 in ∆(s0). After A halts,
B might start from any vertex s1 such that {s0, s1} is an edge of I. Mono-
tonicity ensures that there is a vertex t1 in O for B to choose, such that
{t0, t1} in ∆({s0, s1}).

2.2.1 Example: Coordinated Attack

Recall from Chapter 1 that in the coordinated attack task, Alice and Bob
each commands an army camped on a hilltop overlooking a valley where
the enemy army is camped. If they attack together, they will prevail, but
if they attack separately, they may not. For simplicity, we suppose the only
possible attack times are either dawn or noon.

The top of Figure 1.10 shows this task’s input graph. Bob has only one
possible input: he is indifferent to which time is chosen. Alice has two: she
might prefer either dawn or noon. As a result, the input graph is a path
of two edges. The bottom of the figure shows the output graph, Alice and
Bob each have two possible outputs: dawn or noon. Because they must both
agree, the output graph consists of two disjoint edges. The task specification
∆ says that the decisions should agree.

Here is the formal specification of this task. We use 0 to denote attack at
dawn, 1 to denote attack at noon, and ⊥ to denote do not attack. The input
graph contains three vertices: (A, 0), (A, 1), (B,⊥). In the figure, Alice’s
vertices are shown as white, and Bob’s as black. Alice has two possible input
values: 0 and 1, while Bob has only one: ⊥. Similarly, the output graph has
three edges, with vertices (A, 0), (A, 1), (A,⊥), (B, 0), (B, 1), (B,⊥).

The carrier map ∆ reflects the requirement that if Alice runs alone, and
never hears from Bob, she does not attack:

∆((A, 0)) = ∆((A, 1)) = {(A,⊥)}

2.2. TASKS 51

If Bob runs alone, and never hears from (Alice), then he does not attack:

∆((B,⊥)) = {(B,⊥)} .

Finally,

∆({(A, 0), (B,⊥}) = {{(A, 0), (B, 0)} , {(A,⊥), (B,⊥)} , (A, 0), (B, 0), (A,⊥), (B,⊥)}
∆({(A, 1), (B,⊥)}) = {{(A, 1), (B, 1)} , {(A,⊥), (B,⊥)} , (A, 1), (B, 1), (A,⊥), (B,⊥)}

Note that the vertices on the left-hand side of each equation are in I, and
the right-hand side in O.

Notice that this task specification does not rule out the trivial protocol
where Alice and Bob always refrain from attacking. The requirement that
they attack when no failures occur is not a property of the task specification,
it is a property of any protocol we consider acceptable for this task. We have
seen in Chapter 1 that there is no non-trivial protocol for this task when
processes communicate by taking turns sending unreliable messages. Later,
however, we will see how to solve an approximate version of this task.

2.2.2 Example: Consensus

In the consensus task, as in the coordinated attack problem, Alice and Bob
must both decide one of their input values. In Figure 2.1 we see two versions
of the consensus task. On the left of the figure, surprisingly, the input graph
consists of a single edge. This would seem to imply that a process has no
initial uncertainty about the input of the other process. Indeed, there is only
one possible input to each process. So why is the task non-trivial? Here we
see the power that the task carrier map ∆ has when defining the possible
outputs for individual vertices: intuitively, the uncertainty a process has
is not on what input the other process has, but on whether that process
participates in the computation or not.

In this “fixed input” version of consensus, if one general deserts without
communicating, the other decides on its own input. The input graph consists
of a single edge: Alice’s vertex is labeled with 0, and Bob’s with 1. The
output graph consists of two disjoint edges: one where Alice and Bob both
decide 0, and another where they both decide 1. The carrier map ∆ is
similar to that of coordinated attack: if Alice runs solo, she must decide 0,
if Bob runs solo, he must decide 1, and if both run, then they must agree
on either 0 or 1.

52 CHAPTER 2. TWO-PROCESS SYSTEMS

Input GraphInput Graph Input GraphInput Graph

10 10

10

00 00

11 11

Output GraphOutput GraphOutput GraphOutput Graph

Figure 2.1: Graphs for fixed-input and binary consensus

On the right of Figure 2.1 we see the “binary inputs” version of consen-
sus, where each general can start with two possible inputs, either 0 or 1.
The carrier map ∆ is not shown on vertices, to avoid cluttering the picture.
It sends each input vertex to the output vertex with the same process name
and value, It sends each edge where both generals start with the same value
to the edge where both generals decide that value, and it sends each edge
with mixed values to both output edges.

Notice that the coordinated attack and consensus carrier maps satisfy
monotonicity (Definition 2.1.3).

2.2.3 Example: Approximate Agreement

Let us consider a variation on the coordinated attack task. Alice and Bob
have realized that they do not need to agree on an exact time to attack,
because they will still prevail if their attack times are sufficiently close. In
other words, they must choose values v0 and v1, between 0 and 1, such that

2.2. TASKS 53

Input GraphInput Graph

0 10 1

∆

Output GraphOutput Graph

0 1/5 2/5 3/5 4/5 1

Figure 2.2: 5-approximate agreement task for fixed inputs: Alice has input
value 1 and Bob input value 0.

|v0 − v1| ≤ ε, for some fixed ε > 0. (Here, 0 means “dawn” and 1 means
“noon”, so 1

2 means the time half-way between dawn and noon.)
In this variant, for simplicity, we assume both Alice and Bob start with

a preferred time, 0 or 1, and if either one runs alone without hearing from
the other, it decides its own preference.

Here is one way to capture the notion of agreement within ε as a discrete
task. Given an odd positive integer k, the k-approximate agreement task
for processes A,B has an input graph I consisting of a single edge, I =
{(A, 0), (B, 1)}. The output graph O consists of a path of k edges, whose
vertices are:

(A, 0), (B,
1

k
), (A,

2

k
), . . . , (A,

k − 1

k
), (B, 1)

The carrier map ∆ is defined on vertices by

∆((A, 0)) = {(A, 0)} and ∆((B, 1)) = {(A, 1)}

54 CHAPTER 2. TWO-PROCESS SYSTEMS

and extends naturally to edges: ∆({(A, 0), (B, 1)}) = O. Any protocol
for k-approximate agreement causes the processes to decide values that lie
within 1/k of each other. See Figure 2.2 for the case of k = 5. We can think
of the path linking the output graph’s end vertices as a kind of discrete
approximation to a continuous curve between them. No matter how fine
the approximation, meaning no matter how many edges we use, the two
endpoints remain connected. Connectivity is an example of a topological
property that is invariant under subdivision.

It is remarkable that approximate agreement turns out to be the essential
building block of a solution to every task.

2.3 Models of Computation

We now turn our attention from tasks, the problems we want to solve,
to the models of computation in which we want to solve them. As noted
earlier, there are many possible models of distributed computation. A model
typically specifies how processes communicate, how they are scheduled, and
how they may fail. Here, we consider three simple models with different
characteristics. Although these two-process models are idealized, they share
some properties with the more realistic models introduced later.

We will see that the computational power of a model, that is, the set of
tasks it can solve, are determined by the topological properties of a family
of graphs, called protocol graphs, generated by the model.

2.3.1 The Protocol Graph

Let (I,O,∆) be a task. Recall that I is the graph of all possible assignments
of input values to processes, O is the graph of all possible assignments
of output values, and the carrier map ∆ specifies which outputs may be
generated from which inputs.

Now consider a protocol execution in which the processes exchange in-
formation through the channels (message-passing, read-write memory, or
other) provided by the model. At the end of the execution, each process
has its own view (final state). The set of all possible final views themselves
form a chromatic graph. Each vertex is a pair (P, p), where P is a process
name, and p is P ’s view (final state) at the end of some execution. A pair of
such vertices {(A, a), (B, b)} is an edge if there is some execution where A
halts with view a and B halts with view b. This graph is called the protocol
graph.

2.3. MODELS OF COMPUTATION 55

There is a strict carrier map Ξ from I to P, called the execution carrier
map, that carries each input simplex to a subgraph of the protocol graph. Ξ
carries each input vertex (P, v) to the solo execution in which P finishes the
protocol without hearing from the other process. It carries each input edge
{(A, a), (B, b)} to the subgraph of executions where A starts with input a
and B with b.

The protocol graph is related to the output graph by a decision map
δ that sends each protocol graph vertex (P, p) to an output graph vertex
(P,w), labeled with the same name. Operationally, this map should be
understood as follows: if there is a protocol execution in which P finishes
with view p and then chooses output w, then (P, p) is a vertex in the protocol
graph, (P,w) a vertex in the output graph, and δ((P, p)) = (P,w). It is easy
to see that δ is a simplicial map, carrying edges to edges, because any pair of
mutually compatible final views yields a pair of mutually compatible decision
values.

Definition 2.3.1. The decision map δ is is carried by the carrier map ∆ if

• for each input vertex s, δ(Ξ(s)) ⊆ ∆(s), and

• for each input edge σ, δ(Ξ(σ)) ⊆ ∆(σ).

The composition of the decision map δ with the carrier map Ξ is a carrier
map Φ : I → 2O, (Fact 2.1.6). we say that Φ is carried by ∆, written
Φ ⊆ ∆, because Φ(σ) ⊆ ∆(σ) for every σ ∈ I.

Here is what it means for a protocol to solve a task.

Definition 2.3.2. The protocol (I,P,Ξ) solves the task (I,O,∆) if there is
a strict carrier map Ξ from the input graph I to the protocol graph P, and
a simplicial decision map δ from P to O that is carried by ∆.

It follows that the computational power of a two-process model is entirely
determined by the set of protocol graphs generated by that model. For
example, we will see that some tasks require a disconnected protocol graph.
These tasks cannot be solved in any model that permits only connected
protocol graphs. More precisely,

Corollary 2.3.3. Assume that every protocol graph P permitted by a particu-
lar model has the property that the associated strict carrier map Ξ : I → 2P

is connected. Then, the task (I,O,∆) is solvable only if ∆ contains a con-
nected carrier map.

This lemma, and its later higher-dimensional generalization, will be our
principal tool for showing that tasks are not solvable. We will use model-
specific reasoning to show that a particular model permits only connected

56 CHAPTER 2. TWO-PROCESS SYSTEMS

00

1

1 1

Zero StepsZero Steps 1
delivered

lost

000 1

delivered 0Zero StepsZero Steps

delivered

lost

1 1 1
lost

000 0

delivered
0

One StepOne Step
0

delivered

1 1 11

Two StepsTwo Steps

1 delivered

Two StepsTwo Steps

Figure 2.3: Alternating message-passing model: how the protocol graph
evolves. The dotted lines trace the evolution of a single input edge.

protocol graphs, implying that certain tasks, such as the versions of consen-
sus shown in Figure 2.1, are not solvable in that model.

2.3.2 The Alternating Message-Passing Model

The alternating message-passing model is a formalization of the model used
implicitly in the discussion of the coordinated attack task. The model itself
is not particularly interesting or realistic, but it provides a simple way to
illustrate specific protocol graphs.

As usual, there are two processes, A (Alice) and B (Bob). Computation
is synchronous: Alice and Bob take steps at exactly the same times. At
step 0, Alice sends a message to Bob, which may or may not arrive. At
step 1, if Bob receives a message from Alice, he changes his view to reflect
the receipt, and immediately sends that view to Alice in a reply message.
This pattern continues for a fixed number of steps, Alice may send on even-

2.3. MODELS OF COMPUTATION 57

numbered steps, and Bob on odd-numbered steps. After step 0, a process
sends a message only if it receives one.

Without loss of generality, we may restrict our attention to full-
information protocols, where each process sends its entire current view (local
state) in each message. For impossibility results and lower bounds, we do
not care about message size. For specific protocol constructions, there are
often task-specific optimizations that reduce message size.

Figure 2.3, shows protocol graphs for zero, one, and two-step protocols,
starting with the same input graph as binary consensus. The white vertices
are Alice’s, and the black vertices Bob’s. The protocol graph at step zero is
just the input graph, and each process’s view is its input value. The protocol
graph at step one shows the possible views when Alice’s initial message is
or is not delivered to Bob. The one-step graph consists of a central “copy”
of the input graph with two branches growing from each of Alice’s vertices.
The central copy of the input graph represents the processes’ unchanged
views if Alice’s message is not delivered. The new branches reflect Bob’s
four possible views if Alice’s message is delivered, combining Bob’s possible
inputs and Alice’s. Similarly, the two-step graph consists of a copy of the
one-step graph with four new branches reflecting Alice’s possible views if
Bob’s message is delivered. Because each process falls silent if it fails to
receive a message, subsequent protocol graphs grow only at the periphery,
where all messages have been received.

The dotted lines in Figure 2.3 trace the evolution of Ξ(σ) for an individ-
ual edge σ. It is not hard to see that each Ξ(σ) is connected, and therefore
the execution carrier map Ξ is connected. (We will see how to prove such
claims later.) It follows from Corollary 2.3.3 that the alternating message-
passing model cannot solve consensus. Of course, this model cannot solve
much of anything, since it admits executions where Alice and Bob finish any
protocol without ever communicating.

2.3.3 The Layered Message-Passing Model

The layered message-passing model is stronger and more interesting than
the alternating model. Here, too, computation is synchronous: Alice and
Bob take steps at the same time. For reasons that will be apparent in later
chapters, we will call each such step a layer. In each layer, Alice and Bob
each sends his or her current view to the other in a message. In each layer,
at most one message may fail to arrive, implying that either one or two
messages will be received. A process may crash at any time, after which it
sends no more messages.

58 CHAPTER 2. TWO-PROCESS SYSTEMS

Input GraphInput Graph

Input GraphInput Graph

10

p pp p

010⊥ 01 ⊥1010⊥ 01 ⊥1

Protocol
Graph

Protocol
Graph

Protocol
Graph

Protocol
Graph GraphGraphGraphGraph

Figure 2.4: Layered message-passing model: single-layer protocol graphs,
fixed-inputs left, binary inputs right.

Figure 2.4 shows two single-layer protocol graphs for this model. On the
left, the input graph has fixed inputs, and on the right, the input graph has
binary inputs. On the right-hand side, each vertex in the input graph is
labeled with a binary value, 0 for Alice (white) and 1 for Bob (black). Each
vertex in the protocol graph is labeled with the pair of values received in
messages, or “⊥” if no message was received.

It is remarkable that the single-layer protocol graph in this model is the
same as the input graph, except that each input edge is subdivided into
three. Moreover, each subsequent layer further subdivides the edges of the
previous layer, and the topological invariant that the protocol graph remains
a subdivision of the input graph is maintained. More precisely, consider an
edge σ ∈ I, σ = {(A, a), (B, b)}, where a and b are input values. The
single-layer protocol graph σ is a path of three edges:

{{(A, a⊥), (B, ab)} , {(B, ab), (A, ab)} , {(A, ab), (B,⊥b)}} ,

2.3. MODELS OF COMPUTATION 59

Input GraphInput Graph

0 1

Ξ

Protocol GraphProtocol Graph

0101 ⊥10⊥

δ

0 0 1 1
Output GraphOutput Graphp pp p

Figure 2.5: Reliable message delivery: a single-layer protocol for consensus.

where (X, yz) denotes a vertex colored with process name X, message y
from A, and message z from B. Either message symbol can be “⊥”.

No matter how many layers we execute, the protocol graph will be a
subdivision of the input graph. In particular, the image of an input edge
is a subdivided edge, so the execution carrier map Ξ for any protocol in
this model is connected. It follows from Corollary 2.3.3 that the consensus
task has no protocol in the layered message-passing model. We will see later
that it is possible, however, to solve any approximate agreement task. This
example shows that the layered message-passing model is stronger than the
alternating message model.

Small changes in the model can cause large changes in computational
power. Suppose we change this model to guarantee that every message
send is eventually delivered, although process may still crash. In this case,
there is a simple one-layer consensus protocol, illustrated for fixed inputs in
Figure 2.5. Each process sends its input to the other. If it does not receive
a reply, it decides its own value. If it does, it decides the lesser of the two

60 CHAPTER 2. TWO-PROCESS SYSTEMS

shared mem: array[0..L−1][0..1] of view // initially all ⊥
private i : int // my name: 0 for Alice , 1 for Bob
private j : int := 1 − i // other ’ s name
protocol LayeredReadWrite (input: int)

v: view := input // initially my view is my input
for ` := 0 to L−1 do // for L layers

mem[`][i] := v // write my view to memory
v := {v, mem[`][j]} // make new view

decide δi(v) // apply my decision map

Figure 2.6: Layered read-write model: an L-layer protocol

input values. Notice that the protocol graph for this model is not pure: the
isolated vertices reflect configurations where one process is certain the other
has crashed.

2.3.4 The Layered Read-Write Model

We now turn our attention to shared read-write memory. This model, while
still idealized, is closer to the programming model presented by modern mul-
ticore architectures. Here, computation is asynchronous: there is no bound
on processes’ relative speeds. Alice and Bob communicate by reading and
writing a shared memory. As before, computation is structured as a sequence
of layers. In an L-layered protocol execution, the shared memory is orga-
nized as an (L×2)-element array mem[·][·]. At each layer `, starting at 0 and
halting at L, Alice writes her view to mem[`][0] and reads mem[`][1], while
Bob writes his view to mem[`][1] and reads mem[`][0]. Because scheduling is
asynchronous, and because either Alice or Bob may crash, Alice reads each
mem[`][1] only once, and she may read mem[`][1] before Bob writes to it.
Bob’s behavior is symmetric. Notice that at each level, at least one process
observes the other’s view.

Unlike the synchronous layered message-passing model, where a failure
can be detected by the absence of a message, failures are undetectable in
this model. If Alice does not hear from Bob for a while, she has no way
to know whether Bob has crashed, or whether he is just slow to respond.
Because Alice can never wait for Bob to act, any such protocol is said to be
wait-free.

Figure 2.6 shows a layered read-write protocol. Each process has a view,
initially just its input value. At each layer 0 ≤ ` ≤ L−1, Alice, for example,

2.4. APPROXIMATE AGREEMENT 61

writes her view mem[`][0], reads Bob’s view (possibly ⊥) from mem[`][0],
and constructs a new view by joining them.

Note that this protocol, like most protocols considered in this book, is
split into two parts. In the first, each process repeatedly writes its view to a
shared memory and then constructs a new view by taking a snapshot of the
memory. This part is generic, in the sense that such a step could be part of
any protocol for any task. The second part, however, is task-specific: each
process applies its task-specific decision map to its new view to determine
its decision value. This decision map depends on the task being solved. Any
protocol can be structured in this way, isolating the task-specific logic in the
final decision maps. The decision maps do not affect the protocol graph.

Fact 2.3.4. In the layered read-write model, the protocol graph for the L-
layer normal-form protocol starting in a single edge is a path of length 3L.

Remarkably, this is exactly the same execution carrier map Ξ as in the
layered message-passing model! Even though one model is synchronous
and the other asynchronous, one model uses message-passing and the other
shared memory, they have exactly the same sets of protocol graphs, and
exactly the same computational power. In particular, the layered read-write
model can solve approximate agreement, but not consensus.

Corollary 2.3.5. If I be an input graph, and Ξ : I → 2O an execution
carrier map in the layered read-write model, then Ξ is a connected carrier
map.

2.4 Approximate Agreement

Topological methods can be used to establish when protocols exist, as well
as when they do not. The approximate agreement task of Section 2.2.3
plays a central role in protocol construction, as we shall see in Section 2.5.
Here we consider approximate agreement protocols in the layered read-write
model. Although k-approximate agreement can be defined for an arbitrary
input graph, here we focus on a single-edge fixed-input graph, consisting of
a single edge, I = {(A, 0), (B, 1)},

Recall that the k-approximate agreement task is specified by an odd
positive integer k. and output graph O consisting of a path of k edges,
whose i-th vertex, wi, is (A, i/k) if i is even, and (B, i/k) if i is odd.

The top part of Figure 2.7 shows the input, protocol, and output graphs
for a 3-approximate agreement protocol. Alice’s vertices are white, Bob’s are
black, and each vertex is labeled with its view. Figure 2.8 shows an explicit

62 CHAPTER 2. TWO-PROCESS SYSTEMS

I t G hI t G h

10

Input GraphInput Graph

Ξ

0⊥ 0101 ⊥1

Protocol GraphProtocol Graph

δ

0 1/3 2/3 1

Output GraphOutput Graph

0 1/3 2/3 1

Figure 2.7: Input, protocol, and output graphs for a single-layer 3-
approximate agreement protocol.

single-layer protocol. The processes share a two-element array. Each process
writes to its array element and reads from the other’s. If the other has not
written, the process decides its own value. Otherwise, the process switches
to the middle of the range: if its input was 0, it decides 2/3, and if its input
was 1, it decides 1/3.

Here is why this protocol works. Because each process writes to its own
memory element before reading from the other’s, some process must read the
other’s value. In particular, Alice cannot decide 0 if Bob decides 1. There
are three possibilities, illustrated in Figure 2.9. At the top of the figure,
Alice reads from Bob, but not vice-versa, and Alice moves to the middle, at
2
3 , while Bob stays at 1. At the middle, each reads from the other, and Alice
and Bob both move to the middle, at 2

3 and 1
3 respectively. At the bottom of

the figure, Bob reads from Alice, but not vice-versa, and Bob moves to the
middle, at 1

3 , while Alice stays at 0. In all cases, each decision lies within 1
3

of the other.

2.4. APPROXIMATE AGREEMENT 63

shared mem: array[0..1] of real // two−word shared memory, initially ⊥
private i : int // my name: 0 for Alice , 1 for Bob
private j : int := 1 − i // other ’ s name
protocol 3Approx (input: int)

v: real := input // initially my view is my input
mem[i] := v // write my view to memory
w: real := mem[j] // read other ’ s value
if w = ⊥ then // if other is silent ..

decide v // decide my value
else if v = 0 then // otherwise jump to middle of range

decide 2/3
else decide 1/3

Figure 2.8: Single-layer protocol for 3-approximate agreement

0 2/31/3 1

0 2/31/3 1

0 2/31/3 1

Figure 2.9: A single-layer 3-approximate agreement protocol

64 CHAPTER 2. TWO-PROCESS SYSTEMS

I t G hI t G h

10

Input GraphInput Graph

Ξ

0⊥ 0101 ⊥1

Protocol GraphProtocol Graph

?

Output GraphOutput Graph

0 1/5 2/5 3/5 4/5 1

Figure 2.10: There is no single-layer 5-approximate agreement protocol

Input GraphInput Graph

10

Ξ Layer OneLayer One

0⊥ 0101 ⊥1

Layer OneLayer One

Ξ Layer TwoLayer Two

δ

0 1/5 2/5 3/5 4/5 1
Output GraphOutput Graph

Figure 2.11: Input, protocol, and output graphs for a two-layer 5-
approximate agreement protocol

2.5. TWO-PROCESS TASK SOLVABILITY 65

Figure 2.10 illustrates why there is no single-layer 5-approximate agree-
ment protocol: there are not enough vertices in the protocol graph to cover
the output graph. With two layers, however, it is possible to generate enough
vertices and edges to construct a correct decision map (Figure 2.11).

Using k levels of recursion, it is easy to transform the protocol of Fig-
ure 2.8 to a 3k-approximate agreement protocol. We leave it as an exercise to
transform an explicit 3k-approximate protocol into a K-approximate agree-
ment protocol for 3k−1 < K ≤ 3k.

Fact 2.4.1. In the layered read-write model, the K-approximate agreement
has a (dlog3Ke)-layer protocol.

2.5 Two-Process Task Solvability

We are now ready to give a theorem that completely characterizes which
two-process tasks have protocols in the layered read-write model. The key
insight is that we can construct a protocol for any solvable task from the
k-approximate agreement protocol, for sufficiently large k.

For a single-edge input, Fact 2.3.4 states that the protocol graph for an L-
layer read-write protocol is a path of length 3L. Applied to an arbitrary input
graph I, the resulting protocol graph P is a subdivision of I. In general, a
graph P is a subdivision of I if P is obtained by replacing each edge of I
with a path. More formally, there is a carrier map Φ : I → 1P that sends
each vertex of I to a distinct vertex of P, and each edge e = (v0, v1) of I to
a path Pe of P connecting Φ(v0) with Φ(v1), such that different paths are
disjoint, and P is equal to the union of these paths.

Fact 2.5.1. The protocol graph for any L-layer protocol with input graph I
is a subdivision of I, where each edge is subdivided 3L times.

Recall that a task (I,O,∆) is solvable in the layered read-write model
if there exists an L-layer protocol (I,P,Ξ), in the form of Figure 2.6, for
some L > 0, and a simplicial decision map δ : P → O carried by ∆.

We are now ready to give a complete characterization of the tasks solv-
able by two asynchronous processes that communicate by layered read-write
memory.

Theorem 2.5.2. The two-process task (I,O,∆) is solvable in the lay-
ered read-write model if and only if there exists a connected carrier map
Φ : I → 2O carried by ∆.

Recall that a carrier map Φ is connected (Section 2.1.3) if Φ(σ) is a
connected graph, for every σ ∈ I. That is, for every vertex s in I, Φ(s) is a

66 CHAPTER 2. TWO-PROCESS SYSTEMS

vertex in ∆(s), and for every edge σ, Φ(σ) is a connected subgraph of ∆(σ).
Finally, because Φ(·) is a carrier map, if s ⊆ σ∩ τ , then Φ(s) ⊆ Φ(σ)∩Φ(τ).

Here is a simple informal justification for the if part. We are given a
carrier map Φ carried by ∆. For each vertex v in I, Φ(v) is a single vertex.
Let {σi|i ∈ I} be the edges of I, where I is an index set. For any edge
σi = {si, ti} of I, there is a path linking Φ(si) and Φ(ti) in Φ(σ) of length `i.
Let ` = maxi∈I `i. By Fact 2.4.1, there is a protocol to solve approximate
agreement on this path that takes L = dlog3 `e layers. The approximate
agreement protocols for two intersecting edges {s, t} and {s, u} agree on
their intersection, the solo execution starting at s, so these protocols can be
“glued together” on I to yield a protocol for the entire task.

The informal justification for the only if direction is also straightforward.
We are given a protocol with decision map δ that solves the task. Its protocol
graph P is a subdivision of I, and δ is a simplicial map from P to O.
The composition of Ξ and δ, Φ = Ξ ◦ δ, is a carrier map from I to O.
By Fact 2.1.2, for every input edge σ, Φ(σ) is connected. Moreover, each
input vertex is mapped to a single vertex of the protocol graph (by the solo
execution), and from there to a single vertex of O, by δ (the deterministic
decision).

Theorem 2.5.2 has two immediate applications. Because the input com-
plex for consensus is connected (an edge), but the output complex is discon-
nected (two vertices),

Corollary 2.5.3. The consensus task has no layered read-write protocol.

By contrast, the input complex I for approximate agreement is con-
nected (an edge), but so is the output complex (a subdivided edge),

Corollary 2.5.4. The approximate agreement task does have a layered read-
write protocol.

2.6 Chapter Notes

Fischer, Lynch, and Paterson [56] proved that there is no message-passing
protocol for the consensus task tolerates even a single process failure. Later
on, Biran, Moran, and Zaks [18] showed how to extend this style of impos-
sibility proof to arbitrary tasks. Moreover, for the tasks that can be solved,
they derived an approximate agreement-based protocol to solve them, ex-
pressing a task solvability characterization in terms of graph connectivity.
Our characterization of the tasks solvable by two processes is based on these
earlier papers. There are several reasons why our treatment is simpler: we

2.6. CHAPTER NOTES 67

consider only two processes, we use shared-memory communication, and we
use a layer-by-layer model where each memory location is written only once.

Loui and Abu-Amara [112] showed that consensus is impossible in read-
write memory, and Herlihy [80] extended this analysis to shared objects
such as stacks, queues, and compare-and-swap variables. Borowsky and
Gafni [26] use a round-by-round snapshot model for the wait-free model.

The results in this chapter can all be expressed in the language of graph
theory. When at most one process can fail, graph theory is sufficient, even
if the system consists of more than two processes. Indeed, graph theory is
used in the work of Biran, Moran, and Zaks [18] to analyze task solvability
and round complexity in message-passing models [21]. To analyze consensus
specifically, graph theory is sufficient even if more processes can fail, as was
shown in the work of Moses and Rajsbaum [122] in various models.

In synchronous message passing models, graph theory is sufficient to
analyze consensus. Santoro and Widmayer [138], introduced a model similar
to layered message passing, which was further investigated by Charron-Bost
and Schiper [36], and by Schmid et al. [140]. Santoro and Widmayer [139]
investigate the model for arbitrary network interconnection.

The t-faulty model, where up to t ≤ n processes can fail, was studied
by many researchers, including Dwork and Moses [50] and a recent book of
Raynal [135].

The first successful attempts to go beyond graph theory are due to
Borowsky and Gafni [23], Herlihy and Shavit [93], and Zaks and Za-
haroglou [136]. Higher dimensional graphs, called simplicial complexes, are
required to study general tasks, in models where more than one process can
fail.

The approximate agreement task was first studied by Dolev et al. [47],
and later by Abraham et al. [1], as a way to circumvent the impossibility of
consensus in asynchronous models where a single process may crash. They
presented algorithms to reach approximate agreement in both synchronous
and asynchronous systems. Their algorithms work by successive approxima-
tion, with a convergence rate that depends on the ratio between the number
of faulty processes and the total number of processes. They also proved
lower bounds on this rate.

The two-cover task of Exercise 2.9 is from Fraigniaud et al. [59], where
many other covering tasks can be found.

68 CHAPTER 2. TWO-PROCESS SYSTEMS

2.7 Exercises

Exercise 2.1. Consider a simplicial map µ from a graph G to a graph H.
Prove that the image µ(G) is a subgraph of H. Similarly, consider a carrier
map Φ from a graph G to a graph H. Prove that the image Φ(G) is a
subgraph of H. Also, if µ is a simplicial map from H to another graph, then
µ(Φ(G)) is a subgraph of that graph.

Exercise 2.2. Following the previous exercise, prove that if G is a connected
graph so is the subgraph µ(G). Prove that it is not true that if G is connected,
then Φ(G) is connected. However, if Φ(σ) is connected for each edge σ of G,
then Φ(G) is connected. Notice that in this case, µ(Φ(G)) is also connected,
for any simplicial map µ from Φ(G).

Exercise 2.3. Prove that a chromatic graph is connected if and only if there
exist a (rigid) chromatic simplicial map to the graph consisting of one edge.

Exercise 2.4. Prove that the composition of two simplicial maps is a simpli-
cial map. Prove that if both are rigid, so is their composition.

Exercise 2.5. Define the composition of two carrier maps. Prove that the
composition satisfies the monotonicity requirement of a carrier map.

Exercise 2.6. Define the composition of a carrier map followed by a simplicial
map. Prove that the composition is a carrier map. Moreover, if both are
chromatic, their composition is chromatic.

Exercise 2.7. In the model of Chapter 1 where Alice and Bob communicate
by sending messages to each other in turn, describe the protocol graph, and
show that it is connected.

Exercise 2.8. Consider the approximate coordinated attack task of Sec-
tion 2.2.1. Prove that if Alice and Bob exchange messages in turn, the
task is not solvable.

Exercise 2.9. Consider the two-cover task of Figure 2.12. The inputs are
binary, and the outputs are in the set {0, 1, 2, 3}. If a process starts with
input b, and runs solo, it outputs b or b+ 2. When the processes start with
an edge labeled ` in the input graph, they decide on any of the two edges
labeled ` in the output graph. Prove that this task has no wait-free protocol
in the layered read-write model.

Exercise 2.10. Modify the code of Figure 2.8 to solve 3k-approximate agree-
ment (hint: use recursion).

Exercise 2.11. Given a protocol for 3k-approximate agreement, modify it to
solve K-approximate agreement, for 3k−1 < K ≤ 3k. Be sure to define the
decision maps.

2.7. EXERCISES 69

Input GraphInput Graph

10

Ξ Layer OneLayer One

0⊥ 0101 ⊥1

Layer OneLayer One

Ξ Layer TwoLayer Two

δ

0 1/5 2/5 3/5 4/5 1
Output GraphOutput Graph

Figure 2.12: A two-cover task.

Exercise 2.12. Consider a solvable task T = (I,O,∆), where I is a graph
without cycles. In the layered read-write model, is there a protocol that
solves T with carrier map P, and decision map δ, such that δ(P(I)) is an
acyclic subgraph of O?

70 CHAPTER 2. TWO-PROCESS SYSTEMS

Chapter 3

Elements of Combinatorial
Topology

Non Print Material 3. Abstract: This chapter defines the basic notions of
topology needed to formulate the language we use to describe distributed
computation.

Key Words: abstract simplicial complex, affine combination, barycen-
tric subdivision, boundary, carrier map, chromatic subdivision, combinato-
rial topology, complex, cone, convex combination, convex hull, dimension,
face, geometric simplicial complex, join, link, polyhedron, simplex, simplicial
map, skeleton, star, subcomplex, subdivision, vertex.

This chapter defines the basic notions of topology needed to formulate the
language we use to describe distributed computation.

Topology is a branch of geometry devoted to drawing the distinction
between the essential and inessential properties of spaces. For example,
whether two edges intersect in a vertex is considered essential, because it
remains the same no matter how the graph is drawn. By contrast, the length
of the edge linking linking two vertices is not considered essential, because
drawing the same graph in different ways changes that length.

Essential properties are those that endure when the space is subjected
to continuous transformations. For example, a connected graph remains
connected even if the graph is redrawn or an edge is subdivided into mul-
tiple edges that take up the same space (a discrete version of a continuous
transformation).

71

72 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

The various branches of topology differ somewhat in the way of repre-
senting spaces, and in the continuous transformations that preserve essential
properties. The branch of topology that concerns us is called combinatorial
topology, because we are interested in spaces made up of simple pieces, for
which essential properties can be characterized by counting, such as the sum
of the degrees of the nodes in a graph. Sometimes, the counting can be sub-
tle, and sometimes we will need to call on powerful mathematical tools for
help, but in the end, it is all just counting.

3.1 Basic Concepts

A distributed system can have a large and complex set of possible execu-
tions. We will describe these executions by breaking them into discrete
pieces called simplices. The structure of this decomposition, that is, how
the simplices fit together, is given by a structure called a complex. As
the name suggests, a complex can be quite complicated, and we will need
tools provided by combinatorial topology to cut through the confusing and
inessential properties to perceive the simple, underlying essential properties.

We start with an informal geometric example. Perhaps the simplest
figure is the disk. It consists of a single piece, without holes, and any
attempt to divide it into more than one piece requires cutting or tearing.
A 0-dimensional disk is a point, a 1-dimensional disk is a line segment,
a 2-dimensional disk is, well, a disk, a 3-dimensional disk is a solid ball,
and so on. A d-dimensional disk has a (d − 1)-dimensional sphere as its
boundary. A cell of dimension d is a convex polyhedron homeomorphic1 to
a disk of dimension d. We can “glue” cells together along their boundaries
to construct a cell complex.

As noted, we are primarily interested in properties of complexes that
can be expressed in terms of counting. To illustrate this style of argument,
we will review a classical result: Euler’s formula for polyhedrons and some
of its applications. This particular result is unrelated to the specific topics
covered by this book, but it serves as a gentle informal introduction to the
style and substance of the arguments used later. We use a similar approach
for Sperner’s Lemma in Chapter 9.

A polyhedron is a 2-dimensional cell complex that is homeomorphic to
a sphere. Figure 3.1 shows three such complexes: a tetrahedron, a cube,
and an octahedron. Each is made up of a number of vertices, V , a number

1 Two topological space X and Y are homeomorphic if there is a bijection f : X → Y
such that both f and its inverse are continuous.

3.1. BASIC CONCEPTS 73

Figure 3.1: Three Platonic Solids: a tetrahedron, a cube, and an octahedron.

of edges, E, and a number of faces, F . (Vertices, edges, and faces are all
cells of respective dimensions 0, 1, and 2.) Perhaps the earliest discovery of
combinatorial topology is Euler’s formula:

F − E + V = 2.

This formula says that the alternating sum of the numbers of faces, edges,
and vertices (called the Euler number) for any complex homeomorphic to
a sphere is is always 2. The actual shape of the faces, whether triangles,
squares, or other, is irrelevant.

The ancient Greeks discovered that, in addition to the three polyhedrons
shown in the figure, there are only two more Platonic solids: the dodecahe-
dron and the icosahedron. A Platonic solid is a regular polyhedron, where
all faces have the same number of edges, and the same number of faces meet
at each vertex. The proof that there are only five such polyhedrons is a
simple example of the power of combinatorial topology, based on the Euler
characteristic and a style of counting we will use later. Let a be the number

74 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

of edges of each face and let b be the number of edges meeting at each vertex.
The number aF counts all the edges, by face, so each edge is counted twice,
once for each face to which it belongs. It follows that aF = 2E. Similarly,
each edge has two vertices, so bV = 2E. We can now rewrite Euler’s formula
as

2E

a
− E +

2E

b
= 2

or
1

a
+

1

b
− 1

2
=

1

E

It turns out that there are only five solutions to this equation, because a
and b most be integers greater than 2 and less than 6. For example, for the
tetrahedron, a = b = 3, for the cube a = 4, b = 3, and for the octahedron,
a = 3, b = 4.

Notice the interplay between the geometric approach and the combina-
torial approach. In geometry, we characterize a sphere in Euclidean space as
the subspace of points at the same distance from a point, while the combina-
torial approach characterizes a sphere in terms of a combinatorial invariant
in the way a sphere is constructed from simpler components.

In this book, we will make use of a more structured form of cell complex,
called a simplicial complex. where the cells consist only of vertices, edges,
triangles, tetrahedrons, and their higher-dimensional extensions.

Mathematical Note 3.1.1. Topology emerged as a distinct field of mathemat-
ics with the 1895 publication of Analysis Situs by Henri Poincaré, although
many topological ideas existed before. The work which is usually considered
as the beginnings of topology is due to Leonhard Euler, in 1736, where he
describes a solution to the celebrated Königsberg bridge problem (Euler’s
work also is cited as the beginning of graph theory). Today, topological
ideas are present in almost all areas of mathematics, and can be highly so-
phisticated and abstract. Yet, more and more applications emerge, to many
areas including physics, chemistry, economics, biology, automobile engineer-
ing, and of course, computer science, where areas such as programming,
robotics, sensor networks, image and data analysis have used topology.

3.2 Simplicial Complexes

There are three distinct ways to view simplicial complexes: combinatorial,
geometric and topological.

3.2. SIMPLICIAL COMPLEXES 75

3.2.1 Abstract Simplicial Complexes and Simplicial Maps

We start with the combinatorial view, as it is the most basic and the more
closely related to distributed computing. Abstract simplicial complexes and
maps between them are the central objects of combinatorial topology

Definition 3.2.1. Given a set S, and a family A of finite subsets of S, we say
that A is an abstract simplicial complex on S if the following are satisfied:

(1) if X ∈ A, and Y ⊆ X, then Y ∈ A;

(2) {v} ∈ A, for all v ∈ S.

An element of S is a called a vertex (plural vertices), and an element
of A is called a simplex (plural simplices). The set of all vertices of A is
denoted by V (A). A simplex σ ∈ A is said to have dimension |σ| − 1.
In particular, vertices are 0-dimensional simplices. We sometimes mark
a simplex’s dimension with a superscript: σn. A simplex of dimension n is
sometimes called an n-simplex. We often say complex for brevity, when no
confusion arises with geometric complex, defined below.

We usually use lower-case Latin letters to denote vertices (x, y, z, . . .),
lower-case Greek letters to denote simplices (σ, τ, . . .), and calligraphic font
to denote simplicial complexes (A,B, . . .).

A simplex τ is a face of σ if τ ⊆ σ, and a proper face if τ ⊂ σ. If
τ has dimension k, then τ is a k-face of σ. Clearly, the 0-faces of σ and
vertices of σ are the same objects, so for v ∈ S, we may write {v} ⊆ σ or
v ∈ σ, depending on which aspect of relation between v and σ we want to
emphasize. Let σ = {s0, . . . , sn} be an n-simplex. Define Facei σ, the ith

face of σ, to be the (n−1)-simplex {s0, . . . , ŝi, . . . , sn}, where the circumflex
denotes omission.

A simplex σ in a complex A is a facet if it is not a proper face of any other
simplex in A. The dimension of a complex A is the maximum dimension of
any of its facets. A complex is pure if all facets have the same dimension.
A complex B is a subcomplex of A if every simplex of B is also a simplex
of A. If A is a pure complex, the codimension codim(σ,A) of σ ∈ A is
dimA− dimσ, in particular, any facet has codimension 0. When A is clear
from context, we denote the codimension simply by codimσ.

Let C be an abstract simplicial complex and ` a non-negative integer.
The set of simplices of C of dimension at most ` is a subcomplex of C, called
the `-skeleton, denoted skel`(C). In particular, the 0−skeleton of a complex
is simply its set of vertices.

76 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

0-simplex 1-simplex

2-simplex 3-simplex

Figure 3.2: Simplices of various dimensions.

For an n-dimensional simplex σ, we sometimes denote by 2σ the complex
containing σ and all its faces, and ∂ 2σ the complex of faces of σ of dimension
at most n−1. (When there is no ambiguity, we will sometimes denote these
complexes simply as σ and ∂ σ). If σ is an n-simplex, its boundary complex,
∂ 2σ, or skeln−1 σ, is its set of proper faces.

Given two complexes A and B, a vertex map µ : V (A) → V (B) carries
each vertex of A to a vertex of B. In topology, however, we are interested
in maps that preserve structure.

Definition 3.2.2. For two simplicial complexes A and B, a vertex map µ
is called a simplicial map if it carries simplices to simplices: that is, if
{s0, . . . , sn} is a simplex in A, then {µ(s0), . . . , µ(sn)} is a simplex of B.

Note that µ(σ) may have a smaller dimension than σ.

Definition 3.2.3. Two simplicial complex A and B are isomorphic, written
A ∼= B, if there are simplicial maps φ : A → B and ψ : B → A such that for
every vertex a ∈ A, a = ψ(φ(a)), and for every vertex b ∈ B, b = φ(ψ(b)).

3.2. SIMPLICIAL COMPLEXES 77

Isomorphic complexes have identical structures.

Definition 3.2.4. Given two abstract simplicial complexes A and B. A sim-
plicial map ϕ : A → B is rigid if the image of each simplex σ has the same
dimension as σ, i.e., |ϕ(σ)| = |σ|.

Rigid maps are rarer than simplicial maps. There are many possible
simplicial maps between any two abstract complexes (for example, one could
map every vertex of the first complex to any vertex of the second), but there
may be no rigid maps. For example, there is no rigid simplicial map from
the boundary complex of a triangle to a single edge.

We note that a composition of simplicial maps is a simplicial map, and
if the maps are rigid, so is their composition.

3.2.2 The Geometric View

We next switch to geometry. Let Rd denote d-dimensional Euclidean space.
In the geometric view, we embed a complex in Rd, and forget about how the
complex is partitioned into simplices, considering only the underlying space
occupied by the complex.

We use [m : n], where n ≥ m, as shorthand for {m,m+ 1, . . . , n}, and we
write [n], as shorthand for [0 : n]. A point y in Rd is the affine combination
of a finite set of points X = {x0, . . . , xn} in Rd if it can be expressed as the
weighted sum

y =

n∑
i=0

ti · xi, (3.2.1)

where the coefficients ti sum to 1. These coefficients are called the barycen-
tric coordinates of y with respect to X. If, in addition, all barycentric
coordinates are positive, y is said to be a convex combination of the xi. The
convex hull of X, conv X, is the set of convex combinations where for each
coefficient ti, 0 ≤ ti ≤ 1. (The convex hull is also the minimal convex set
containing X.) The set X is affinely independent if no point in the set can
be expressed as an affine combination of the others.

The standard n-simplex ∆n is the convex hull of the n + 1 points in
Rn+1 with coordinates (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). More
generally, a geometric n-simplex, or a geometric simplex of dimension n, is
the convex hull of any set of n + 1 affinely independent points in Rd (in
particular, we must have d ≥ n). As illustrated in Fig. 3.2, a 0-dimensional
simplex is a point, a 1-simplex is an edge linking two points, a 2-simplex is
a solid triangle, a 3-simplex a solid tetrahedron, and so on.

78 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

In direct analogy with the combinatorial framework, we use the following
terminology. When v0, . . . , vn ∈ Rd are affinely independent, we call them
vertices of the n-simplex σ = conv {v0, . . . , vn}. In this case, for any S ⊆ [n],
the (|S|−1)-simplex τ = conv {vs | s ∈ S} is called a face, or an (|S|−1)-face
of σ; it is called a proper face if, in addition, S 6= [n]. We set Facei σ :=
conv {v0, . . . , v̂i, . . . , vn}. Gluing geometric simplices together, along their
faces, yields the geometric analog of Definition 3.2.1.

Definition 3.2.5. A geometric simplicial complex K in Rd is a collection of
of geometric simplices, such that

(1) any face of a σ ∈ K is also in K;

(2) for all σ, τ ∈ K, their intersection σ ∩ τ is a face of each of them.

For each geometric n-simplex σ = conv (v0, . . . , vn) with a fixed order on its
set of vertices, we have a unique affine map ϕ : ∆n → σ taking the ith vertex
of ∆n to vi. This map ϕ is called the characteristic map of σ.

Given a geometric simplicial complex K, we can define the underlying
abstract simplicial complex C(K) as follows: take the union of all the sets of
vertices of the simplices of K as the vertices of C(K), then for each simplex
σ = conv {v0, . . . , vn} of K take the set {v0, . . . , vn} to be a simplex of
C(K). In the opposite direction: given an abstract simplicial complex A
with finitely many vertices, there exist many geometric simplicial complexes
K, such that C(K) = A. The simplest construction is as follows. Assume A
has d vertices, take the standard simplex σ in Rd, and take the subcomplex
of σ consisting of the geometric simplices which correspond to the sets in
the set family A. Usually, one can find K of a much lower dimension than
d, but then the construction could be quite a bit more complicated.

We will see that many of the notions defined for abstract simplicial com-
plexes generalize in a straightforward way to geometric complexes. For
now, we remark that there is a standard way in which a simplicial map
µ : A → B induces a locally affine map between the associated geometric
complexes: simply take the map µ on the vertices, and linearly extend it to
each simplex, using the barycentric coordinate representation from (3.2.1),
cf. (3.2.2).

3.2.3 The Topological View

Finally, we proceed to the topological framework. Given a geometric sim-
plicial complex K in Rd, we let |K| denote the union of its simplices, called
its polyhedron. This space has the usual topology as the subspace of Rd.

3.3. STANDARD CONSTRUCTIONS 79

Somewhat confusingly the space |K| is called the geometric realization of K.
If A is an abstract simplicial complex, we can first construct K, such that
C(K) = A, and then let |A| = |K|. This construction does not depend on
the choice of K, only the choice of A. One can also construct |A| by starting
with a set of disjoint simplices, and then gluing them together along their
boundaries, using the combinatorial data as the gluing schema.

Let us now look at the maps between the objects which we just described.
Let A and B be abstract simplicial complexes. Recall that a vertex map
µ : V (A) → V (B) maps each vertex of A to a vertex of B, and that
µ is a simplicial map if it also carries simplices to simplices. A vertex
map µ : V (A) → V (B) need not induce a continuous map between the
geometric realizations |A| and |B|. For example, if both A and B have the
vertex set {0, 1}, and the edge {0, 1} is a simplex of A but not of B, then
the identity map id : {1, 2} → {1, 2} is a vertex map, but there there
is no continuous map from an edge to its endpoints that is the identity on
the endpoints. However, any simplicial map µ induces a continuous map |µ|
between geometric realizations. For each n-simplex σ = {s0, . . . , sn} in A,
|µ| is defined on points of |σ| by extending barycentric coordinates:

|µ|(
n∑
i=0

tisi) =
n∑
i=0

tiµ(si). (3.2.2)

Before proceeding with constructions, we would like to mention that in
standard use in algebraic topology the word simplex is overloaded. It is used
to denote the abstract simplicial complex consisting of all subsets of a certain
finite set, but it is also used to refer to individual elements of the family of
sets constituting and abstract simplicial complex. There is a relation here:
to a simplex in the second sense one can associate a subcomplex of the
considered abstract simplicial complex which is a simplex in the first sense.
We will use simplex in both of these meanings. In some texts, simplex is also
used to denote the geometric realization of that abstract simplicial complex;
here we say geometric simplex instead.

3.3 Standard Constructions

There are two standard constructions that characterize the neighborhood of
a vertex or simplex: the star and the link (Fig. 3.3).

Assume σ is a simplex of a simplicial complex C. We describe the con-
structions in the abstract simplicial case. The case of geometric simplicial
complexes is completely analogous.

80 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

3.3.1 Star

The star of a simplex σ ∈ C, written St(σ, C), or St(σ) when C is clear
from context, is the subcomplex of C whose facets are the simplices of C
that contain σ. The complex St(σ, C) consists of all the simplices τ which
contain σ, and furthermore, all the simplices contained in such a simplex τ .
The geometric realization of St(σ, C) is also called the star of σ. Using our
previous notations, we write |St(σ, C)|.

The open star, denoted St◦(σ), is the union of the interiors of the sim-
plices that contain σ:

St◦(σ) =
⋃
τ⊇σ

Int τ.

Note that St◦(σ) is not an abstract or geometric simplicial complex, but
just a topological space, which is open in C. The open sets (St◦(v))v∈V (C)
provide an open covering of |C|.

We have St◦(σ) = ∩v∈V (σ) St◦(v), i.e., the open star of a simplex is the
intersection of the open stars of its vertices. Here the interior of a vertex
is taken to be the vertex itself, and the interior of a higher dimensional
simplex is the topological interior of the corresponding topological space.
To distinguish the two notions, the geometric realization of a star is also
sometimes called the closed star.

3.3.2 Link

The link of σ ∈ C, written Lk(σ, C) (or Lkσ), is the subcomplex of C con-
sisting of all simplices in St(σ, C) that do not have common vertices with σ.
The geometric realization of Lk(σ, C) is also called the link of σ.

Examples of the link of a vertex and of an edge can be seen in Figure 3.4.

3.3.3 Join

Given two abstract simplicial complexesA and B with disjoint sets of vertices
V (A) and V (B), their join, A ∗ B is the abstract simplicial complex with
the set of vertices V (A) ∪ V (B), whose simplices are all the unions α ∪ β,
where α ∈ A, and β ∈ B. Note that either α or β can be be empty sets. In
particular, both A and B are subcomplexes of A∗B. For example, as shown
in Fig. 3.5, the join of two intervals is a tetrahedron. The join operation is
commutative and associative.

Assume furthermore, that K is a geometric simplicial complex in Rm,
such that C(K) = A, and L is a geometric simplicial complex in Rn, such

3.3. STANDARD CONSTRUCTIONS 81

v

e

C

v

e

Link(v,C) Link(e,C)

Figure 3.3: The open star St◦(v), the star St(v), and the link Lk(v) of the
vertex v.

that C(L) = B. Then there is a standard way to construct a geometric
simplicial complex in Rm+n+1 whose underlying abstract simplicial complex
is A ∗ B. Consider the following embeddings: ϕ : Rm → Rm+n+1, given by

ϕ(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

and ψ : Rn → Rm+n+1 given by

ψ(y1, . . . , yn) = (0, . . . , 0, y1, . . . , yn, 1).

The images under these embeddings of K and L are geometric simplicial
complexes whose geometric realizations are disjoint. We can define a new
geometric simplicial complex K ∗ L by taking all convex hulls conv (σ, τ),
where σ is a simplex of K, and τ is a simplex of L. It is a matter of
simple linear algebra to show that the open intervals (x, y), where x ∈ Imϕ
and y ∈ Imψ, never intersect, and so K ∗ L satisfies the conditions for the

82 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

v

e

v
e’ e’’

complex C
e’

Link(e,C)

e’’e’ ee

Link(v,C)

Figure 3.4: The link of a vertex and of an edge.

geometric simplicial complex. It is easy to see that the topological spaces
|A ∗ B| and |K ∗ L| are homeomorphic.

An important example is taking the join of K with a single vertex. When
K is pure of dimension d, v ∗ K is called a cone over K, and v is called the
apex of the cone. Notice that v∗K is pure of dimension d+1. As an example,
for any vertex v of a pure complex K of dimension d, we have

St(v) = v ∗ Lk(v).

Another example is taking the join of an m-simplex with an n-simplex yields
an (m+ n+ 1)-simplex.

There is also a purely topological definition of the join of two topological
spaces. Here we just mention that the simplicial and topological joins com-
mute with the geometric realization, that is for any two abstract simplicial
complexes A and B, the spaces |A ∗ B| and |A| ∗ |B| are homeomorphic.

3.4. CARRIER MAPS 83

Figure 3.5: The join of two edges is a tetrahedron

3.4 Carrier Maps

The concept of carrier map is especially important for applications of topol-
ogy in distributed computing.

Definition 3.4.1. Given two abstract simplicial complexes A and B, a carrier
map Φ from A to B takes each simplex σ ∈ A to a subcomplex Φ(σ) of B,
such that for all σ, τ ∈ A, such that σ ⊆ τ , we have Φ(σ) ⊆ Φ(τ).

We usually use upper-case Greek letters for carrier maps (∆,Φ,Ξ, . . .).
Since a carrier map takes simplices of A to subcomplexes of B, we use
“powerset notation” to describe its range and domain: Φ : A → 2B. Defi-
nition 3.4.1 can be rephrased as saying that a carrier map Φ is monotonic,
implying that the inclusion pattern of the subcomplexes Φ(σ) is the same
as the inclusion pattern of the simplices of A, implying that:

Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ), (3.4.1)

84 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

for all σ, τ ∈ A. For a subcomplex K ⊆ A, we will use the notation Φ(K) :=
∪σ∈KΦ(σ). In particular, Φ(A) denotes the image of Φ.

Carrier maps are one of the central concepts in our study, and we will
sometimes require additional properties. Here are some of them.

Definition 3.4.2. Assume we are given two abstract simplicial complexes A
and B, and a carrier map Φ : A → 2B.

(1) The carrier map Φ is called rigid if for every simplex σ ∈ A of dimen-
sion d, the subcomplex Φ(σ) is pure of dimension d.

(2) The carrier map Φ is called strict if the equality holds in (3.4.1), i.e.,
we have Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ), for all σ, τ ∈ A.

Note specifically, that for a rigid carrier map the subcomplex Φ(σ) is
non-empty, if and only if σ is non-empty, since both must have the same
dimension.

Given a strict carrier map Φ : A → 2B, for each simplex τ ∈ Φ(A) there
is a unique simplex σ in A of smallest dimension, such that τ ∈ Φ(σ). This
σ is called the carrier of τ , or Car(τ,Φ(σ)). (Sometimes we omit Φ(σ) when
it is clear from context.)

Definition 3.4.3. Given two carrier maps Φ : A → 2B and Ψ : A → 2B,
where A, B, are simplicial complexes, and a simplicial map ϕ : A → B we
say that

(1) Φ is carried by Ψ, and write Φ ⊆ Ψ if Ψ(σ) ⊇ Φ(σ) for every σ ∈ A.

(2) ϕ is carried by Φ if ϕ(σ) ∈ Φ(σ) for every σ ∈ A.

Figure 3.6 shows a carrier map that carries a complex consisting of an
edge (top) to a complex consisting of three edges (bottom). It carries the
each vertex of the edge to the two endpoints, and the edge to all three edges.
There is no simplicial map carried by this carrier map, because such a map
would have to send vertices connected by an edge to vertices not connected
by an edge.

We can compose carrier maps with simplicial maps as well as with each
other.

Definition 3.4.4. Assume we are given three abstract simplicial complexes
A, B, and C, and a carrier map Φ from A to B.

(1) If ϕ : C → A is a simplicial map, then we can define a carrier map
Φ ◦ ϕ from C to B, by setting (Φ ◦ ϕ)(σ) := Φ(ϕ(σ)), for all σ ∈ C.

3.4. CARRIER MAPS 85

-1

Figure 3.6: This carrier map from the top simplex to the bottom carries each
vertex to a vertex (left) and the single edge to three edges (right). There is
no simplicial map carried by this carrier map.

(2) If ϕ : B → C is a simplicial map, then we can define a carrier map
ϕ ◦ Φ from A to C, by setting (ϕ ◦ Φ)(σ) := ϕ(Φ(σ)), for all σ ∈ A,
where ϕ(Φ(σ)) = ∪τ∈Φ(σ)ϕ(τ).

It is not difficult to see that composing a rigid simplicial map with a rigid
carrier map, on the left as well as on the right, will again produce a rigid
carrier map.

Furthermore, one can also compose carrier maps with each other.

Definition 3.4.5. Given two carrier maps Φ : A → 2B and Ψ : B → 2C , where
A, B, and C, are simplicial complexes, we define a carrier map Ψ◦Φ : A → 2C

by setting (Ψ ◦ Φ)(σ) := ∪τ∈Φ(σ)Ψ(τ), i.e., (Ψ ◦ Φ)(σ) = Ψ(Φ(σ)), for all
σ ∈ A.

Proposition 3.4.6. Assume that we are given two carrier maps Φ : A → 2B

and Ψ : B → 2C , where A, B, and C, are simplicial complexes.

86 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

(1) If the carrier maps Φ and Ψ are rigid, then so is their composition
Ψ ◦ Φ.

(2) If the carrier maps Φ and Ψ are strict, then so is their composition
Ψ ◦ Φ.

Proof. To show (1), take a d-simplex σ ∈ A. Since Φ is rigid, the subcomplex
Φ(σ) is pure of dimension d. Since any carrier map is monotonic, we have
(Ψ ◦Φ)(σ) = ∪τ∈Φ(σ)Ψ(τ), where the union is taken over all facets of Φ(σ),
which is the same as all d-simplices of Φ(σ). For each such d-simplex τ , the
subcomplex Ψ(τ) is a pure d-dimensional complex, since Ψ is rigid. The
union of pure d-dimensional complexes is again pure d-dimensional, hence
we are done.

Now we show (2). Pick simplices σ, τ ∈ A. We have

Ψ(Φ(σ)) ∩Ψ(Φ(τ)) =

 ⋃
γ1∈Φ(σ)

Ψ(γ1)

⋂ ⋃
γ2∈Φ(τ)

Ψ(γ2)

 =

=
⋃

γ1∈Φ(σ), γ2∈Φ(τ)

(Ψ(γ1) ∩Ψ(γ2)) =
⋃

γ1∈Φ(σ), γ2∈Φ(τ)

Ψ(γ1 ∩ γ2) =

=
⋃

γ∈Φ(σ)∩Φ(τ)

Ψ(γ) =
⋃

γ∈Φ(σ∩τ)

Ψ(γ) = Ψ(Φ(σ ∩ τ)),

which shows that the composition carrier map is again strict.

Finally, if A and B are geometric complexes, a continuous map f : |A| →
|B is carried by a carrier map Φ : A → 2B if, for every simplex σ ∈ A,
f(σ) ⊆ |Φ(σ)|.

3.4.1 Chromatic Complexes

An m-labeling, or just a labeling, of a complex A is a map carrying each
vertex of A to an element of some domain of cardinality m. In other words,
it is a set map ϕ : V (A)→ D, where |D| = m.

An m-coloring, or just a coloring, of an n-dimensional complex A is
an m-labeling χ : V (A) → Π such that χ is injective on the vertices of
every simplex of A: for distinct s0, s1 ∈ σ, χ(s0) 6= χ(s1). In other words,
m-colorings are precisely the rigid simplicial maps into an (m− 1)-simplex
χ : A → ∆m−1. A simplicial complex A together with a coloring χ is
called a chromatic complex, written (A, χ).

3.5. CONNECTIVITY 87

Mathematical Note 3.4.7. A coloring χ : A → ∆m−1 exists if and only if
the 1-skeleton of A, viewed as a graph, is m-colorable in the sense of graph
colorings (more precisely vertex-colorings of graphs).

Definition 3.4.8. Given two m-chromatic simplicial complexes (A, χA) and
(B, χB), a simplicial map φ : A → B is color-preserving if for every vertex
v ∈ A, χA(v) = χB(φ(v)).

Definition 3.4.9. Assume we are given chromatic simplicial complexes A and
B, and a carrier map Φ : A → 2B. We call Φ chromatic if Φ is rigid and
for all σ ∈ A we have χA(σ) = χB(Φ(σ)); where χB(Φ(σ)) := {χB(v) | v ∈
V (Φ(σ))}.
When the colors are process names, we often say name-preserving instead
of chromatic.

3.5 Connectivity

We have defined the objects and maps of interest, as well as the basic lan-
guage and constructions to work with them. We are ready to study topo-
logical properties of these objects, that is, properties that remain invariant
under continuous stretching and bending of the object. The first such notion
is that of path connectivity and its higher dimensional analogs.

3.5.1 Path Connectivity

Perhaps the most basic topological property of an object is whether it con-
sists of a single connected piece. For simplicial complexes, this topological
property can be formalized as follows.

Definition 3.5.1. Let K be an arbitrary simplicial complex. An edge path
(or simply a path) between vertices u and v in K is a sequence of vertices
u = v0, v1, . . . , v` = v such that each pair {vi, vi+1} is an edge of K, for
0 ≤ i < `. A path is simple if the vertices are distinct.

Definition 3.5.2. A simplicial complex K is path-connected if there is a path
between every two vertices in K. The largest subcomplexes of K which are
path-connected are the path-connected components of K.

The path-connectivity of K depends only on the 1-skeleton of K,
skel1(K), namely the subcomplex consisting of the set of simplices of K
of dimension at most 1.

88 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

Clearly, the simplicial complex K is a disjoint union of its path-connected
components. Furthermore, any two vertices are connected by a path if and
only if they belong to the same path-connected component. A simple, but
crucial observation is that a simplicial map takes an edge path to an edge
path, though the number of edges may decrease. This implies the following
proposition.

Proposition 3.5.3. An image of a path-connected complex under a simpli-
cial map is again path-connected. In particular, if A and B are simplicial
complexes, ϕ : A → B is a simplicial map, and A is path-connected, then
ϕ(A) is contained in one of the connected components of B.

3.5.2 Simply Connected Spaces

Before proceeding to higher dimensions, we rephrase notions of connectivity
in terms of spheres and disks. A 1-dimensional disk can be thought of as
the closed interval [−1, 1], and its boundary, the two points ±1 on the real
line, as a 0-dimensional sphere. A 2-dimensional disk is the set of points
in the plane at distance at most 1 from the origin, and a 1-dimensional
sphere as the points at exactly 1 from the origin. A 2-sphere is an ordinary
2-dimensional sphere in 3-dimensional Euclidean space, and is the boundary
of an ordinary 3-dimensional ball. An n-sphere, Sn, is a generalization of the
surface of an ordinary sphere to arbitrary dimension, and is the boundary
of an n+ 1-ball, Dn+1.

Given a simplicial complex K, let |K| denote its polyhedron. We may
consider a path in |K| as a continuous map f : D1 → |K|, whereD1 = [−1, 1].
We say the path connects the points f(−1) and f(1). See Figure 3.10, where
there is a path connecting f(a) and f(c), where a = −1 and c = 1. We say
that the polyhedron |K| is path-connected if there is a path in |K| connecting
any two points in |K|. The polyhedron |K| is path-connected if and only if
K is edge-path-connected.

Now, if |K| is path-connected, then there is a path f between any two
points, v1, v2. Think of these points as the image, under map f : S0 → |K|,
of a 0-dimensional sphere, so f(−1) = v1 and f(1) = v2. The existence
of the path means that this map from the 0-sphere can be extended to a
continuous map of the 1-ball, f : D1 → |K|. We say that a path-connected
complex is 0-connected.2

2We remark that the notion of path-connectivity, or 0-connectivity, is different from the
notion of connectivity for general topological spaces. However, it is the same for the case
of simplicial complexes, which is the only case we are considering in this book.

3.5. CONNECTIVITY 89

Mathematical Note 3.5.4. This notion generalizes to higher dimensions in a
natural way. A loop in a complex K is a path whose starting and end vertices
are the same. A loop can be considered a continuous map f : S1 → |K|,
carrying the 1-sphere S1 to the polyhedron of K. Usually one also fixes
a point x on S1, fixes a point y in |K|, and considers only the loops which
map x to y; this allows to loops to be composed. Now considering all the
loops in |K| based at x up to their continuous deformation, and taking the
operation of composition, one obtains the so-called fundamental group. This
group does not depend on the choice of x as long as |K| is path-connected.

Definition 3.5.5. Let K be an arbitrary path-connected simplicial complex.
The complex K is 1-connected (or simply-connected) if any continuous map
f : S1 → |K| can be extended to the 2-disk: F : D2 → |K|, where S1 is
the boundary of D2.

The complex in the right part of Figure 3.10 is 0-connected, but not
1-connected.

3.5.3 Higher-Dimensional Connectivity

We now have the formal framework to extend Definitions 3.5.2 and 3.5.5 to
any dimension.

Definition 3.5.6. Let k be any positive integer. The complexK is k-connected
if, for all 0 ≤ ` ≤ k, any continuous map f : S` → |K| can be extended to
F : D`+1 → |K|, where the sphere S` is the boundary of the disk D`+1.

One way to think about this property is that that any map f that cannot
be “filled in” represents an n-dimensional “hole” in the complex. Indeed,
Sk is `-connected for ` < k, but not k-connected.

Notice that Proposition 3.5.3 does not generalize to higher connectivity.
An image of a 1-connected complex under a simplicial map is not necessarily
1-connected. For example, a disk D2 can be mapped to a sphere S1.

Mathematical Note 3.5.7. A complex K is simply-connected if and only if
its fundamental group π1(K) is trivial, and it is k-connected if and only if
its `th homotopy group πl(K) is trivial, for all 1 ≤ ` ≤ k.

90 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

Definition 3.5.8. A complex K is contractible if there is a continuous map
H : |K|×I → |K|, where I is the unit interval, such thatH(·, 0) is the identity
map on |K|, and H(·, 1) is a constant map |K| 7→ x, for some x ∈ |K|.

Informally, |K| can be continuously deformed to a single point x ∈ |K|,
where the path of every point under the deformation stays in |K|. An n-
connected complex of dimension n is contractible, and every contractible
space is n-connected for all n. Examples of contractible spaces include all
m-simplices, and their subdivisions. Also, all cones over simplicial complexes
are contractible.

3.6 Subdivisions

Informally, a subdivision of a complex A is constructed by “dividing” the
simplices of A into smaller simplices, to obtain another complex B. Subdi-
visions can be defined for both geometric and abstract complexes.

Definition 3.6.1. A geometric complex B is called a subdivision of a geomet-
ric complex A if the following two conditions are satisfied:

(1) |A| = |B|;

(2) each simplex of A is the union of finitely many simplices of B.

Figure 3.7 shows a geometric complex and a subdivision of that complex.

3.6.1 Stellar Subdivision

Perhaps the simplest subdivision is the stellar subdivision. Given an an n-
simplex σ = {s0, . . . , sn}, the complex stel(σ, b) is constructed by taking
a cone with apex b over the boundary complex ∂ σ. (See Figure 3.8.) While
any point in the interior can be used as the apex, we will typically use the
barycenter b =

∑
i si/(n + 1). Any subdivision can be constructed from

repeated stellar subdivisions.

3.6.2 Barycentric Subdivision

In classical combinatorial topology, the barycentric subdivision is perhaps
the most widely used. Given a complex K, the complex BaryK is con-
structed inductively over the skeletons of K. We start by taking the vertices
of K. At the next step we insert a barycenter in each edge of K, and take
cones, with apexes at barycenters, over the ends of each edge. In general,

3.6. SUBDIVISIONS 91

Figure 3.7: A geometric complex and its simplicial subdivision.

to extend the barycentric subdivision from the (n − 1)-skeleton to the n-
skeleton of K, we insert a barycenter b in each simplex σ of K, and take
a cone with apex at b over Bary ∂σ, the already subdivided boundary of σ.
(See Figure 3.8.)

The barycentric subdivision has an equivalent, purely combinatorial def-
inition.

Definition 3.6.2. Let A be an abstract simplicial complex. Its barycentric
subdivision BaryA is the abstract simplicial complex whose vertices are the
non-empty simplices of A. A (k+1)-tuple (σ0, . . . , σk) is a simplex of BaryA
if and only if the tuple can be indexed so that σ0 ⊂ · · · ⊂ σk.

Of course, the barycentric subdivision of a geometric realization of an
abstract simplicial complex A is a geometric realization of the barycentric
subdivision of A.

92 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

σ Stel σ

Bary σ Ch σ

Figure 3.8: A simplex σ (upper left), the stellar subdivision stelσ (upper
right), the barycentric subdivision Bary σ (lower left), and the standard
chromatic subdivision Chσ (lower right).

3.6.3 Standard Chromatic Subdivision

For our purposes, however, the barycentric subdivision has a flaw: the
barycentric subdivision of a chromatic complex is not itself chromatic. To
remedy this shortcoming, we introduce the standard chromatic subdivision,
the chromatic analog to the barycentric subdivision. (See Figure 3.8.)

Given a chromatic complex (K, χ), the complex ChK is constructed
inductively over the skeletons of K. We start by taking the vertices of K.
At the next step, for each edge η = {s0, s1}, instead of taking the barycenter,
we take two interior points slightly displaced from the barycenter:

c0 =
1− ε

2
s0 +

1 + ε

2
s1

c1 =
1 + ε

2
s0 +

1− ε
2

s1,

3.6. SUBDIVISIONS 93

for some 0 < ε < 1. Define the central edge to be {c0, c1}, and define
χ(ci) = χ(si). We join each central vertex to the vertex of complementary
color, so that Ch η consists of three edges: {s0, c1}, the central edge {c0, c1},
and {c0, s1}.

In general, to extend the standard chromatic subdivision from the (n−1)-
skeleton to the n-skeleton of K, for each n-simplex σ = {s0, . . . , sn}, we take
n+ 1 interior points displaced from the barycenter:

c0 =
1− ε
n+ 1

s0 +
∑
j 6=0

1 + ε/n

n+ 1
sj

c1 =
1− ε
n+ 1

s1 +
∑
j 6=1

1 + ε/n

n+ 1
sj

. . .

cn =
1− ε
n+ 1

sn +
∑
j 6=n

1 + ε/n

n+ 1
sj ,

for some 0 < ε < 1. Define the central simplex κ to be {c0, . . . , cn}, and
define χ(ci) = χ(si). The complex Chσ consists of simplices of the form
α∪β, where α is a face of the central simplex, β is a simplex of Ch τ , where
τ is a proper face of σ whose colors are disjoint from α’s: χ(α) ∩ χ(τ) = ∅.
Note that ChK is a chromatic complex by construction.

Like the barycentric subdivision, the standard chromatic subdivision also
has a purely combinatorial definition.

Definition 3.6.3. Let (A, χ) be a chromatic abstract simplicial complex.
Its standard chromatic subdivision ChA is the abstract simplicial complex
whose vertices have the form (i, σi), where i ∈ [n], σi is a non-empty face of
σ, and i ∈ χ(σi). A (k + 1)-tuple (σ0, . . . , σk) is a simplex of ChA if and
only if

• the tuple can be indexed so that σ0 ⊆ · · · ⊆ σk.

• for 0 ≤ i, j ≤ n, if i ∈ χ(σj) then σi ⊆ σj .

Finally, to make the subdivision chromatic, we define the coloring χ : ChK
to be χ(i, σ) = i.

We can now extend the notion of subdivision to abstract simplicial com-
plexes.

Definition 3.6.4. Let A and B be abstract simplicial complexes. We say that
B subdivides the complex A if there exists a homeomorphism h : |A| → |B|

94 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

carrier σ

σ

Figure 3.9: Simplex in subdivided complex with carrier

and a carrier map Φ : A → 2B, such that for every simplex σ ∈ A, the
restriction h||σ| is a homeomorphism between |σ| and |Φ(σ)|.

The carrier map Φ defining a subdivision must be strict and rigid. Recall
that for a strict carrier map, for each simplex τ of B the unique simplex σ
in A of smallest dimension, such that Φ(σ) contains τ is called the carrier
of τ . Thus, we often express subdivisions using operator notation, such as
DivA, where Div is the carrier map. For a simplex τ in DivA, the carrier of
τ , denoted Car(τ,A), is the minimal simplex σ of A such that τ ∈ Div(σ).
When A is clear from context, we write Car(τ). Figure 3.9 shows a simplex
σ in a subdivision, along with its carrier.

3.6.4 Subdivision Operators

The barycentric and standard chromatic subdivisions have a useful property
not shared by the stellar subdivision. They can be constructed inductively
over skeletons of a simplicial complex, using a standard subdivision at each

3.6. SUBDIVISIONS 95

step. We now restate this property more precisely.

Definition 3.6.5. A boundary-consistent subdivision of simplices is a se-
quence of geometric complexes (Si)i≥1 such that

(1) For all n ≥ 1, the complex Sn is a geometric subdivision of the standard
n-simplex.

(2) Let ∆n be the standard n-simplex, σ a k-simplex in the boundary
complex ∂∆n, and ϕ : ∆k → σ the characteristic map of σ, then the
induced subdivision ϕ(Sk) coincides with the restriction of Sn to σ.

When we have such a string of simplex subdivisions, we can use it to
subdivide arbitrary geometric simplices.

Definition 3.6.6. LetK be a geometric simplicial complex with an ordered set
of vertices3 and let (Si)i≥1 be a boundary-consistent subdivision of simplices.
We obtain a subdivision of K, which we call S(K), by replacing each k-
simplex σ of K with the induced subdivision ϕ(Sk), where ϕ : ∆k → K is
the characteristic map of σ.

We call S(·) the subdivision operator associated to the sequence (Si)i≥1.

Let A be an abstract simplicial complex. Given a boundary consistent
subdivision of simplices (Si)i≥1, we can take a geometric realization K of
A and then consider the geometric simplicial complex S(K). Clearly, the
underlying abstract simplicial complex of S(K) does not depend on the
choice of the geometric realization of A. We call that abstract simplicial
complex S(A).

3.6.5 Mesh-Shrinking Subdivision Operators

Recall that a geometric n-simplex σ is the convex hull of n + 1 affinely
independent points in a Euclidean space. Its diameter diamσ is the length
of its longest edge.

Definition 3.6.7. Let K be a geometric simplicial complex. The mesh of
K, denoted meshK, is the maximum diameter of any of its simplices, or,
equivalently, the length of its longest edge.

Assume we are given a boundary-consistent subdivision of simplices
(Si)i≥1. Interpreting the subdivision Si itself as a geometric simplicial com-
plex, we can iterate the associated subdivision operator, resulting in a sub-
division SNi of ∆i, for every i,N ≥ 1. We set ci,N := meshSNi .

3It is enough to have a consistent order on the set of vertices of each simplex, meaning
that the restriction of the chosen order of vertices a simplex σ to a boundary simplex τ
gives the chosen order on that simplex.

96 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

Definition 3.6.8. We say that the subdivision operator Div corresponding
to a boundary-consistent subdivision of simplices (Si)i≥1 is mesh-shrinking,
if limN→∞ ci,N = 0, for all i ≥ 1.

Proposition 3.6.9. Assume K is a finite geometric simplicial complex of di-
mension n, and Div a mesh-shrinking subdivision operator given by (Si)i≥1.
Then we have

lim
N→∞

mesh DivN K = 0. (3.6.1)

Proof. Since K is finite, it is enough to consider the case when K is a geo-
metric n-simplex σ. In this case, let ϕ : ∆n → σ be the characteristic linear
isomorphism. Since ϕ is a linear map, there is a bound on the factor by
which it can increase distances. In other words, there exists a constant c,
such that

d(ϕ(x), ϕ(y)) ≤ c · d(x, y), for all x, y ∈ ∆n, (3.6.2)

where d(·, ·) is distance. Since Div is mesh-shrinking, we have
limN→∞meshSNn = 0, which, together with (3.6.2) implies that
limN→∞mesh DivN K = 0.

3.7 Simplicial and Continuous Approximations

In Section 3.2 we saw how to go back and forth between simplicial maps
of complexes and continuous maps of their geometric realizations. Assume
A is an abstract simplicial complex. Recall that any point x in |A| has a
unique expression in terms of barycentric coordinates:

x =
∑
i∈I

ti · si,

where I ⊆ [n] is an index set, 0 ≤ ti ≤ 1,
∑

i ti = 1, and {si|i ∈ I} is
a simplex of A. Any simplicial map ϕ : A → B can be turned into a piece-
wise linear map |ϕ| : |A| → |B| by extending over barycentric coordinates:

|ϕ|(x) =
∑
i

ti · ϕ(si).

Going from a continuous map to a simplicial map is more involved. We
would like to “approximate” a continuous map from one polyhedron to an-
other with a simplicial map on related complexes.

3.7. SIMPLICIAL AND CONTINUOUS APPROXIMATIONS 97

Definition 3.7.1. Let A and B be abstract simplicial complexes, let
f : |A| → |B| be a continuous map, and let ϕ : A → B be a sim-
plicial map. The map ϕ is called a simplicial approximation to f , if for
every simplex α in A we have

f(Int |α|) ⊆
⋂
a∈α

St◦(ϕ(a)) = St◦(ϕ(α)), (3.7.1)

where St◦ denotes the open star construction, and Int |α| denotes the interior
of |α| (see Section 3.3.)

The star condition is a useful alternative condition.

Definition 3.7.2. Let A and B be abstract simplicial complexes. A contin-
uous map f : |A| → |B| is said to satisfy the star condition if for every
v ∈ V (A) we have

f(St◦(v)) ⊆ St◦(w), (3.7.2)

for some vertex w ∈ V (B).

Proposition 3.7.3. Assume that A and B are abstract simplicial complexes.
A continuous map f : |A| → |B| satisfies the star condition if and only if
it has a simplicial approximation.

Proof. Assume first that f has a simplicial approximation ϕ : A → B. Given
a vertex v ∈ V (A), we pick a simplex α ∈ St◦(v). Since ϕ is a simplicial
approximation, we have f(Int |α|) ⊆ St◦(ϕ(α)) ⊆ St◦(ϕ(v)). Varying α, we
can conclude that f(St◦(v)) ⊆ St◦(ϕ(v)), and hence the star condition is
satisfied for w = ϕ(v).

In the other direction, assume that f satisfies the star condition. For ev-
ery v ∈ V (A) we let ϕ(v) to denote any vertex w making the inclusion (3.7.2)
hold. Let now σ ∈ A, with σ = {v0, . . . , vt}. We have Int |σ| ⊆ St◦(vi), hence
f(Int |σ|) ⊆ f(St◦(vi)) ⊆ St◦(ϕ(vi)), for all i = 0, . . . , k. This implies that
f(Int |σ|) ⊆ ∩ki=1 St◦(ϕ(vi)). By definition of the open star, the latter in-
tersection is non-empty if and only if there exists a simplex containing the
vertices ϕ(vi), for all i, which is the same as to say that {ϕ(v1), . . . , ϕ(vt)}
is a simplex of B. This means that ϕ : V (A) → V (B) can be extended
to a simplicial map ϕ : A → B, and we have just verified that (3.7.1) is
satisfied.

The following fact will be useful later on.

Proposition 3.7.4. Assume A and B are abstract simplicial complexes,
f : |A| → |B| is a continuous map, and ϕ : A → B is a simplicial

98 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

approximation of f . For an arbitrary simplex α ∈ A, let Cα denote the min-
imal simplicial subcomplex of B whose geometric realization contains f(|α|).
Then ϕ(α) is a simplex of Cα.

Proof. By definition, if ϕ is a simplicial approximation of f , and x ∈ Int |α|,
then f(x) ∈ St◦(ϕ(α)), meaning that f(x) is contained in Int |σx|, where σx
is a simplex of B, such that ϕ(α) ⊆ σx, and we choose a minimal such σx.
Since f(x) ∈ |Cα|, we must have σx ∈ Cα, for all x ∈ Int |α|, hence |Cα| ⊇
∪x∈Int |α||σx|, we conclude that |Cα| ⊇ |ϕ(α)|.

Not every continuous map f : |A| → |B| has a simplicial approximation.
In Figure 3.10, a continuous map f carries an edge η = {a, b} into an annulus
|A|. It is easy to check that there is no simplicial map ϕ : η → A such
that f(|η|) ⊆ St◦ ϕ(a)∩St◦ ϕ(b). The images f(a) and f(b) are too far apart
for a simplicial approximation to exist.

Nevertheless, we can always find a simplicial approximation defined over
a sufficiently refined subdivision of A. In Figure 3.11, f carries a subdivision
of the edge η = {a, b} into an annulus |A|. It is easy to check that the
simplicial map ϕ shown in the figure is a simplicial approximation to f .

Theorem 3.7.5 (Finite simplicial approximation of continuous maps using
mesh-shrinking subdivision4).

Let A and B be simplicial complexes. Assume that A is finite and that
Div is a mesh-shrinking subdivision operator. Given a continuous map f :
|A| → |B|, there is an N > 0 such that f has a simplicial approximation
ϕ : DivN A → B.

Proof. Note that (St◦ v)v∈V (B) is an open covering of |B|, hence
(f−1(St◦ v))v∈V (B) is an open covering of |A|. Since the simplicial com-
plex A is finite, the topological space |A| is a compact metric space, hence
it has a Lebesgue number ρ > 0, such that every closed set X of diameter
less than ρ lies entirely in one of the sets f−1(St◦ v).

Since Div is a mesh-shrinking subdivision operator, Inequality 3.6.1
implies that we can pick N > 0, such that each simplex in DivN A
has diameter less than ρ/2. By the triangle inequality it follows that
diam |Stw| < ρ, for every w ∈ V (A). Then, there exists v ∈ V (B), such
that St◦w ⊆ f−1(St◦ v). Hence the map f : |DivN A| → |B| satisfies the
star condition (3.7.2), hence by Proposition 3.7.3 there exists a simplicial
approximation ϕ : DivN A → B of f .

4In this book we restrict our attention to what is called the finite simplicial approxi-
mation, so we will drop the word “finite”

3.7. SIMPLICIAL AND CONTINUOUS APPROXIMATIONS 99

We now proceed with approximations of carrier maps.

Definition 3.7.6. Let A and B be simplicial complexes, and Φ : A → 2B

be a carrier map.

(1) We say that a continuous map f : |A| → |B| is a continuous approx-
imation of Φ if, for every simplex α ∈ A, we have f(|α|) ⊆ |Φ(α)|.

(2) We say that Φ has a simplicial approximation, if there exists a subdi-
vision of A, called DivA, and a simplicial map ϕ : DivA → B, such
that ϕ(Divα) is a subcomplex of Φ(α), for all α ∈ A.

Under certain connectivity conditions both types of approximations must
exist, as the next theorem explains.

Theorem 3.7.7 (Continuous and simplicial approximations of carrier maps).
Assume A and B are simplicial complexes, such that A is finite. Assume

furthermore, that Φ : A → 2B is a carrier map such that for every simplex
α ∈ A, the subcomplex Φ(α) is (dim(α)−1)-connected. Then we can make
the following conclusion.

(1) The carrier map Φ has a continuous approximation.

(2) The carrier map Φ has a simplicial approximation.

Proof. We start by proving (1). For 0 ≤ d ≤ n, we inductively construct
a sequence of continuous maps fd : | skeldA| → |B| on the skeletons of A.

For the base case, let f0 send any vertex a of A to any vertex of
Φ(a). This construction is well-defined because Φ(a) is (−1)-connected (non-
empty) by hypothesis.

For the induction hypothesis, assume we have constructed

fd−1 : | skeld−1(A)| → |Φ(A)|,

This map sends the boundary of each d-simplex αd in skeldA to Φ(αd). By
hypothesis, Φ(αd) is (d − 1)-connected, so this map of the (d − 1)-sphere
∂ αd can be extended to a continuous map of the d-disk |αd|:

fd : |αd| → |Φ(αd)|.

These extensions agree on the (d−1)-skeleton, so together they define a con-
tinuous map,

fd : | skeldA| → |B|,

where for each αd ∈ skeldA, fd(|αd|) ⊆ |Φ(αd)|.

100 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

When n = dimA, the map fn is a continuous approximation to Φ.

We now proceed with proving (2). As we just proved, the carrier map
Φ has a continuous approximation f : |A| → |B|. Let Div be an arbitrary
mesh-shrinking subdivision (for example, the barycentric subdivision will
do). By Theorem 3.7.5, there exists N ≥ 0, and a simplicial map ϕ :
DivN A → B, such that ϕ is a simplicial approximation of f .

To show that ϕ is also a simplicial approximation for Φ, we need to
check that ϕ(DivN α) is a subcomplex of Φ(α), for all simplices α ∈ A. Pick
a simplex τ ∈ DivN α. Since ϕ : DivN A → B is a simplicial approximation
of f , we know by Proposition 3.7.4 that ϕ(τ) is a simplex of Cτ , where Cτ
is the minimal simplicial subcomplex of B containing f(|τ |). In particular,
since f(|τ |) ⊆ f(|α|) ⊆ |Φ(α)|, we see that Cτ is a subcomplex of Φ(α),
hence ϕ(τ) is a subcomplex of Φ(α). Since this is true for all τ ∈ DivN α,
we conclude that ϕ(DivN α) is a subcomplex of Φ(α), for all α ∈ A.

Lemma 3.7.8. If Φ : A → 2B is a carrier map, and f : |A| → |B| is a continu-
ous map carried by Φ, then any simplicial approximation φ : BaryN A → B
of f is also carried by Φ.

Proof. Let A ⊂ B be complexes. If v is a vertex in B but not in A, then the
open star of v in |B| does not intersect |A|.

Suppose, by way of contradiction, that σ is a simplex of A, v is a ver-
tex of σ, and f(v) ∈ |Φ(σ)| but φ(v) 6∈ Φ(σ). Because φ is a simplicial
approximation of f , f(v) ∈ St◦(φ(v),B), implying that f(v) is not in Φ(σ),
contradicting the hypothesis that f is carried by Φ.

3.8 Chapter Notes

A broad, introductory overview to topology is provided by Armstrong [7]. A
combinatorial development similar to what we use is in Henle [79]. A more
advanced and modern overview of combinatorial topology can be found in
Kozlov [102]. For a standard introduction to algebraic topology, including
further information on simplicial approximations, see Munkres [126].

3.9 Exercises

Exercise 3.1. Let σ be a simplex in a complex C. The deletion of σ ∈ C,
written dl(σ, C), is the subcomplex of C consisting of all simplices of C that

3.9. EXERCISES 101

do not have common vertices with σ. Prove that

Lk(σ, C) = dl(σ, C) ∩ St(σ, C)
C = dl(σ, C) ∩ St(σ, C)

Exercise 3.2.

(a) Show that a join of two simplices is again a simplex.

(b) Show that a join of n+ 1 copies of the 0-dimensional sphere is a sim-
plicial complex homeomorphic to an n-dimensional sphere.

(c) Show that a join of an m-dimensional sphere with an n-dimensional
sphere is homeomorphic to an (m+ n+ 1)-dimensional sphere, for all
m,n ≥ 0.

Exercise 3.3. Give an example of a rigid carrier map which is not strict.

Exercise 3.4. Let A and B be simplicial complexes, and Φ : A → 2B a rigid
carrier map. Assume that A is pure of dimension d, and Φ is surjective,
meaning that every simplex of B belongs to Φ(σ), for some σ ∈ A. Prove
that B is pure of dimension d.

Exercise 3.5. Let A and B be simplicial complexes, and Φ : A → 2B a sur-
jective carrier map. Assume that A is connected, and Φ(σ) is connected for
all σ ∈ A. Prove that B is also connected.

Exercise 3.6. Prove that composing a rigid simplicial map with a rigid carrier
map, on the left as well as on the right, will again produce a rigid carrier
map.

Exercise 3.7. Let A and B be simplicial complexes, and Φ : A → 2B a sur-
jective carrier map. Prove that if Φ is strict, then for each simplex τ of
B there is a unique simplex σ in A of smallest dimension, such that Φ(σ)
contains τ . Thus, if B is a subdivision of A with carrier map Φ, the carrier
of a simplex in B is well defined.

Exercise 3.8. Consider a task (I,O,∆). The induced carrier map ∆′ is
defined as follows: if τ is a simplex of P, let σ ∈ I be the carrier of τ ; then,
∆′(τ) = ∆(σ). Prove that ∆′ is a chromatic carrier map. We say that the
diagram commutes (and hence P via δ solves the task) if the carrier map
defined by the composition of Ξ and δ is carried by ∆, or equivalently, if δ
is carried the carrier map ∆′ induced by ∆. Prove that these two conditions
are indeed equivalent.

102 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

Exercise 3.9. Prove that the geometric and combinatorial definitions of the
barycentric subdivision given in Section 3.6 are indeed equivalent.

Exercise 3.10. Prove that the barycentric subdivision is mesh-shrinking.

3.9. EXERCISES 103

a c f(c)f(a)

Figure 3.10: The continuous map f carries the edge {a, b} into an annulus.
This map has no simplicial approximation because it is impossible to find
two vertices ϕ(a) and ϕ(b) such that the intersections of their stars contain
the image of the edge.

φ(b)

f(b)f(b)

a cb f(c)f(a)
φ(a) φ(c)

Figure 3.11: The continuous map f carries the edge {a, b} into an annulus,
along with a simplicial approximation ϕ of f .

104 CHAPTER 3. ELEMENTS OF COMBINATORIAL TOPOLOGY

Part II

Colorless Tasks

105

Chapter 4

Colorless Wait-free
Computation

Non Print Material 4. Abstract: We outline the basic connection between
distributed computing and combinatorial topology in terms of two formal
models: a conventional operational model, in which systems consist of com-
municating state machines whose behaviors unfold over time, and the combi-
natorial model, in which all possible behaviors are captured statically using
topological notions. We start with one particular system model (shared
memory), and focus on a restricted (but important) class of problems (so-
called “colorless” tasks).

Key words: configurations, executions, layered executions, layered pro-
tocols, processes, protocols, schedules, tasks.

We saw in Chapter 2 that we can construct a combinatorial theory of two-
process distributed systems using only graph theory. In this chapter, we
turn our attention to distributed systems that encompass more than two
processes. Here, we will need to call on combinatorial topology, a higher-
dimensional version of graph theory.

Just as in Chapter 2, we outline the basic connection between distri-
buted computing and combinatorial topology in terms of two formal models:
a conventional operational model, in which systems consist of communicat-
ing state machines whose behaviors unfold over time, and the combinatorial
model, in which all possible behaviors are captured statically using topolog-
ical notions.

107

108 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

As noted, distributed computing encompasses a broad range of system
models and problems to solve. In this chapter, we start with one particular
system model (shared memory), and focus on a restricted (but important)
class of problems (so-called “colorless” tasks). In later chapters, we will
introduce other models of computation and broader classes of problems, but
the concepts and techniques introduced in this chapter will serve as the
foundations for our later discussions.

4.1 Operational Model

Keep in mind that this model, like any such model, is an abstraction. As
with the classical study of Turing machines, our aim (for now) is not to try
to represent faithfully the way a multicore architecture or a cloud computing
service is constructed. Instead, we start with a clean, basic abstraction, and
later show how it includes specific models of interest.

4.1.1 Overview

A distributed system is a set of communicating state machines called pro-
cesses. It is convenient to model a process as a sequential automaton with
a possibly infinite set of states. Remarkably, the set of computable tasks in
a given system does not change if the individual processes are modeled as
Turing machines, or as even more powerful automata with infinite numbers
of states, capable of solving “undecidable” problems that Turing machines
cannot. The important questions of distributed computing are concerned
with communication and dissemination of knowledge, and are largely inde-
pendent of the computational power of individual processes.

For the time being, we will consider a model of computation in which
processes communicate by reading and writing a shared memory. In mod-
ern shared-memory multiprocessors, often called multicores, memory is a
sequence of individually-addressable words. Multicores provide instructions
that read or write individual memory words1 in a single atomic step.

For our purposes, we will use an idealized version of this model, recasting
conventional read and write instructions into equivalent forms that have a
cleaner combinatorial structure. Superficially, this idealized model may not
look like your laptop, but in terms of task solvability, these models are

1 For now we ignore synchronization instructions such as test-and-set and compare-
and-swap, which are discussed in Chapter 5.

4.1. OPERATIONAL MODEL 109

equivalent: any algorithm in the idealized model can be translated to an an
algorithm for the more realistic model, and vice-versa.

Instead of reading an individual memory word, we assume the ability to
read an arbitrarily long sequence of contiguous words in a single atomic step,
an operation we call a snapshot. We combine writes and snapshots as follows.
An immediate snapshot takes place in two contiguous steps. In the first step,
a process writes its view to a word in memory, possibly concurrently with
other processes. In the very next step, it takes a snapshot of some or all
of the memory, possibly concurrently with other processes. It is important
to understand that that in an immediate snapshot, the snapshot step takes
place immediately after the write step.

Superficially, a model based on immediate snapshots may seem unreal-
istic. As noted, modern multicores do not provide snapshots directly. At
best, they provide the ability to atomically read a small, constant number
of contiguous memory words. Moreover, in modern multicores, concurrent
read and write instructions are typically interleaved in an arbitrary order.2

Nevertheless, the idealized model includes immediate snapshots for two rea-
sons. First, immediate snapshots simplify lower bounds. It is clear that
any task that is impossible using immediate snapshots is also impossible
using single-word reads and writes. Moreover, we will see that immediate
snapshots yield simpler combinatorial structures than reading and writing
individual words. Second, perhaps surprisingly, immediate snapshots do not
affect task solvability. It is well-known (see the chapter notes) that one can
construct a wait-free snapshot from single-word reads and writes, and we
will see in Chapter 14 how to construct a wait-free immediate snapshot from
snapshots and single-word write instructions. It follows that any task that
can be solved using immediate snapshots can be solved using single-word
reads and writes, although a direct translation may be impractical.

In Chapter 5, we extend our results for shared-memory models to
message-passing models.

As many as n out of the n+ 1 processes may fail. For now, we consider
only crash failures, that is, failures in which a faulty process simply halts
and falls silent. Later, in Chapter 6, we consider Byzantine failures, where
faulty processes may communicate arbitrary, even malicious information.

Processes execute asynchronously. Each process runs at an arbitrary
speed, which may vary over time, independently of the speeds of the other
processes. In this model, failures are undetectable: a non-responsive process

2 Some newer multicore architectures support transactional memory, a model much
closer to immediate snapshots.

110 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

may be slow, or it may have crashed, but there is no way for another pro-
cess to tell. In later chapters, we will consider synchronous models where
processes take steps at the same time, and semi-synchronous models where
there are bounds on how far their executions can diverge. In those models,
failures are detectable.

Recall from Chapter 1 that a task is a distributed problem where each
process starts with a private input value, the processes communicate with
one another, and then each process halts with a private output value.

For the next few chapters, we restrict our attention to colorless tasks,
where it does not matter which process is assigned which input, or which
process chooses which output, only which sets of input values were assigned
and which sets of output values were chosen.

The consensus task studied in Chapter 2 is colorless: all processes agree
on a single value that is some process’s input, but it is irrelevant which pro-
cess’s input is chosen, or how many processes had that input. The colorless
tasks encompass many, but not all, of the central problems in distributed
computing. Later, we will consider broader classes of tasks.

A protocol is a program that solves a task. For now, we are interested
in protocols that are wait-free: each process must complete its computation
in a bounded number of steps, implying that it cannot wait for any other
process. One might be tempted to consider algorithms where one process
sends some information to another and waits for a response, but the wait-free
requirement rules out this technique, along with other familiar techniques
such as barriers and mutual exclusion. The austere severity of the wait-free
model helps us to uncover basic principles more clearly than less demanding
models. Later, we will consider protocols that tolerate fewer failures, or even
irregular failure patterns.

We are primarily interested in lower bounds and computability: which
tasks are computable in which models, and in the communication complexity
of computable tasks. For this reason we assume without loss of generality
that processes employ “full-information” protocols, where they communicate
to each other everything they “know”. For clarity, however, in the specific
protocols presented here, processes usually send only the information needed
to solve the task at hand.

4.1.2 Processes

There are n + 1 processes, each with a unique name taken from a universe
of names Π. We refer to the process with name P ∈ Π as “process P”.

In the simplest, and most common case, the universe of names Π is

4.1. OPERATIONAL MODEL 111

just [n] = {0, 1, . . . , n}. Often we refer to the process with name i as the
ith process (even when |Π| is larger than n+ 1). Some situations, however,
become interesting only when there are more possible names than processes.

The ith process is an automaton whose set of states Qi includes a set of
initial states Qin

i , and a set of final states Qfin
i . We do not restrict Qi to be

finite, because we allow processes to start with input values taken from a
countable domain such as the integers, and we allow them to change state
over potentially infinite executions.

Each process “knows” its name, but it does not know a priori the names
of the participating processes. Instead, each process includes its own name
in each communication, so processes learn the names of other participating
processes dynamically as the computation unfolds.

Formally, each process state q has an immutable name component, with
a value taken from Π, denoted name(q). If the process goes from state q to
state q′ in an execution, then name(q) = name(q′).

Each process state q also includes a mutable view component, denoted
view(q), which typically changes from state to state over an execution. This
component represents what the process “knows” about the current compu-
tation, including any local variables the process may use.

A state q is defined by its name and its view, so we may write q as the
pair (P, v) where name(q) = P and view(q) = v.

Remark 4.1.1. There are two equivalent ways of thinking about processes:
there could be n + 1 processes with distinct names from Π, or there could
be |Π| > n potential processes but at most n + 1 of them participate in an
execution.

4.1.3 Configurations and Executions

We now turn our attention to computation, expressed in terms of structured
state transitions.

A configuration C is a set of process states corresponding to the state of
the system at a moment in time. Each process appears at most once in a
configuration: if s0, s1 are distinct states in Ci, then name(s0) 6= name(s1).
An initial configuration C0 is one where every process state is an initial state,
and a a final configuration is one where every process state is a final state.
Name components are immutable: each process retains its name from one
configuration to the next. We use names(C) for the set of names of processes
whose states appear in C, and active(C) for the subset whose states are not
final.

112 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Sometimes, a configuration also includes an environment, usually just the
state of a shared memory. In later chapters, the environment will encompass
other kinds of of communication channels, such as messages in a network.

An execution defines the order in which processes communicate. For-
mally, an execution is an alternating (usually, but not necessarily, finite)
sequence of configurations and sets of process names:

C0, S0, C1, S1, . . . , Sr, Cr+1,

satisfying the following conditions:

• C0 is the initial configuration, and

• Si is the set of names of processes whose states change between con-
figuration Ci and its successor Ci+1.

We refer to the sequence S0, S1, . . . , Sr as the schedule that generates the
execution. We may consider a prefix of an execution, and say it is a partial
execution. We refer to each triple Ci, Si, Ci+1 as a concurrent step. If P ∈ Si
we say that P takes a step. In this chapter, P ’s step is an immediate
snapshot, as discussed below, but in other chapters, we will consider other
kinds of steps.

The processes whose states appear in a step are said to participate in
that step, and similarly for executions. It is essential that only the processes
that participate in a step change state. In this way, the model captures the
restriction that processes change state only as a result of explicit communi-
cation occurring within the schedule.

Crashes are implicit. If an execution’s last configuration is not final, be-
cause it includes processes whose states are not final, then those processes
are considered to have crashed. This definition captures an essential prop-
erty of asynchronous systems: it is ambiguous whether an active process has
failed (and will never take a step), or whether it is just slow (and will be
scheduled in the execution’s extension). As noted earlier, this ambiguity is
a key aspect of asynchronous systems.

4.1.4 Colorless Tasks

Having described at a high level how computation works, we now consider
what we are computing. We are interested in computing the distributed
analogs of sequential functions, called tasks. As noted, for now we restrict
our attention to a subset of tasks called colorless tasks.

4.1. OPERATIONAL MODEL 113

First, a colorless task specifies which combinations of input values can
be assigned to processes. Each process is assigned a value from a domain of
input values V in. More precisely, an input assignment for a set of processes
Π is a set of pairs

{
(Pj , vj)|Pj ∈ Π, vj ∈ V in

}
, where each process Pj ∈ Π

appears exactly once, but the input values vj need not be distinct.

For colorless tasks, it is unimportant which process is assigned which
input value. Formally, an input assignment A =

{
(Pj , vj)|Pj ∈ Π, vj ∈ V in

}
defines a colorless input assignment σ = {vj |(Pj , vj) ∈ A}, constructed by
discarding the process names from the assignment. An input assignment
defines a unique colorless input assignment, but not vice-versa. For example,
the input assignments {(P, 0), (Q, 0), (R, 1)} and {(P, 0), (Q, 1), (R, 1)} both
produce the colorless input assignment {0, 1}.

We do not require that every value in a colorless input assignment be
assigned to a process; {(P, 0), (Q, 0), (R, 0)} also corresponds to the color-
less input assignment {0, 1}. This is consistent with the intuitive notion of a
colorless task, where we allow a process to adopt as its own input value any
of the other processes’ observed input values. In the same way, a colorless
task specifies which combinations of output values can be chosen by pro-
cesses. Each process chooses a value from a domain of output values V out.
We define (colorless) output assignments by analogy with (colorless) input
assignments.

Informally, a colorless task is given by a set of colorless input assign-
ments I, a set of colorless output assignments O, and a relation ∆ which
specifies, for each input assignment, which output assignments can be cho-
sen. Note that a colorless task specification is independent of the number
of participating processes, or their names.

Definition 4.1.2. A colorless task is a triple (I,O,∆), where

• I is a set of colorless input assignments,

• O is a set of colorless output assignment,

• ∆ : I → 2O is a map carrying each colorless input assignment to a set
of colorless output assignments.

Here is a simple, but important example, which we will revisit soon. In
the binary consensus task, each participating process is assigned a binary
input value, either 0 or 1, and all participating processes must agree on one
process’s input value. An input assignment assigns a binary value to each
participating process. There are three possible colorless input assignments,

114 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

// There are N layers
shared mem: array[0..N−1][0..n] of Value
protocol ColorlessLayered (input : Value): Value

view: Value := input // initial view is input value
for ` := 0 to N − 1 do
immediate

mem[`][i] := view
snap := snapshot(mem[`][∗])

view := set of Values in snap
return δ(view) // apply decision map to final view

Figure 4.1: Colorless Layered Immediate Snapshot Protocol: pseudo-code
for Pi.

depending on which input values are assigned:

I = {{0} , {1} , {0, 1}} .

Because the processes must agree, there are only two possible colorless out-
put assignments:

O = {{0} , {1}}

The carrier map ∆ ensures that the processes agree on some process’s input:

∆(I) =

{{0}} if I = {0}
{{1}} if I = {1}
{{0} , {1}} If I = {0, 1} .

4.1.5 Protocols for Colorless Tasks

We consider protocols where computation is split into two parts: a task-
independent full-information protocol, and a task-dependent decision. In the
task-independent part, each process repeatedly communicates its view to the
others, receives their views in return, and updates its own state to reflect
what it has learned. When enough communication layers have occurred,
each process chooses an output value by applying a task-dependent decision
map to its final view. Recall that the protocol is colorless in the sense that
each process keeps track of the set of views it received, not which process
sent which view.

Specifically, each process executes a colorless layered immediate snapshot
protocol whose pseudo-code is shown in Figure 4.1. (For brevity, we will

4.1. OPERATIONAL MODEL 115

often say colorless layered protocol when there is no danger of ambiguity.)
To reflect the layer-by-layer structure of protocols, we structure the memory
as a two-dimensional array mem[`][i], where row ` is shared only by the
processes participating in layer `, and column i is written only by Pi. In this
way, each layer uses a “clean” region of memory disjoint from the memory
used by other layers. Initially, Pi’s view is its input value3. During layer `,
Pi performs an immediate snapshot: it writes its current view to mem[`][i],
and in the very next step takes a snapshot of that layer’s row, mem[`][∗].
mem[`][∗]. In our examples, we write this step as:

immediate
mem[`][i] := view
snap := snapshot(mem[`][∗])

Discarding process names, Pi takes as its new view the set of views it ob-
served in its most recent immediate snapshot. Finally, after completing all
layers, Pi chooses a decision value by applying a deterministic decision map
δ to its final view. An execution produced by (colorless) layered immediate
snapshot protocol, where in each layer, each process writes and then takes
a snapshot, is called a (colorless) layered execution.

In the task-independent part of the protocol, protocols for colorless tasks
are allowed to use process names. For example, in the protocol pseudo-code
of Figure 4.1, each process uses its own index to choose where to store its
view. In the task-dependent part of the protocol, however, the decision map
is not allowed to depend on process names. The decision map keeps track
only of the set of values in each snapshot, but not which process wrote which
value, and nor even how many times each value was written. This condition
might seem restrictive, but, for colorless tasks, there is no loss of generality
(See Exercise 4.9.)

More precisely, a configuration defines a unique colorless configuration
by discarding process names, taking only the configuration’s set of views.
Each configuration defines a unique colorless configuration, but not vice-
versa. The output values chosen by processes in any final configuration
must be a function of that final colorless configuration.

Consider the single-layer colorless immediate snapshot executions in
which processes P,Q, and R, with respective inputs p, q, and r, each per-
forms an immediate snapshot. A partial set of the colorless configurations
reachable in such executions appears in Figure 4.2. The initial colorless
configuration is C0 = {p, q, r}. Colorless configurations are shown as boxes,

3Our pseudo-code uses syntax view: Value to declare a variable view of type Value.

116 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Q
{p} q {p r} {p} {p q r} {p r}

R{p},{p,q},r {p},{p,q},{p,q,r}
R
Q{p},q,r

{p},{p,q,r}

{p},q,{p,r} {p},{p,q,r},{p,r}

R

QR

P

P
p,{q},{q,r} {p,q,r},{q},{q,r}

{p,q},{q},r
R

{p,q},{q},{p,q,r}p,{q},r
R
P

PR

P

Q

R
{p,q,r},{q}

{p,r},q,{r}
Q

{p,r},{p,q,r},{r}p,q,{r} Q
Pp,q,r

R

{p q r} {r}

p,{q,r},{r}
P

{p,q,r},{q,r},{r}

{ }

p,q,{r} Q

PQ

PQ

PR

QR

{p,q},{p,q,r}

{p,q,r},{r}
R

{p,r},q

{p,q},r

Q
PQR

QR

{q,r},{p,q,r}

{p,r},{p,q,r}

{p,q,r}

p,{q,r} P

Figure 4.2: Colorless configurations for processes P,Q,R with respective
inputs p, q, r, with final configurations shown in black.

and process steps as arrows. Arrows are labeled with the names of the par-
ticipating processes, and black boxes indicate final colorless configurations.
For example, if P and Q take simultaneous immediate snapshots, they both
observe the view {p, q}, resulting in the colorless configuration {{p, q} , r}.
If R now takes an immediate snapshot, it will observe the view {p, q, r},
resulting in the colorless configuration {{p, q} , {p, q, r}}.

The top part of Figure 4.4 shows three single-layer snapshot executions
for processes P,Q,R, with respective inputs p, q, r. Time runs from top to
bottom, and the bottom line of each table shows the result of each process’s
snapshot. In the first execution, the processes are scheduled in distinct
steps: first P , then Q, then R. In the second, Q and R’s steps are merged.
This perturbation changes Q’s view, but not P and R’s views. In the third
execution, Q and R’s step is merged with P ’s. This perturbation, too,
changes only P ’s view, Q and R’s views are the same. The observation that
we can “perturb” colorless layered executions to change the view of only

4.1. OPERATIONAL MODEL 117

P Q R
it

P Q R
itwrite

snap
write

write
snap

write write
snap

write
snap

snap snap

snap
{p} {p,q} {p,q,r} {p} {p,q,r} {p,q,r}

P Q R
write write write
snap snap snap

{p,q,r} {p,q,r} {p,q,r}

Figure 4.3: Three single-layer immediate snapshot executions for processes
P,Q,R, with respective inputs p, q, r.

one process at a time will turn out to be important. The bottom part of
Figure 4.4 shows an example of a snapshot execution that is not immediate,
because P ’s snapshot is delayed until after the other processes have finished.
Later we shall see that allowing non-immediate snapshots does not affect the
power of the model (see Exercise 4.14).

A final colorless configuration τ is reachable from a colorless
initial configuration σ if there exists a colorless layered execution
C0, S0, C1, S1, . . . , Sr, Cr+1, where σ corresponds to C0 and Cr+1 corresponds
to τ . For example, suppose σ = {p, q, r} and τ = {{q} , {p, q} , {p, q, r}}.
Figure 4.2 shows that τ is reachable from σ through the sequential exe-
cution in which P,Q,R respectively start with inputs p, q, r, and run in
one-at-a-time order.

Given a set of colorless input assignments I for the pseudo-code of Fig-
ure 4.1, we represent its behavior as a protocol-triple (usually just protocol)
(I,P,Ξ) where P is the set of colorless final configurations reachable from

118 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

P Q R
write

write
snap

itwrite
snap snap
{p,q,r} {p,q} {p,q,r}

Figure 4.4: A snapshot execution that is not an immediate snapshot execu-
tion.

the input configurations defined by I. Thus, if σ is an input assignment in
I, we take any input configuration where processes start with input values
taken from σ, and add to P all the reachable colorless final configurations,
and denote them by Ξ(σ). The map Ξ carries each colorless input assignment
σ to the set of reachable colorless final configurations from σ.

Protocols and tasks are linked as follows. The processes choose their
output values for a protocol (I,P,Ξ) using a decision map δ that maps
each process’s final view to an output value in V out. We say that a process
chooses or decides the output value u with final view v if δ(v) = u. The
map δ extends naturally from final views to final configurations (which are
sets of final views).

A colorless protocol (I,P,Ξ) with decision map δ solves a colorless task
(I,O,∆) if, for every σ ∈ I, and every colorless final configuration τ ∈ P
reachable from σ, that is, such that τ ∈ Ξ(σ), δ(τ) is a colorless output

4.2. COMBINATORIAL MODEL 119

assignment O in O allowed by the task’s specification:

O ∈ ∆(τ).

Colorless initial configurations and colorless input assignments are often
both just sets of input values (recall that sometimes, a configuration may
also specify the state of the environment), so we will abuse notation slightly
by using I to stand for both a protocol’s set of colorless initial configura-
tions, and a task’s set of input assignments. By contrast, a protocol’s set of
colorless final configurations (usually written P), and a task’s set of colorless
output assignments (usually written O) are not the same. They are related
by the decision map δ : P → O, and should not be confused.

4.2 Combinatorial Model

The operational model may seem natural in the sense that it matches our
experience that computations unfold in time. Nevertheless, a key insight
underlying this book is that the essential nature of concurrent computing
can be understood better by recasting the operational model in static, com-
binatorial terms, allowing us to transform questions about concurrent and
distributed computing into questions about combinatorial topology.

4.2.1 Colorless Tasks Revisited

Consider a colorless task (I,O,∆) as defined in the operational model of
Section 4.1.4. Each colorless input or output assignment is just a set of
values, and as such, can be viewed as a simplex. The set of all possible
colorless input or output assignments forms a simplicial complex, because
as discussed below, as sets, they are closed under containment. We call
I and O the (colorless) input and output complexes respectively. We can
reformulate the map ∆ to carry each simplex of the input complex I to a
subcomplex of O, making ∆ a carrier map, by Property 4.2.1.

Informally, in a colorless task, the processes start on the vertices of a
single simplex σ in I, and they halt on the vertices of a single simplex
τ ∈ ∆(σ). Multiple processes can start on the same input vertex and halt
on the same output vertex.

We can now reformulate the operational task definition in combinatorial
terms.

Definition 4.2.1. A colorless task is a triple (I,O,∆), where

• I is an input complex, where each simplex is a subset of V in,

120 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

• O is an output complex, where each simplex is a subset of V out,

• ∆ : I → 2O is a carrier map.

∆ is a carrier map because it satisfies the monotonicity condition 4.2.1:
σ ⊆ τ implies ∆(σ) ⊆ ∆(τ).

Reformulating task definitions in terms of simplicial complexes helps
to capture some important aspects of the model. Recall that a simplicial
complex is closed under containment: if σ ∈ I, and σ′ ⊂ σ, then σ′ ∈ I.
This property captures the notion that it must be possible for non-faulty
processes to choose output values even if some processes crash before taking
any steps (such processes are said not to participate). The extreme case
is a solo execution where a single process chooses an output value without
ever hearing from any of the others. It follows that the wait-free condition
requires that if I contains a particular colorless configuration (set of values),
then it must contain every subset of that configuration. Formally, I must
be closed under containment. The motivation is clear: if the processes with
inputs from σ participate in an execution, then the remaining processes with
inputs in σ\σ′ may fail before taking any steps, and the remaining processes
will run as if the initial colorless configuration were σ′. By similar reasoning,
O must also be closed under containment.

Just because process P finishes without hearing from process Q, it does
not mean Q crashed, because Q may just be slow to start. The task specifi-
cation ∆ must ensure that any output value chosen by P remains compatible
with decisions taken by late-starting processes. Formally, the carrier map ∆
is monotonic: if σ′ ⊆ σ are colorless input assignments, then ∆(σ′) ⊆ ∆(σ).
Operationally, the processes with inputs in σ′, running by themselves, may
choose output values τ ′ ∈ ∆(σ′). If the remaining processes with inputs in
σ \ σ′ then start to run, it must be possible for them to choose an output
assignment τ ∈ ∆(σ) such that τ ′ ⊆ τ . Because σ ∩ σ′ is a subset of both σ
and σ′, ∆(σ ∩ σ′) ⊆ ∆(σ) and ∆(σ ∩ σ′) ⊆ ∆(σ′), and therefore

∆(σ ∩ σ′) ⊆ ∆(σ) ∩∆(σ′). (4.2.1)

While the tasks that concern us here are all monotonic, it is not difficult
to find task that are not. Here is a simple example. In the uniqueness task,
the input complex I is arbitrary. Each process chooses as output the number
of distinct input values assigned to processes: ∆(σ) = {|σ|}, for σ ∈ I. It
is not hard to see why this task has no wait-free protocol. In a two-process
execution, where P has input 0 and Q has input 1, then P must choose the
incorrect value 1 in a solo execution where it completes the protocol before

4.2. COMBINATORIAL MODEL 121

Q takes a step. Formally, ∆ is not monotonic:

∆({0}) 6⊂ ∆({0, 1}),

because

∆({0}) = {1} ,

while

∆({0, 1}) = {2} .

4.2.2 Examples of Colorless Tasks

Here are examples of simple colorless tasks. When we revisit these tasks
later, we will see that some have colorless layered protocols, while others do
not.

Consensus

Perhaps the most important example of a task is consensus. As described
informally in Chapter 2, each process starts with an input value. All pro-
cesses must agree on a common output value, which must be some process’s
input value.

In the binary consensus task, each participating process is assigned a
binary input value, either 0 or 1, and all participating processes must agree
on one process’s input value. An input assignment assigns a binary value to
each participating process. There are three possible colorless initial assign-
ments, depending on which input values are assigned:

I = {{0} , {1} , {0, 1}}

Because the processes must agree, there are only two possible colorless out-
put assignments:

O = {{0} , {1}} .

The carrier map ∆ requires the processes to agree on some process’s input:

∆(I) =

{{0}} if I = {0} ,
{{1}} if I = {1} ,
{{0} , {1}} if I = {0, 1} .

Formally, the input complex I is an edge with vertices labeled 0 and 1.
The output complex O for binary consensus consists of two disjoint vertices,

122 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

labeled 0 and 1. If all processes start with input 0, they must all decide 0,
so the carrier map ∆ carries input vertex 0 to output vertex 0. Similarly, ∆
carries input vertex 1 to output vertex 1. If the processes have mixed inputs,
then they can choose either output value, but they must agree, meaning they
must choose the same output vertex.

It is easy to check that ∆ is a carrier map. To see that it satisfies
monotonicity, note that if σ ⊂ τ then the set of values in σ is contained in
the set of values of τ .

If there can be c > 2 possible input values, we call this task simply
consensus or c-consensus. The input complex consists of a (c − 1)-simplex
and its faces, and the output complex is a set of c disjoint vertices. In each
case, the input complex is connected, while the output complex is not, a
fact that will be important later.

Set Agreement

One way to relax the consensus task is the k-set agreement task. Like
consensus, each process’s output value must be some process’s input value.
Unlike consensus, which requires that all processes agree, k-set agreement
imposes the more relaxed requirement that that no more than k distinct
output values be chosen. Consensus is 1-set agreement.

The k-set agreement task has a trivial protocol if k is greater than or
equal to the number of processes: a process outputs its input without any
communication. We will prove later that this task is not solvable by a
colorless layered protocol for any smaller values of k. We will also study
under what circumstances set agreement has a solution in other models.

If there are c possible input values, then, just as for consensus, the input
complex consists of a single (c−1)-simplex σ and its faces, while the output
complex consists of the (k− 1)-skeleton of σ. In general, “k-set agreement”
refers to a family of tasks. The input complex I can be arbitrary, and the
output complex is skelk−1 I, the (k− 1)-skeleton of the input complex. The
task’s carrier map carries each input simplex σ to skelk−1 σ. In Exercise 4.6,
we ask you to show that the skeleton operator is indeed a carrier map.
We write the k-set agreement task as (I, skelk−1 I, skelk−1) where the first
skeleton operator denotes a subcomplex, and the second a carrier map.

Approximate Agreement

Using colorless layered protocols, it is impossible for processes that start
with different input values to reach consensus on a single value, but one

4.2. COMBINATORIAL MODEL 123

might ask whether processes can agree on values that are sufficiently close.
Each process is assigned input 0 or 1. If all processes start with the same
value, they must all decide that value, and otherwise they must decide values
that lie between 0 and 1, all within ε of each other, for a given ε > 0. This
task can be solved using a colorless layered protocol, but as ε gets smaller,
more and more layers are needed.

Here is a discrete version of this task. As before, the input complex I
is a single edge with vertices labeled 0 and 1. For the output complex, we
subdivide the unit interval into t+1 equal pieces, placing vertices uniformly
at a distance of ε apart. If we assume for simplicity that t = 1

ε is a natural
number, then the (t + 1) output vertices are labeled with labeled with i

t ,

where 0 ≤ i ≤ t. Vertices i
t and j

t form a simplex if and only if |i− j| ≤ 1.

If all processes start with input 0, they must all decide 0, so the carrier
map ∆ carries input vertex 0 to output vertex 0. Similarly, ∆ carries input
vertex 1 to output vertex 1. If the processes have mixed inputs, then they
can choose any simplex (vertex or edge) of O.

∆(σ) =

{{0}} if σ = {0}
{{1}} if σ = {1}
O if σ = {0, 1} .

Barycentric Agreement

Along with consensus and k-set agreement, one of the most important tasks
for analyzing distributed systems is the barycentric agreement task. Here,
processes start on the vertices of a simplex σ in an arbitrary input complex,
I, and they decide on the vertices of a single simplex in the barycentric
subdivision Bary σ.

Formally, the barycentric agreement task with input complex I is the
task (I,Bary I,Bary), where the subdivision operator Bary is treated as
a carrier map (see Exercise 4.6) We will see later (Theorem 4.2.8) that
this task is solved by a single-layer colorless immediate snapshot protocol.
This task can be generalized to the iterated barycentric agreement protocol
(I,BaryN I,BaryN), for any N > 0. This task has a straightforward color-
less N -layer protocol. Despite the triviality of the solutions, the barycentric
task will be essential for later chapters.

124 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Robot Convergence Tasks

Consider a collection of robots placed on the vertices of a simplicial complex.
If they are all placed on the same vertex, then they stay there, but if they
are placed on distinct vertices, they must all move to the vertices of a single
simplex, chosen by task-specific rules. The robots communicate through a
colorless layered protocol, and eventually each one chooses a final vertex
and halts. Whether a particular convergence task has a solution depends on
the rules governing where the robots are allowed to meet. Formally, a robot
convergence task for a complex K is given by (I,K,∆), where each vertex in
I corresponds to a possible starting vertex in K, each simplex in I to a set
of possible simultaneously starting vertices, and ∆ encodes the convergence
rules.

The loop agreement task (explained in more detail in Chapter 5) is one
example of a convergence task. This task is defined by a complex O, three
of its vertices, v0, v1 and v2, and disjoint simple paths connecting each pair
of vertices in O. If the robots start on the same vertex vi, they stay there. If
some start on vi and the rest on vj , they converge to the vertices of an edge
on the path connecting vi and vj . If some start on each of the three vertices,
they converge to the vertices of some simplex of O. The input complex I
for loop agreement is just the 2-simplex {0, 1, 2}, the carrier map carries
each vertex i to {vi}, each edge {i, j} to the path linking vi and vj , and the
triangle {0, 1, 2} to all of O.

4.2.3 Protocols Revisited

Like tasks, protocols can also be recast in terms of simplicial complexes.

Definition 4.2.2. A (colorless) protocol is a triple (I,P,Ξ) where

• I is a simplicial complex, called the input complex, where each simplex
is a colorless input assignment

• P is a simplicial complex, called the protocol complex, where each
simplex is a colorless final configuration,

• Ξ : I → 2P is a strict carrier map, called the execution map, such that
P = ∪σ∈IΞ(σ).

The carrier map Ξ is strict :

Ξ(σ ∩ σ′) = Ξ(σ) ∩ Ξ(σ′). (4.2.2)

4.2. COMBINATORIAL MODEL 125

Here is the intuition behind this equality: Ξ(σ) ∩ Ξ(σ′) is the set of color-
less final configurations where no process can “tell” whether the execution
started with inputs from σ or from σ′. In any such execution, only the pro-
cesses with inputs from σ ∩ σ′ can participate, because the others “know”
which was the starting configuration. But these executions are exactly those
with final configurations Ξ(σ ∩ σ′), corresponding to executions where only
the processes with inputs from σ ∩ σ′ participate.

As reformulated in the language of simplicial complexes, a protocol
(I,P,Ξ) solves a task (I,O,∆) if there is a simplicial map

δ : P → O

carried by ∆. Here is why we require δ to be simplicial. Each simplex in
the protocol complex P is a colorless final configuration, that is, the set
of final states that can be reached in some execution. The tasks’ colorless
output assignments are the simplices of O. If δ were to carry some final
configuration to a set of vertices that did not form a simplex of O, then that
configuration is the final state of an execution where the processes choose
an illegal output assignment.

4.2.4 Protocol Composition

Two protocols for the same set of processes can be composed in a natural
way. Informally, the processes participate in the first protocol, then they
participate in the second, using their final views from the first as their in-
puts to the second. For example, a colorless layered protocol is just the
composition of a sequence of colorless single-layer protocols.

Definition 4.2.3. (Composition of Protocols).
Assume we have two protocols (I,P,Ξ) and (I ′,P ′,Ξ′), where P ⊆ I ′. Their
composition is the protocol (I,P ′′,Ξ′′), where Ξ′′ is the composition of Ξ
and Ξ′, (Ξ′ ◦ Ξ)(σ) = Ξ′(Ξ(σ)), for σ ∈ I, and P ′′ = Ξ′′(I).

The result of the composition is itself a protocol because, by Proposi-
tion 3.4.6, strict carrier maps compose.

It is sometimes convenient to speak of composing a protocol with a task,
by which we mean composing that protocol with an arbitrary protocol that
solves the task. Formally, we exploit the observation that any task whose
carrier map is strict can itself be treated as a protocol.

Definition 4.2.4. (Composition of a protocol and a task).
Given a protocol (I,P,Ξ) and a task (P ′,O,∆), where P ⊆ P ′ and ∆ is
strict, their composition is the protocol (I,O′,∆ ◦ Ξ), where (∆ ◦ Ξ)(σ) =
∆(Ξ(σ)), for σ ∈ I, and O′ = (∆ ◦ Ξ)(I).

126 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Informally, the processes participate in the first protocol, using their output
vertices as inputs to some protocol that solves the task.

Similarly, it is also convenient to speak of composing a task with a pro-
tocol.

Definition 4.2.5. (Composition of a task and a protocol).

Given a task (I,O,∆), where ∆ is strict, and a protocol (I ′,P,Ξ), where
O ⊆ I ′, their composition is the protocol (I,P ′,Ξ ◦∆), where (Ξ ◦∆)(σ) =
Ξ(∆(σ)), for σ ∈ I, and P ′ = (Ξ ◦∆)(I).

Informally, the processes participate in some protocol that solves the task,
then use their output vertices as inputs to the second protocol.

Redefining tasks and protocols in the language of combinatorial topol-
ogy makes it easier to prove certain kinds of properties. For example, when
analyzing colorless protocols, two kinds of protocols serve as useful building
blocks: protocols for barycentric agreement, and protocols for k-set agree-
ment. We can reason about such protocols in a model-independent way,
asking what the implications are if such protocols exist. Separately, for
models of interest (like colorless layered protocols), we can use model-specific
arguments to show that such protocols do or do not exist.

The following Protocol Complex Lemma illustrates a useful connection
between the discrete and continuous structures of tasks and protocols. This
lemma holds for any computational model where there are protocols that
solve barycentric agreement.

Let Ξ : I → 2P be a carrier map, and f : |P| → |O| a continuous map.
We use (f ◦ Ξ) : |I| → |O| to denote the continuous map (f ◦ Ξ)(σ) =
f(|Ξ(σ)|), for σ ∈ I.

In one direction, the lemma provides a way to find a protocol for a
colorless task (I,O,∆). To show that a protocol-triple (I,P,Ξ) solves the
task, we must find a simplicial map δ from P to O carried by ∆. However,
it is sometimes easier to find a continuous map f : |P| → |O| (carried by
∆), and then obtain δ through simplicial approximation, which is possible
in any model where barycentric agreement can be solved.

In the other direction, the lemma says that any simplicial map δ from
P to O carried by ∆ approximates a continuous |δ| (recall Section 3.2.3)
carried by ∆. Thus, intuitively, simplicial decision maps and continuous
decisions maps are interchangeable in such models.

Lemma 4.2.6 (Protocol Complex Lemma). Assume that for any input com-
plex I and any N > 0, there is a protocol that solves the barycentric agree-
ment task (I,BaryN I,BaryN). Then a task (I,O,∆) has a protocol if and

4.2. COMBINATORIAL MODEL 127

only if there exists a protocol (I,P,Ξ) with a continuous map:

f : |P| → |O| (4.2.3)

such that (f ◦ Ξ) is carried by ∆.

Proof. Protocol implies Map: If (I,P,Ξ) solves (I,O,∆), then the pro-
tocol’s simplicial decision map

δ : P → O,

is carried by ∆. The simplicial map δ induces a continuous map

|δ| : |P| → |O|

also carried by ∆, as explained in Section 3.2.3.

Map implies Protocol: If there is a continuous map

f : |P| → |O|,

such that (f ◦Ξ) is carried by ∆, then by Theorem 3.7.5, f has a simplicial
approximation,

φ : BaryN P → O,

for some N > 0. By hypothesis, there is a protocol that solves the
barycentric agreement task (P,BaryN P,BaryN). Consider the composi-
tion (I,BaryN P, (BaryN ◦Ξ)) (Definition 4.2.4). To show that this com-
posite protocol solves (I,O,∆), we must show that φ is a decision map for
the task.

By hypothesis, (f ◦ Ξ) is carried by ∆:

(f ◦ Ξ)(σ) ⊆ ∆(σ).

By Lemma 3.7.8, so is its simplicial approximation:

(φ ◦ BaryN ◦Ξ)(σ) ⊆ ∆(σ)

φ(BaryN ◦Ξ)(σ)) ⊆ ∆(σ).

It follows that φ is a decision map for the composite protocol.

It is sometimes convenient to reformulate the Protocol Complex Lemma
in the following equivalent discrete form.

128 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Lemma 4.2.7 (Discrete Protocol Complex Lemma). Assume that for any in-
put complex I and any N > 0, there is a protocol that solves the barycentric
agreement task (I,BaryN I,BaryN). Then a task (I,O,∆) has a protocol
if and only if there exists a protocol (I,P,Ξ), a subdivision DivP of P, and
a simplicial map

φ : DivP → O (4.2.4)

carried by ∆.

Proof. It is enough to show that Conditions 4.2.3 and 4.2.4 are equivalent.

A simplicial map ϕ : DivP → O carried by ∆ yields a continuous map
|ϕ| : |DivP| → |O| also carried by ∆. Since |DivP| is homeomorphic to
|P|, we see that Condition 4.2.3 implies Condition 4.2.4.

On the other hand, assume we have a continuous map f : |P| → |O|
carried by ∆. By Theorem 3.7.5, f has a simplicial approximation: ϕ :
BaryN P → O also carried by ∆, for some N > 0, satisfying Condition 4.2.4.

4.2.5 Single-Layer Colorless Protocol Complexes

Although one may list all possible executions of a colorless layered protocol,
as in Figure 4.2 (see also Figure 4.4), it may be difficult to perceive an under-
lying structure. By contrast, an intriguing structure emerges if we display
the same information as a simplicial complex. Figure 4.5 shows the protocol
complex encompassing the complete set of final configurations for a single-
layer protocol with at least three processes. The input complex I consists
of simplex {p, q, r} and its faces. To ease comparison, selected simplices are
labeled with their corresponding final configurations. The “corner” vertex
is labeled with p, the “edge” vertex is labeled with p, q, and the “central”
vertex is labeled p, q, r. In this example, it is clear that the protocol complex
for a single-input simplex is its barycentric subdivision.

In particular, consider the 2-simplex labeled at upper right. It corre-
sponds to a final colorless configuration {{p} {p, q} {p, q, r}}, which occurs
at the end of any “fully sequential” execution, where processes with input p
concurrently take immediate snapshots, then processes with input q do the
same, followed by processes with input r. In any such execution, there are
exactly three final views, corresponding to the three vertices of the 2-simplex
labeled at upper right.

Similarly, the simplex corresponding to the fully-concurrent execution is
the vertex in the center. The view {p, q, r} is the single final view in any

4.2. COMBINATORIAL MODEL 129

P Q R
write

write
snap

itwrite
snap snap
{p,q,r} {p,q} {p,q,r}

Figure 4.5: Single-layer colorless immediate snapshot protocol complex for
three or more processes and input values p, q, r.

execution where at least one process has each of the three inputs, and they
all take immediate snapshots.

Figure 4.5 shows the output complex for a single-layer protocol whose
input complex consists of a single simplex and its faces. The carrier map
Ξ defines the subcomplex Ξ(σ) consisting of all final configurations in ex-
ecutions starting from that initial configuration σ. Here, Ξ(σ) consists of
all simplices whose vertices are labeled with subsets of vertices of σ. For
instance, Ξ({p}) is equal to the vertex {p}. For the input simplex {p, q},
Ξ({p, q}) consists of the edge {{p} {p, q}} and the edge {{q} {p, q}} (and
their vertices). For the input simplex {p, q, r}, Ξ({p, q, r}) consists of the
entire subdivision P.

What happens if we add one more possible input value, r, with the
restriction that if some process has input r, no process can have input s,
and vice-versa? With this addition, the input complex consists of two 2-
simplices (triangles) that share an edge. These triangles represent mutually

130 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

p,s sp p,p

p q s

p,qp,r q,s

p,q,s

p,q,r

q,rr q

Figure 4.6: Single-layer protocol complex for two input simplices {p, q, r}
and {p, q, s}, and three or more processes

exclusive initial configurations. Figure 4.6 shows the resulting single-layer
colorless protocol complex, where each vertex is labeled with a view. As one
would expect, the protocol complex is a barycentric subdivision of the input
complex. The vertices along the boundary dividing the two triangles are
views of executions where processes with inputs r or s did not participate,
perhaps because they crashed, perhaps because there were none, or perhaps
because they started after the others finished.

We are ready to state the most important property of the colorless single-
layer colorless immediate snapshot protocol complex.

Theorem 4.2.8. For any colorless single-layer (n+1)-process immediate snap-
shot protocol (I,P,Ξ), the protocol complex P is the n-skeleton of the
barycentric subdivision Bary I, and the execution map Ξ is the composition
of the n-skeleton and barycentric subdivision operators.

Proof. Each process Pi takes an immediate snapshot, writing its input to

4.2. COMBINATORIAL MODEL 131

mem[0][i], and then taking a snapshot, retaining the set of non-null values
that it observes. Every value written is an input value, which is a vertex of
I. All processes start with vertices from some simplex σ in I, so the set of
input values read in each snapshot forms a non-empty face of σ. Because
snapshots are atomic, if Pi assembles face σi and Pj assembles face σj , then
σi ⊆ σj or vice-versa. So the sets of views assembled by the processes form
a chain of faces

∅ ⊂ σi0 ⊆ · · · ⊆ σin ⊆ σ.

These chains can have length at most n + 1, and the complex consisting
of such simplices is precisely the n-skeleton of the barycentric subdivision
Bary σ of σ (Section 3.6.2). Taking the complex over all possible inputs, we
have P is skeln Bary I and Ξ(·) = skeln Bary(·).

4.2.6 Multi-Layer Protocol Complexes

In a colorless single-layer protocol, each process takes a pair of steps: it
writes and takes a snapshot. There are several ways to generalize this model
to allow processes to take additional steps. One approach is to allow pro-
cesses to write and take a snapshot more than once in a layer. We will
consider this extension in later chapters. For now, however, we construct
colorless layered protocols by composing colorless single-layer protocols as
shown in Figure 4.1.

For example, Figure 4.7 shows colorless protocol complexes for one and
two layers of a protocol where input values can be either p or q. In the
first layer, each process writes its input to memory, and takes a snapshot
which becomes its input value for the second layer. The two-layer protocol
complex is called the iterated barycentric subdivision of the input complex.

In Figure 4.8 we see the protocol complex for three or more processes,
after two layers, when the inputs are p, q and r. It obtained by subdivid-
ing the protocol complex of Figure 4.5. Equivalently, it is the single-layer
protocol complex when the input is the protocol complex of Figure 4.5.

Theorem 4.2.9. Any colorless (n + 1)-process N -layer immediate snapshot
protocol (I,P,Ξ) is the composition of N single-layer protocols, where the
protocol complex P is skeln BaryN I and Ξ(·) = skeln BaryN (·).

Proof. By a simple induction, using Theorem 4.2.8 as the base.

Corollary 4.2.10. For any input complex I, n > 0, and N > 0, there is an
(n+ 1)-process colorless layered protocol that solves the barycentric agree-
ment task (I,BaryN skeln I,BaryN).

132 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

I

qp

I

{p} {q}{p,q}

Bary(I)

{{p},{p,q}}{{p}} {{q},{p,q}} {{q}}{{p,q}}

Bary2(I)

Figure 4.7: Input and protocol complex for two input values p and q: zero,
one, and two layers.

One nice property of colorless layered protocols is the following “mani-
fold” property.

Lemma 4.2.11. Let (I,P,Ξ) be a colorless layered protocol where I is pure,
and d = dim I. If σ is a d-simplex of I, and τ is a (d−1)-dimensional simplex
of Ξ(σ), then τ is contained in either one or two d-dimensional simplices of
Ξ(σ).

The proof of this important property of colorless layered protocols is a
simple consequence of the observation that Ξ(·) is a subdivision. We will
discuss this topic further in Chapter 9.

4.3. WAIT-FREE COLORLESS IMMEDIATE SNAPSHOTS 133

{{p}}
{{ } { }} {{p} {p q r}}{{p},{p,r}} {{p},{p,q,r}}

{{q},{p,q}, {p,q,r}}{{p,r}} {{p,q}}

{{p,q,r}}

{{r}} {{q}}{{q,r}}

Figure 4.8: Protocol complexes for two layers, at least three processes, and
input values p, q and r. Views are shown for selected vertices.

4.3 The Computational Power of Wait-Free Col-
orless Immediate Snapshots

Recall that in a colorless layered protocol, the processes share a two-
dimensional memory array, where the rows correspond to layers, and the
columns to processes. In layer `, process Pi takes an immediate snapshot:
writing to mem[`][i] and immediately taking a snapshot of memory row `.
These protocols are communication-closed, in the sense that information
flows from earlier layers to later ones, but not in the other direction.

4.3.1 Colorless Task Solvability

We are now ready for the main result concerning the computational power
of wait-free protocols in read-write memory.

134 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Theorem 4.3.1. The colorless task (I,O,∆) has a wait-free (n+ 1)-process
layered protocol if and only if there is a continuous map

f : | skeln I| → |O| (4.3.1)

carried by ∆.

Proof. By Theorem 4.2.9, for any input complex I, n > 0, and N > 0,
there is an (n+1)-process colorless layered protocol that solves the barycen-
tric agreement task (I,BaryN I,BaryN). It follows that we can apply
Lemma 4.2.6: a protocol (I,P,Ξ) solves the task (I,O,∆) if and only if
there is a continuous map

f : | skeln BaryN I| → |O|,

carried by ∆. Finally, since | skeln BaryN I| = | skeln I|, we have

f : | skeln I| → |O|.

carried by ∆.

Applying the Discrete Protocol Complex Lemma 4.2.7 we get the follow-
ing result.

Corollary 4.3.2. For all n > 0, the colorless task (I,O,∆) has a wait-free
(n+ 1)-process colorless layered protocol if and only if there is a subdivision
Div I of I and a simplicial map

φ : Div I → O

carried by ∆.

4.3.2 Applications

Set Agreement We can use this result to prove that using colorless lay-
ered protocols, even the weakest non-trivial form of set agreement is im-
possible: there is no n-set agreement protocol if processes may be assigned
n+1 distinct input values. We start with an informal explanation. Consider
the executions where each process is assigned a distinct input value in the
range 0, . . . , n. Because only at most n of these processes can be chosen, the
processes must collectively “forget” at least one of them.

This task is (σ, skeln−1 σ, skeln−1), where the input complex is a single
n-simplex σ, the output complex is the (n−1)-skeleton of σ, and the carrier

4.3. WAIT-FREE COLORLESS IMMEDIATE SNAPSHOTS 135

σ

skel1 σ

σ

skel1 σ

σ

skel1 σ

σ

skel1 σ

Figure 4.9: Why there is no colorless layered protocol for (n + 1)-process
n-set agreement: the map f is well-defined on the boundary of σ, but there
is no way to extend it to the interior.

map is the (n−1)-skeleton operator, carrying each proper face of σ to itself.
As illustrated in Figure 4.9 any continuous map f : |σ| → | skeln−1 σ|
acts like (is homotopic to) the identity map on the boundary skeln−1 σ of σ.
Informally, it is impossible to extend f to the interior of σ, because f wraps
the boundary of the “solid” simplex σ around the “hole” in the middle of
skeln−1 σ. Of course, this claim is not (yet) a proof, but the intuition is
sound.

To prove this claim formally, we use a simple form of a classic result
called Sperner’s Lemma. (Later, in Chapter 9, we will prove and make use
of a more general version of this lemma.) Let σ be an n-simplex. A Sperner
coloring of a subdivision Div σ is defined as follows. Each vertex of σ is
labeled with a distinct color, and for each face τ ⊆ σ, each vertex of Div τ
is labeled with a color from τ . Figure 4.10 shows a Sperner coloring where
each “corner” vertex is given a distinct color (black, white, or gray), each

136 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Figure 4.10: A subdivided triangle with a Sperner labeling. Sperner’s
Lemma states that at least one triangle (highlighted) must be labeled with
all three colors.

edge vertex is given a color from one of its two corners, and each interior
vertex is given one of the three corner colors.

Fact 4.3.3 (Sperner’s Lemma for subdivisions). Any Sperner labeling of
a subdivision Div σ must include an odd number of n-simplices labeled with
all n+ 1 colors. (Hence there is at least one.)

Here is another way to formulate Sperner’s Lemma. A Sperner labeling
of a subdivision Div σ is just a simplicial map φ : Div σ → σ carried by the
carrier map Car(·,Div σ) (See Exercise 4.8). It follows that φ carries some
n-simplex τ ∈ Div σ to all of σ, and we have the following.

Fact 4.3.4 (Sperner’s Lemma for carrier maps). There is no simplicial
map φ from a subdivision Div σ to skeln−1 σ carried by the carrier map
Car(·,Div σ).

Recall that the k-set agreement task with input complex I is

4.3. WAIT-FREE COLORLESS IMMEDIATE SNAPSHOTS 137

(I, skelk−1 I, skelk−1), where the skeleton operator is considered as a strict
carrier map (see Exercise 4.8).

Lemma 4.3.5. There is no continuous map

f : | skelk I| → | skelk−1 I| (4.3.2)

carried by skelk−1.

Proof. Assume by way of contradiction there is such a map f . It has a
simplicial approximation φ : Div skelk I → skelk−1 I carried by carried by
skelk−1, contradicting Fact 4.3.4.

Theorem 4.3.6. There is no wait-free (n + 1)-process, colorless layered im-
mediate snapshot protocol for n-set agreement.

Proof. If a protocol exists for (σ, skeln−1 σ, skeln−1), then by Condition 4.3.2,
there is a subdivision Div of σ and a simplicial decision map

φ : Div σ → skeln−1 σ

carried by skeln−1, contradicting Fact 4.3.4.

If we think of Div σ as the protocol complex of all executions starting
from input simplex σ, then each (n+ 1)-colored simplex represents an exe-
cution where the processes (illegally) choose n+ 1 distinct values.

Mathematical Note 4.3.7. The continuous version of Sperner’s Lemma for
carrier maps is essentially the No-Retraction Theorem, which is equivalent
to the Brouwer fixed-point theorem, stating that there is no continuous map

f : |σ| → | skeln−1 σ|

such that the restriction of f to | skeln−1 σ| is identity. This connection is
discussed further in Chapter 8.

138 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

f is the
Identity map

σ Bary2 σ

Figure 4.11: Why approximate agreement is possible: the identity map f
that carries the boundary of σ to skeln−1 σ can be extended to the interior.

Approximate Agreement We next consider a variation of approximate
agreement where process start on the vertices of a simplex σ in I, and must
converge to points in σ that lie within ε of each other, for a given ε > 0.

Here is an informal explanation why ε-agreement, unlike set agreement,
has a colorless layered protocol. Given any ε > 0, there is an N > 0 such
that the diameter of any simplex in BaryN σ is less than ε. Consider the task
(σ,BaryN σ,BaryN), where each process has as input a vertex of a geometric
n-simplex σ, and chooses as output a vertex in BaryN σ, such that if τ ⊆ σ
is the set of input vertices, then the output vertices chosen lie in a simplex
of BaryN τ . Recast in geometric terms, the processes choose points within
an ε-ball within the convex hull of the inputs.

As illustrated in Figure 4.11, the identity map from |σ| to |BaryN σ| is

carried by the carrier map BaryN : σ → 2BaryN σ, so this task does have a
colorless layered protocol.

Recall that the protocol complex for a colorless N -layered protocol is

4.4. CHAPTER NOTES 139

the repeated barycentric subdivision BaryN I. Because barycentric subdi-
vision is mesh-shrinking (Section 3.6.5), we can solve ε-agreement simply by
running this protocol until the mesh of the subdivision is less than ε.

4.4 Chapter Notes

Wait-free atomic snapshot algorithms were first proposed by Afek et al. [2]
and by Anderson [6]. This algorithm is described and analyzed in Attiya
and Welch [17] and in Herlihy and Shavit [94]. The snapshot algorithm in
Exercise 4.12 is presented in a recursive form by Gafni and Rajsbaum [69].

The first formal treatment of the consensus task is due to Fischer, Lynch
and Paterson [56], who proved that this task is not solvable in a message
passing system even if only one process may crash, and processes have direct
communication channels with each other. The result was later extended to
shared memory by Loui and Abu-Amara [112], and by Herlihy [80]. Approx-
imate agreement was shown to be solvable by Dolev, Lynch, Pinter, Stark
and Weihl [47].

Chaudhuri [37] was the first to investigate k-set agreement, where a par-
tial impossibility result was shown. The loop agreement family of tasks was
introduced by Herlihy and Rajsbaum [82] to study decidability, later ex-
tended [85] to hierarchies of loop agreement tasks. Degenerate loop agree-
ment was considered by Liu, Pu, and Pan [110], and rendezvous tasks,
higher dimensional loop agreement by Liu, Xu, and Pan [111]. The fam-
ily was extended to general colorless tasks by Borowsky, Gafni, Lynch and
Rajsbaum [27], to identify the tasks for which the BG Simulation [23]
can be used. Colorless tasks are technically easier to study than gen-
eral tasks, indeed there are many papers that explicitly focus on colorless
tasks [5, 44, 65, 87, 116, 88] Colorless protocols and their behavior in environ-
ments where more than one process may run solo are studied by Rajsbaum,
Raynal and Stainer [132].

In 1993, three papers were published together [23, 92, 136] showing that
there is no wait-free protocol for set agreement using shared read-write
memory or message-passing. Herlihy and Shavit [92] introduced the use
of simplicial complexes to model distributed computations. Borowsky and
Gafni [23] and Saks and Zaharoughu [136] introduced layered executions.
The first paper called them “immediate executions” while the second called
them “block executions”. Immediate snapshots as a model of computation
were considered by Borowsky and Gafni [24].

Attiya and Rajsbaum [16] later used layered immediate snapshot execu-

140 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

tions in a combinatorial model to show the impossibility of k-set agreement
by showing there is a strict carrier map on a protocol complex that is an
orientable manifold. A proof that layered executions induce a subdivision
of the input complex appears in Kozlov [103]. In these models, processes
continually read and write a single shared memory, in contrast to the layered
immediate snapshot model, where a clean memory is used for each layer.

In the terminology of Elrad and Francez [51], the layered immediate
snapshot model is a communication-closed layered model. One of the ear-
liest such models is due to Borowsky and Gafni [26] (see also the survey
by Rajsbaum [130]). Instances of this model include the layered immedi-
ate snapshot memory model and analogous message-passing models. Other
high-level abstract models have been considered by Gafni [62] using failure
detectors notions, and by Moses and Rajsbaum [122] for situations where
at most one process may fail. Various cases of the message-passing model
have been investigated by multiple researchers [3, 36, 105, 122, 138, 140].

Sperner’s Lemma implies that there no continuous function from the unit
disk to its boundary which is the identity on the boundary. This is a version
of the No-Retraction Theorem [126], a form of the Brouwer Fixed-Point
Theorem.

Dwork, Lynch, and Stockmeyer [49] have shown that consensus is solv-
able in semi-synchronous environments, where message delivery time has an
upper and lower bound. The commit/adopt abstraction of Exercise 4.10
was used by Yang, Neiger and Gafni [147]. for semi-synchronous consensus,
and similar a technique is used in Lamport’s Paxos protocol [108]. Consen-
sus is the basis for the state machine approach to building fault-tolerant,
distributed systems [106, 141].

4.5 Exercises

Exercise 4.1. Explicitly write out the approximate agreement protocol de-
scribed in Section 4.2.2. Prove it is correct. (Hint: use induction on the
number of layers.)

Exercise 4.2. Consider the following protocol intended to solve k-set agree-
ment, for k ≤ n. Each process has an estimate, initially its input. For r
layers, each process communicates its estimate, receives estimates from oth-
ers, and replaces its estimate with the smallest value it sees. Describe an
execution where this protocol decides k + 1 or more distinct values.

Exercise 4.3. The two-process, two-layer lonely halting protocol, each pro-
cess has input value 1, and writes 0 each time it does not see another’s input.

4.5. EXERCISES 141

Each process communicates its initial state in the first layer, and its state
at the end of the layer becomes its input to the second layer, except that a
process halts after the first layer if it does not see the other.

Draw a picture of this protocol complex in the style of Figure 4.7.

Exercise 4.4. In the ε-approximate agreement task, processes are assigned as
inputs points in a high-dimensional Euclidean space RN , and must decide
on points that lie within the convex hull of their inputs, and within ε of
one another, for some given ε > 0. Explain how the iterated barycentric
agreement task of Section 4.2.2 can be adapted to solve this task.

Exercise 4.5. Here is another robot convergence task. In the Earth Agree-
ment task, robots are placed at fixed positions on (a discrete approximation
of) the Earth, and must converge to nearby points on the Earth’s surface.

The input complex is a 3-simplex τ3 = {0, 1, 2} (the Earth), and the
output complex is skel2 τ3 (the Earth’s surface). The robots start at any of
the four vertices of τ3. If they all start on one or two vertices, each process
halts on one of the starting vertices. If they start on three or more vertices,
then they converge to at most three vertices (not necessarily the starting
vertices). The task’s carrier map is

∆(σ) =

{
σ if dimσ ≤ 1

skel2 τ if dimσ > 1

Show that there is a colorless single-layer immediate snapshot protocol for
this task. Explain why this task is not equivalent to 3-set agreement with 4
input values.

Now consider the following variation. Let the output complex be
Div skel2 τ , where Div is an arbitrary subdivision. As before, the robots
start at any of the four vertices of τ3. If they start on a simplex σ of dimen-
sion 0 or 1, then they converge to a single simplex of the subdivision Div σ.
If they start on three or more vertices, then they converge to any simplex
of Div skel2 τ3. This carrier map is

∆(σ) =

{
Div σ if dimσ ≤ 1

Div skel2 τ if dimσ > 1

Show that there is a colorless immediate snapshot protocol for this task.
(Hint: use the previous protocol for the first layer).

Let us change the carrier map slightly to require that if the processes
start on the vertices of a 2-simplex σ, then they converge to a simplex of

142 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Div σ. The new carrier map is

∆(σ) =

{
Div σ if dimσ ≤ 2

Div skel2 τ if dimσ > 2

Show that this task has no colorless immediate snapshot protocol.

Exercise 4.6. Prove that skelk and Bary are strict carrier maps.

Exercise 4.7. Is it true that for any complex A, skelk BarynA =
Baryn skelkA?

Exercise 4.8. Recall that if K is a simplex, DivK a subdivision, and τ
a simplex of DivK, there is a unique simplex κ in K, called the carrier,
Car(τ,DivK), of minimal dimension such that τ is a simplex of Div κ. Show
that the carrier is a carrier map.

Exercise 4.9. Consider a two-process colorless task (I,O,∆). Assume for
each input vertex v, ∆(v) is a single output vertex. We have seen in this
chapter that its combinatorial representation is in terms of an input graph,
an output graph, and a carrier map ∆.

1. In Chapter 2 we described tasks with chromatic graphs, where each
vertex is associated to a process. Describe the chromatic task corre-
sponding to the previous colorless task: its chromatic input and output
graphs, and its carrier map.

2. Prove that the chromatic task is solvable by a layered read-write (chro-
matic) protocol in the form of Figure 2.6 if and only if the colorless
task is solvable by a colorless layered immediate snapshot protocol in
the form of Figure 4.1.

Exercise 4.10. The commit-adopt task is a variation on consensus where
each process is assigned an input value, and each chooses as output a pair
(D, v), where D is either commit or adopt, and v is one of the input values
in the execution. Moreover, (i) If a process decides (commit, v), then every
decision is (·, v), and (ii) if every process has the same input value v, then
(commit, v) is the only possible decision. Define this task formally as a
colorless task and show it is solvable by a 2-layer colorless protocol, but not
by a 1-layer colorless protocol.

Exercise 4.11. Prove Sperner’s lemma for the special case where the protocol
complex is the first barycentric subdivision.

4.5. EXERCISES 143

// There are n+ 1 layers
shared mem: array[0..n][0.. n] of value
protocol ColorlessLayeredScan(input : Value): Value
for ` := 0 to n do

mem[`][i] := input
view := set of views in scan(mem[`][∗])
if |view| = n+ 1− ` then return view

Figure 4.12: Colorless Layered Scan Protocol: code for Pi

Exercise 4.12. Consider the protocol in Figure 4.12, where a non-atomic scan
operation reads one by one (in arbitrary order) the memory words mem[`][i],
for 0 ≤ i ≤ n (instead of using an atomic snapshot as in Figure 4.1).

Let inputi denote the input value of Pi and vi the view returned by
Pi. Prove that the views returned by the protocol satisfy the following
properties. (i) For any two views vi, vj , vi ⊆ vj or vj ⊆ vi. (ii) If inputi ∈ vj
then vi ⊆ vj .
Exercise 4.13. Consider the colorless protocol of Exercise 4.12, where a non-
atomic scan is used instead of an atomic snapshot. Draw the protocol com-
plex after one round for two and for three processes. Is it a subdivision of
the input complex? If not, does it contain one?

Exercise 4.14. Show that if we replace immediate snapshot with write fol-
lowed by snapshot, the single-layer protocol complex is still a barycentric
subdivision of the input complex.

144 CHAPTER 4. COLORLESS WAIT-FREE COMPUTATION

Chapter 5

Solvability of Colorless Tasks
in Different Communication
Models

Non Print Material 5. Abstract: This chapter explores the circumstances
under which colorless tasks can be solved in different communication models,
satisfying different fault-tolerance requirements. We consider both shared
memory and message-passing models, wait-free and t-resilient protocols, as
well as protocols that work against adversaries.

Key words: t-resilient, adversaries, layered snapshot protocols,
message-passing protocols, wait-free.

In Chapter 4 we considered colorless layered immediate snapshot protocols,
and identified the colorless tasks that such protocols can solve, while toler-
ating crash failures by any number of processes. This chapter explores the
circumstances under which colorless tasks can be solved other computational
models.

We consider models with different communication mechanisms and dif-
ferent fault-tolerance requirements. We show that the ideas of the previous
chapter can be extended to characterize the colorless tasks that can be solved
when up to t out of n+ 1 processes may crash, or when the processes com-
municate by shared objects that that solve k-set agreement, or when the
processes communicate by message-passing.

Once we have established necessary and sufficient conditions for a task
to have a protocol in a particular model, it is natural to ask whether it is

145

146 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

decidable whether a given task satisfies those conditions. We will see that
the answer depends on the model.

5.1 Overview of Models

Recall from Chapter 4 that a colorless task is one where only the sets of
input or output values matter, not which process has which. For such tasks,
an initial configuration remains an initial configuration if one participating
process exchanges its own input value for another’s, and the same holds
for final configurations. Consensus and k-set agreement are examples of
colorless tasks.

In a model where the processes communicate by layered snapshots, and
any number of processes can fail by crashing, a protocol must be wait-free. A
process cannot wait for another process to take a step, because it cannot tell
whether that has crashed, or is merely slow. We have seen that a colorless
task (I,O,∆) has a wait-free (n + 1)-process layered immediate snapshot
protocol if and only if there is a continuous map

f : | skeln I| → |O| (5.1.1)

carried by ∆ (Theorem 4.3.1). Very informally, this characterization says
that wait-free layered snapshot protocols transform (sets of at most n + 1
different) inputs to outputs in a continuous way.

In this chapter we consider several other models whose computational
power can be measured by a parameter p, 1 ≤ p ≤ n. The colorless tasks
solvable in a model with parameter p are exactly those for which there is a
continuous map

f : | skelp I| → |O|

carried by ∆. Thus, the wait-free layered snapshot model is the weakest,
having p = n, while a model with p = n can solve any colorless task.

Sometimes, the wait-free condition may be too demanding. Instead of
tolerating failures by an arbitrary subset of processes, we may be willing
to tolerate fewer failures. A protocol is t-resilient if it tolerates halting
failures by as many as t, 0 ≤ t ≤ n processes. (A wait-free protocol is n-
resilient.) We say that a colorless task has a t-resilient protocol in a model
if, for all n ≥ t, there is a t-resilient (n+1)-process protocol for that task. In
Section 5.2 we will see that a colorless task (I,O,∆) has a t-resilient layered
snapshot protocol if and only if there is a continuous map

f : | skelt I| → |O| (5.1.2)

5.1. OVERVIEW 147

carried by ∆. Not surprisingly, the t-resilient Condition 5.1.2 is strictly
weaker than its wait-free counterpart, Condition 5.1.1, since the map need
be defined only over the t-skeleton of the input complex. The lower the
dimension t, the easier it is to satisfy this condition, and the more tasks
that can be solved. In a sense, these two conditions capture the cost of
fault-tolerance. For colorless tasks, solvability is determined by the number
of processes that can fail, while the total number of processes is irrelevant.

We also show (Section 5.3) that if we augment layered snapshot protocols
by also allowing processes to communicate through k-set agreement objects,
then a colorless task (I,O,∆) has a wait-free layered protocol if and only if
there is a continuous map

f : | skelk−1 I| → |O|

carried by ∆. Adding k-set agreement objects, 1 ≤ k ≤ n, increases the com-
putational power of layered snapshot protocols by lowering the dimension
of the skeleton on which a map must exist.

It follows that fault-tolerance and communication power are, in a sense,
interchangeable for colorless computability. A t-resilient layered colorless
protocol, and a wait-free layered protocol augmented by (t+1)-set agreement
objects, are equivalent: they can solve the same colorless tasks. Notice
that in the extreme case, where t = 0, any colorless task is solvable, either
because there are no failures, or because the processes can reach consensus
(Exercise 5.2). More generally, let p be an integer, 0 ≤ p ≤ n. Then, for any
t, k, such that p = min(k−1, t), there is a t-resilient k-set agreement layered
snapshot protocol for a task (I,O,∆) if and only if there is a continuous
map

f : | skelp I| → |O|

carried by ∆. (see Exercise 5.4)
The previous chapter’s techniques extend even to the case where pro-

cess failures are not independent. In Section 5.4, we show how to exploit
knowledge of which potential failures are correlated and which are not. A
parameter c captures the power of such a model for solving colorless tasks.
This parameter is the size of the smallest core in the system, a minimal
set of processes that will not all fail in any execution. The result for t-
resilient solvability readily generalizes to dependent failures. A colorless
task (I,O,∆) has a layered protocol with minimal core size c if and only if
there is a continuous map

f : | skelc I| → |O|

148 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

// N is number of layers , n+ 1 the number of processes
ResilientLayeredSnapshot (vi : Value): Value

view: Value := vi // initial view is input value
M : array of value
for ` := 0 to N − 1 do
do // collect values from at least n+ 1− t processes
immediate

mem[`][i] := view
M := snapshot(mem[`][∗])

until |names(M)| ≥ n+ 1− t
view := values(M) // discard process names

return δ(view) // apply decision map to final view

Figure 5.1: t-resilient layered immediate snapshot protocol: pseudo-code for
Pi.

carried by ∆.

Next,in Section 5.5, we consider message-passing protocols. The layered
snapshot model might appear to be stronger: once a process writes a value
to shared memory, that value is there for all to see, while a value sent in a
message is visible only to the process that received the message. Surprisingly
perhaps, as long as a majority of processes is non-faulty (that is, 2t <
n+ 1), the two models are equivalent: any task that has a t-resilient layered
immediate snapshot protocol has a t-resilient message-passing protocol, and
vice-versa.

Once we have established necessary and sufficient conditions for a task
to have a protocol in a particular model, it is natural to ask whether it
is decidable whether a given task satisfies those conditions. We will see in
Section 5.6 that the answer depends on the model. Essentially, for any model
in which solvable tasks are exactly those for which there is a continuous map

f : | skelp I| → |O|

carried by ∆, then solvability is decidable if and only if p ≤ 1.

5.2 t-Resilient Layered Snapshot Protocols

Recall that wait-free protocols tolerate crash failures by all processes but
one (that is, n out of n+ 1). Sometimes this level of resilience is excessive,

5.2. T -RESILIENT LAYERED SNAPSHOT PROTOCOLS 149

especially if there are many processes. Instead, it may be enough to tolerate
only t failures among n + 1 processes, where 0 ≤ t ≤ n, a property called
t-resilience.

A colorless t-resilient layered immediate snapshot protocol (t-resilient
layered protocol when clear from context) is structured as shown in Fig-
ure 5.1. As in the wait-free case, the processes share a two-dimensional
memory array mem[`][i], where row ` is shared only by the processes par-
ticipating in layer `, and column i is written only by Pi. During layer `, Pi
writes its current view to mem[`][i], waits for n+ 1− t views (including its
own) to be written to that layer’s row, and then takes a snapshot of that
row. The waiting step introduces no danger of deadlock because at least
n+1− t non-faulty processes will eventually reach each level and write their
views.

Notice that the wait-free layered snapshot protocol of Figure 4.1, where
t = n, is a degenerate form of the t-resilient protocol of Figure 5.1. In the
wait-free protocol, once Pi has written to mem[`][i], it can proceed imme-
diately, because n + 1 − t = 1, and one view (its own) has already been
written.

Right away, we can see that even an (n− 1)-resilient protocol can solve
colorless tasks that cannot be solved by a wait-free protocol (and in a single
layer). The pseudo-code in Figure 5.2 solves (t+1)-set agreement if at most
t processes may fail. In contrast, we know from Theorem 4.3.6 that there
is no (t + 1)-set agreement protocol if t + 1 processes can fail, when t = n.
More generally, this impossibility holds for any value of t (Theorem 5.2.9),
so each additional level of resilience allows us to solve a harder instance of
set agreement.

SetAgree(vi: Value): Value
view: Value := vi // initial view is input value
M : Array of Value = ∅
do // collect values from at least n+ 1− t processes
immediate

mem[0][i] := view
M := snapshot(mem[0][∗])

until | names(M)| ≥ n+ 1− t
view := values(M) // discard process names
return min(view) // minimum value from latest snapshot

Figure 5.2: t-resilient single-layer snapshot protocol for (t+1)-set agreement.

150 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

Lemma 5.2.1. There exists a t-resilient layered snapshot protocol for (t+1)-
set agreement.

Proof. As shown in Figure 5.2, each process writes its input, waits until
n + 1 − t inputs have been written, and then chooses the least value read.
Because there are at least n + 1 − t non-faulty processes, the waiting step
has no danger of deadlock. Because each process can “miss” values from
at most t processes, each value chosen will be among the t + 1 least input
values, so at most t+ 1 distinct values can be chosen.

In Exercise 5.22, we ask you to show that this protocol does not actually
require immediate snapshots.

The following lemma will be useful for characterizing the colorless tasks
that can be solved, tolerating t failures, by a layered colorless protocol.
It is similar to Theorem 4.2.8 for wait-free single-layer colorless immediate
snapshot protocol complex, and indeed the proof is similar as well.

By Definition 4.2.2 we can consider the triple (I,P,Ξ) for the protocol of
Figure 5.1, where I is the input complex of a task, P the protocol complex
where each simplex is a colorless final configuration, and Ξ : I → 2P is the
strict execution carrier map.

Lemma 5.2.2. For any colorless single-layer (n+ 1)-process t-resilient snap-
shot protocol (I,P,Ξ), we have skelt Bary I ⊆ P, and the restriction of the
execution map Ξ to this skeleton is the composition of the t-skeleton and
barycentric subdivision operators.

Proof. Consider all executions of the t-resilient protocol of Figure 5.1 on the
input subcomplex skelt I. Assume all processes start with vertices from a
simplex σ in skelt I. The sets of views assembled by the processes form a
chain of faces

∅ ⊂ σi0 ⊆ · · · ⊆ σin ⊆ σ.

The inclusion follows because these views are snapshots, and snapshots are
atomic: if Pi assembles face σi and Pj assembles face σj , then σi ⊆ σj or
vice-versa.

These chains can have length at most t+1, because σ ∈ skelt I, so indeed
the complex consisting of such simplices is contained in the t-skeleton of the
barycentric subdivision Bary σ.

Moreover, any simplex in Bary σ can be produced by such a chain. Con-
sider an execution where n+ 1− t processes start with input vertices from
σi0 , and at least one starts with each of the other vertices of σ (there are
enough processes because the chain has length at most t + 1). Suppose all

5.2. T -RESILIENT LAYERED SNAPSHOT PROTOCOLS 151

the processes with inputs from σi0 concurrently write to the array, and im-
mediately take a snapshot, ending up with views equal to σi0 . Similarly, all
processes with input from σi1 − σi0 write and immediately take a snapshot,
and so on.

The complex consisting of such simplices is precisely the t-skeleton of
the barycentric subdivision Bary σ of σ. Taking the complex over all pos-
sible inputs, we have P contains skelt Bary I, and Ξ(·) is the restriction of
skeln Bary(·).

A simple induction, with Lemma 5.2.2 as the base, yields the following.

Lemma 5.2.3. Any colorless N -layer (n + 1)-process t-resilient snapshot
protocol (I,P,Ξ) is the composition of N single-layer t-resilient protocols,
where skelt BaryN I ⊆ P, and the restriction of the execution map Ξ to this
skeleton is the composition of the t-skeleton and barycentric subdivision
operators.

If a protocol solves a colorless task (I,O,∆), then we are free to add
a pre-processing step to the protocol, where first the processes agree on at
most k of their inputs, where k = t + 1, using the protocol of Figure 5.2.
The following lemma states this formally, using the protocol composition
Definition 4.2.5.

Lemma 5.2.4 (Skeleton Lemma). Assume that for any input complex I,
there is an (n+ 1)-process protocol, n > 0, that solves the k-set agreement
task (I, skelk−1 I, skelk−1) for some fixed k.

Assume furthermore, that the protocol (I,P,Ξ) solves the colorless task
(I,O,∆) with decision map δ, then the composition of the k-set agreement
task with the protocol (I,P,Ξ) also solves (I,O,∆) using the same decision
map δ.

Proof. Recall that by Definition 4.2.5 the task (I, skelk−1 I, skelk−1) can
be composed with the protocol (I,P,Ξ), since skelk−1 I ⊆ I. The result
of the composition is a new protocol (I,P ′,Ξ ◦ skelk−1), where P ′ = (Ξ ◦
skelk−1)(I) = Ξ(skelk−1 I).

We check that δ is a correct decision map for the task. Pick an arbitrary
σ ∈ I. We have

δ((Ξ ◦ skelk−1)(σ)) = δ(Ξ(skelk−1 σ)) ⊆ δ(Ξ(σ)) ⊆ ∆(σ),

where the last inclusion is a corollary of the fact that the protocol (I,P,Ξ)
solves the task (I,O,∆). It follows that δ is a decision map for the composite
protocol.

152 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

We may now combine the previous results to show that, for t-resilient
colorless task solvability, we may assume without loss of generality that a
protocol complex is a barycentric subdivision of the t-skeleton of the input
complex.

Lemma 5.2.5. If there is a t-resilient layered protocol that solves the colorless
task (I,O,∆), then there is a t-resilient layered protocol (I,P,Ξ) solving
that task whose protocol complex P is BaryN (skelt I), and

Ξ(·) = BaryN ◦ skelt(·).

Proof. By Lemma 5.2.1, there exists a t-resilient layered snapshot protocol
for k-set agreement. By the Skeleton Lemma (5.2.4), we can assume with-
out loss of generality that any t-resilient colorless protocol’s input complex
is skelt I. Starting on a simplex σ in skelt I, after the first layer, each pro-
cess’s view is a vertex of σ, and all their views form a simplex of Bary σ.
After N layers, their views form a simplex of BaryN σ. It follows that
P ⊆ BaryN (skelt I).

The other direction follows from Lemma 5.2.3. It follows that
BaryN skelt I ⊆ P.

Corollary 5.2.6. For any input complex I, n > 0, and N > 0, there is
an (n + 1)-process t-resilient layered protocol that solves the barycentric
agreement task (I,BaryN skelt I,BaryN).

Theorem 5.2.7. The colorless task (I,O,∆) has a t-resilient layered snapshot
protocol if and only if there is a continuous map

f : | skelt I| → |O| (5.2.1)

carried by ∆.

Proof. By Lemma 5.2.5, for any t-resilient layered snapshot protocol
(I,P,Ξ) we may assume the protocol complex P is BaryN skelt I. Because
layered snapshot protocols solve any barycentric agreement task, we can
apply the Protocol Complex Lemma (4.2.6), which states that the protocol
solves the task if and only if there is a continuous map

f : |BaryN skelt I| → |O|

carried by ∆. The claim follows because |BaryN skelt I| = | skelt I|.

Applying the Discrete Protocol Complex Lemma (4.2.7),

5.3. LAYERED SNAPSHOTS WITH K-SET AGREEMENT 153

Corollary 5.2.8. The colorless task (I,O,∆) has a t-resilient layered snap-
shot protocol if and only if there is a subdivision Div of skelt I and a sim-
plicial map

φ : Div skelt I → O

carried by ∆.

Without loss of generality, we can assume that any t-resilient layered pro-
tocol consists of one (t+ 1)-set agreement layer followed by any number of
immediate snapshot layers. Moreover, only the first, (t + 1)-set agreement
layer requires waiting, the remaining layers can be wait-free.

Theorem 5.2.9. There is no t-resilient layered snapshot protocol for t-set
agreement.

Proof. See Exercise 5.3.

An important special case of the previous theorem occurs when t = 1,
implying that consensus is not solvable by a layered protocol even if only a
single process can fail.

5.3 Layered Snapshots with k-Set Agreement

Practically all modern multiprocessor architectures provide synchronization
primitives more powerful than simple read or write instructions. For ex-
ample, the test-and-set instruction atomically swaps the value true for the
contents of a memory location. If we augment layered snapshots with test-
and-set, for example, it is possible to solve wait-free k-set agreement for
k =

⌈
n+1

2

⌉
(see Exercise 5.5). In this section, we consider protocols con-

structed by composing layered snapshot protocols with k-set agreement pro-
tocols.

In more detail, we consider protocols in the form of Figure 5.3. The
protocol is similar to the colorless wait-free snapshot protocol of Figure 4.1,
except that in addition to sharing memory, the objects share an array of
k-set agreement objects (Line 3). In each layer `, the processes first join in
a k-set agreement protocol with the other processes in that layer (Line 8),
and then they run an N`-layer immediate snapshot protocol (Line 11), for
some N` ≥ 0.

Recall that the k-set agreement protocol with input complex I is
(I, skelk−1 I, skelk−1), where the skeleton operator is considered as a strict
carrier map (see Exercise 4.8).

154 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

1 // There are N layers
2 shared mem: array[0..N−1][0..n] of Value
3 shared SA: array [0.. N−1][0..n] of SetAgree //k−set agreement objects
4 protocol ColorlessLayeredSA(input : Value): Value
5 view: Value := input // initial view is input value
6 for ` := 0 to N − 1 do
7 // k−set agreement with others in layer
8 sa: View := SA[`].decide(view)
9 // N`−layer immediate snapshot protocol

10 for j := 0 to N` do
11 view := ColorlessLayered (view))
12 return δ(view) // apply decision map to final view

Figure 5.3: Colorless Layered Set Agreement Protocol: pseudo-code for Pi.

Recall also that if (I,P,Ξ) and (P,P ′,Ξ′) are protocols where the pro-
tocol complex for the first is contained in the input complex for the second,
then their composition is the protocol (I,P ′,Ξ′ ◦ Ξ), where (Ξ′ ◦ Ξ)(σ) =
Ξ′(Ξ(σ)) (Definition 4.2.3).

Definition 5.3.1. A k-set layered snapshot protocol is one composed from
layered snapshot and k-set agreement protocols.

Lemma 5.3.2. Without loss of generality, we can assume the that the first
protocol in any such composition is a k-set agreement protocol. (That is,
N0 > 0.)

Proof. This claim follows directly from the Skeleton Lemma (5.2.4).

Lemma 5.3.3. If (I,P,Ξ) is a k-set layered snapshot protocol, then P is
equal to BaryN skelk−1 I, for some N ≥ 0.

Proof. We argue by induction on `, the number of k-set and layered snapshot
protocols composed to construct (I,P,Ξ). For the base case, when ` = 1,
the protocol is just a k-set agreement protocol by Lemma 5.3.2, so the
protocol complex P is just skelk−1 I.

For the induction step, assume that (I,P,Ξ) is the composition of
(I,P0,Ξ0) and (P1,P,Ξ1), where the first protocol is the result of com-
posing ` − 1 k-set or layered snapshot protocols, and P0 ⊆ P1. By the
induction hypothesis, P0 is BaryN skelk−1 I, for some N ≥ 0.

5.3. LAYERED SNAPSHOTS WITH K-SET AGREEMENT 155

There are two cases. First, if (P1,P,Ξ1) is a k-set protocol, then

Ξ1(P0) = skelk−1 BaryN skelk−1 I = BaryN skelk−1 I.

Second, if it is an M -layer snapshot protocol, then

Ξ1(P0) = BaryM (BaryN (skelk−1 I)) = BaryM+N skelk−1 I.

Theorem 5.3.4. The colorless task (I,O,∆) has a k-set layered snapshot
protocol if and only if there is a continuous map

f : | skelk−1 I| → |O| (5.3.1)

carried by ∆.

Proof. By Lemma 5.2.5, any k-set layered snapshot protocol (I,P,Ξ) has
P = BaryN skelk−1 I. By the Protocol Complex Lemma (4.2.6), the protocol
solves the task if and only if there is a continuous map

f : | skelk−1 BaryN I| → |O|

carried by ∆. The claim follows because | skelk−1 BaryN I| = | skelk−1 I|.

Applying the Discrete Protocol Complex Lemma (4.2.7),

Corollary 5.3.5. The colorless task (I,O,∆) has a k-set layered snapshot
protocol if and only if there is a subdivision Div of skelk−1 I and a simplicial
map

φ : Div skelk−1 I → O

carried by ∆.

Theorem 5.3.6. There is no k-set layered snapshot protocol for (k − 1)-set
agreement.

Proof. See Exercise 5.7.

The next corollary follows because Theorem 5.3.4 is independent of the
order in which k-set agreement layers are composed with immediate snapshot
layers.

Corollary 5.3.7. We can assume without loss of generality that any set agree-
ment protocol consists of a single k-set agreement layer followed by some
number of layered immediate snapshot protocols.

156 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

5.4 Adversaries

A t-resilient protocol is designed under the assumption that failures are
uniform: any t out of n + 1 processes can fail. Often, however, failures
are correlated. In a distributed system, processes running on the same
node, in the same network partition, or managed by the same provider
may be more likely to fail together. In a multiprocessor, processes running
on the same core, on the same processor, or on the same card may be
likely to fail together. It is often possible to design more effective fault-
tolerant algorithms if we can exploit knowledge of which potential failures
are correlated and which are not.

One way to think about such failure models is to assume that failures
are controlled by an adversary who can cause certain subsets of processes to
fail, but not others. There are several ways to characterize adversaries. The
most straightforward is to enumerate the faulty sets: all sets of processes
that fail in some execution. We will assume that faulty sets are closed under
inclusion: if F is a maximal set of processes that fail in some execution, then
for any F ′ ⊂ F , there is an execution in which F ′ is the actual set of processes
that fail. There is a common-sense justification for this assumption: we want
to respect the principle that fault-tolerant algorithms should continue to be
correct if run in systems that display fewer failures than in the worst-case
scenario. A model that permits algorithms that are correct only if certain
failures occur is unlikely to be useful in practice.

Faulty sets can be described as a simplicial complex F , called the faulty
set complex, whose vertices are process names, and whose simplices are sets
of process names such that exactly those processes fail in some execution.

Faulty sets can be cumbersome, so we use a more succinct and flexible
way to characterize adversaries. A core is a minimal set of processes that
will not all fail in any execution. A core is a simplex that is not itself in
the faulty set complex, but all of its proper faces are in F . The following
dual notion is also useful. A survivor set is a minimal set of processes that
intersects every core (such a set is sometimes called a hitting set). In every
execution, the set of non-faulty processes includes a survivor set.

Here are some examples of cores and survivor sets.

The Wait-free Adversary. The entire set of processes is the only core,
and the singleton sets are the survivor sets.

The t-Faulty Adversary. The cores are the sets of cardinality t+ 1, and
the survivor sets are the sets of cardinality n+ 1− t.

5.4. ADVERSARIES 157

PP P1P0

P PP3 P2

Figure 5.4: An irregular adversary: P0, P1, P2, and P3 can each fail indi-
vidually, or P0 and P1 may both fail. The faulty set complex consists of an
edge linking P0 and P1, shown as a solid line, and two isolated vertices, P2

and P3. There are five cores, shown as dotted lines.

An Irregular Adversary. Consider a system of four processes, P0, P1,
P2 and P3, where any individual process may fail, or P0 and P1 may both
fail. Here, {P0, P2} is a core, since they cannot both fail, yet there is an
execution in which each one fails. In all, there are five cores:

{{Pi, Pj} | 0 ≤ i < j ≤ 3, (i, j) 6= (0, 1)} ,

and three survivor sets:

{P2, P3} , {P0, P1, P3} , {P0, P1, P2} .

The set {P2, P3} is a survivor set, since there is an execution where only
these processes are non-faulty. This adversary is illustrated in Figure 5.4.

Here is how to use cores and survivor sets when designing a protocol.
Given a fixed core C, it is safe for a process to wait until it hears from some

158 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

// N is number of layers , n+ 1 the number of processes
AdversaryLayeredSnapshot(vi: value): value

view: value := vi // initial view is input value
M : array of value
for ` := 0 to N − 1 do
do // collect values from a survivor set
immediate

mem[`][i] := view
M := snapshot(mem[`][∗])

until names(M) contains a survivor set
view := values(M) // discard process names

return δ(view) // apply decision map to final view

Figure 5.5: A-resilient layered snapshot protocol: pseudo-code for Pi.

member of C, because they cannot all fail. It is also safe for a process to
wait until it hears from all members of some survivor set, because the set
of non-faulty processes always contains a survivor set. See Exercise 5.14.

Let A be an adversary with minimum core size c. We say that a protocol
is A-resilient if it tolerates any failure permitted by A. As illustrated in
Figure 5.5, an A-resilient layered snapshot protocol differs from a t-resilient
protocol as follows. At each layer, after writing its own value, each process
waits until all the processes in a survivor set (possibly including itself) have
written their views to that layer’s memory. As noted, there is no danger of
deadlock waiting until a survivor set has written.

Notice that the t-resilient layered snapshot protocol of Figure 5.1 is a
degenerate form of the A-resilient protocol of Figure 5.5, because for the
t-resilient protocol, any set of n+ 1− t processes is a survivor set.

Lemma 5.4.1. Let A be an adversary with minimum core size c+ 1. There
is an A-resilient layered snapshot protocol for c-set agreement.

Proof. It is a little easier to explain this protocol using writes and snapshots
instead of immediate snapshots. (See Exercise 5.23.) Pick a core C of A of
minimal size c + 1. Figure 5.6 shows a single-layer protocol. Each process
Pi in C writes its input to mem[0][i], while each process not in C repeatedly
takes snapshots until it sees a value written (by a process in C). It then
replaces its own input value with the value it found. At most c+ 1 distinct
values can be chosen. This protocol must terminate because C is a core,
and the adversary cannot fail every process in C.

5.4. ADVERSARIES 159

SetAgree(vi): value
if Pi ∈ C then // write if member of core

mem[0][i] := vi
return vi

else // wait for core process to write
do
M := snapshot(mem[0][∗])

until M [j] 6= ⊥ for some j
return M [j]

Figure 5.6: A-resilient layered snapshot protocol for (c+ 1)-set agreement.

Lemma 5.4.2. Without loss of generality, for any N -layer A-resilient colorless
protocol (I,P,Ξ),

P = BaryN skelc I and Ξ(·) = BaryN ◦ skelc(·).

Proof. By Lemma 5.4.1, there exists an A-resilient layered snapshot protocol
for (c + 1)-set agreement. By the Skeleton Lemma (5.2.4), we can assume
without loss of generality that any A-resilient colorless protocol’s input com-
plex is skelc I. From that point on the rest of the proof is virtually identical
to the proof of Lemma 5.2.5

Theorem 5.4.3. The colorless task (I,O,∆) has an A-resilient layered snap-
shot protocol if and only if there is a continuous map

f : | skelc I| → |O| (5.4.1)

carried by ∆.

Proof. By Lemma 5.4.2, any t-resilient layered snapshot protocol (I,P,Ξ)
has P = BaryN skelc I. The Protocol Complex Lemma (4.2.6) states that
the protocol solves the task if and only if there is a continuous

f : |BaryN I skelc | → |O|

carried by ∆. The claim follows because |BaryN skelc I| = | skelc I|.

Applying the Discrete Protocol Complex Lemma (4.2.7),

160 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

Corollary 5.4.4. The colorless task (I,O,∆) has an A-resilient layered snap-
shot protocol if and only if there is a subdivision Div of skelc I and a sim-
plicial map

φ : Div skelc I → O

carried by ∆.

Theorem 5.4.5. There is no A-resilient c-set agreement layered snapshot
protocol.

Proof. See Exercise 5.15.

5.5 Message-Passing Protocols

So far, we have focused on models where processes communicate through
shared memory. We now turn our attention to another common model of
distributed computing, where processes communicate by message-passing.

There are n + 1 asynchronous processes that communicate by sending
and receiving messages via a communication network. The network is fully-
connected: any process can send a message to any other. Message delivery
is reliable: every message sent is delivered exactly once to its target process
after a finite, but potentially unbounded delay. Message delivery is first-in,
first-out (FIFO): messages are delivered in the order they were sent.

The operational model is essentially unchanged from the layered snap-
shot model. The principal difference is that communication is now one-to-
one, rather than one-to-many. In Exercise 5.11, we ask you to show that
barycentric agreement is impossible in a message-passing model if a majority
of the process can fail. For this reason, we restrict our attention to t-resilient
protocols where t, the number of processes that can fail, is less than half:
2t < n+ 1.

We will see that as long as a majority or processes are non-faulty, there
is a t-resilient message-passing protocol if and only if there is a t-resilient
layered snapshot protocol. We will see, however, that message-passing pro-
tocols look quite different from their shared-memory counterparts.

For shared memory protocols, we focused on layered protocols because it
is convenient to have a “clean” shared memory for each layer. For message-
passing protocols, where there is no shared memory, we will not need to
use layered protocols. Later, in Chapter 13, it will be convenient impose a
layered structure on asynchronous message-passing executions.

In our examples, we use the following notation. A process P sends a
message containing values v0, . . . , v` to Q as follows:

5.5. MESSAGE-PASSING PROTOCOLS 161

send(P, v0, . . . , v`) to Q

We say that a process broadcasts a message if it sends that message to all
processes, including itself:

send(P, v0, . . . , v`) to all

Here is how Q receives a message from P :

upon receive(P, v0, . . . , v`) do
... // do something with the values received

Some message-passing protocols require that each time a process receives a
message from another, the receiver forwards that message to all processes.
Each process must continue to forward messages even after it has chosen its
output value. Without such a guarantee, a non-faulty process that chooses
an output and falls silent is indistinguishable from a crashed process, im-
plying that tasks requiring a majority of processes to be non-faulty become
impossible. We think of this continual forwarding as a kind of operating
system service, running in the background, interleaved with steps of the pro-
tocol itself. In our examples, such loops are marked with the background
keyword:

background // forward messages forever
upon receive(Pj , v) do
send(Pi, v) to all

We start with two useful protocols, one for (t + 1)-set agreement, and one
for barycentric agreement.

5.5.1 Set Agreement

As a first step, each process assembles values from as many other processes
as possible. The getQuorum() method shown in Figure 5.5.1 collects values
until it has received messages from all but t processes. It is safe to wait for
that many messages because there are at least n+1−t non-faulty processes.
It is not safe to wait for more, because the remaining t processes may have
crashed.

Figure 5.8 shows a simple protocol for (t+1)-set agreement. Each process
broadcasts its input value, waits to receive values from a quorum of n+1− t
messages, and chooses the least value among them. A proof of this protocol’s
correctness is left as Exercise 5.9. Note that this protocol works for any value
of t.

162 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

getQuorum(): Set of Value
V : Set of Value := ∅
q : int := 0 // count how many messages received
do
upon receive(Q, v) do
V := V ∪ {v} // add value to set
q := q + 1 // increment count

until q = n+ 1− t // stop when enough received
return V

Figure 5.7: Return values from at least n+ 1− t processes.

SetAgree(vi): value
send(Pi, vi) to all
V : Set of Value := getQuorum()
return min(V)

Figure 5.8: t-resilient message-passing protocol for (t+ 1)-set agreement.

5.5.2 Barycentric Agreement

Recall that in the barycentric agreement task, each process Pi is assigned
as input a vertex vi of a simplex σ. and after exchanging messages with
the others, chooses a face σi ⊆ σ, containing vi, such that for any two
participating processes Pi and Pj , the faces they choose are ordered by
inclusion: σi ⊆ σj , or vice-versa. This task is essentially equivalent to
immediate snapshot, which it is convenient (but not necessary) to assume as
a shared-memory primitive operation. In message-passing models, however,
we assume send and receive as primitives, and we must build barycentric
agreement from them.

Figure 5.9 shows a message-passing protocol for barycentric agreement.
Each Pi maintains a set Vi of messages it has received, initially only Pi’s
input value (Line 2). Pi repeatedly broadcasts Vi, and waits to receive sets
from other processes. If it receives V ′ such that V ′ = Vi (Line 7), then it
it increments its count of the number times it has received Vi. If it receives
V ′ such that V ′ \ V 6= ∅, (Line 9) then it sets Vi to Vi ∪ V ′, and starts
over. When Pi has received n + 1 − t identical copies of Vi from distinct
processes, the protocol terminates, and Pi decides Vi. As usual, after the
protocol terminates, Pi must continue to forward messages to the others

5.5. MESSAGE-PASSING PROTOCOLS 163

1 BaryAgree(vi: Vertex): set of Vertex
2 Vi : set of Vertex := {vi}
3 count := 0
4 while count < n+ 1− t do
5 send(Pi, Vi) to all
6 on receive(Pj , Vj) do
7 if Vi = Vj then // confirmation
8 count := count + 1
9 else if Vj \ Vi 6= ∅ then

10 Vi := Vi ∪ Vj // start over
11 count := 0
12 return Vi
13 // run background code after protocol returns
14 background // forward input value messages forever
15 upon receive(Pj , Vj) do
16 Vi := Vi ∪ Vj
17 send(Pi, Vi) to all

Figure 5.9: Barycentric agreement message-passing protocol.

(Lines 15-17).

Lemma 5.5.1. The protocol in Figure 5.9 terminates.

Proof. Suppose, by way of contradiction, that Pi runs this protocol forever.
Because Pi changes Vi at most n times, there is some time at which Pi’s Vi
assumes its final value V . For every set V ′ that Pi received earlier, V ′ ⊂ V ,
and for every V ′ received later, V ′ ⊆ V .

When Pi updates Vi to V , it broadcasts V to the others. Suppose a
non-faulty Pj receives V from P , where Vj = V ′. Pj must have sent V ′ to
Pi when it first set Vj to V ′. Since Pi henceforth does not change Vi, either
V ′ ⊂ V , or V ′ = V . If V ′ ⊂ V , then Pj will send V back to Pi, increasing
its count. If V ′ = V , then Pj already sent V to Pi. Either way, Pi receives
a copy of V from at least n+ 1− t non-faulty processes, and terminates the
protocol.

Lemma 5.5.2. In the protocol in Figure 5.9, if Pi decides Vi and Pj decides
Vj , then either Vi ⊆ Vj , or vice-versa.

Proof. Note that the sequence of sets V (0), . . . , V (0) broadcast by any process
is strictly increasing: V (i) ⊂ V (i+1). To decide, Pi received Vi from a set

164 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

X of at least n + 1 − t processes, and Pi received Vi from a set Y at least
n + 1 − t processes. Because t cannot exceed n+1

2 , X and Y must both
contain a process Pk that sent both Vi and Vj , implying they are ordered, a
contradiction.

5.5.3 Solvability Condition

We can now characterize which tasks have protocols in the t-resilient
message-passing model.

Theorem 5.5.3. For 2t < n + 1, (I,O,∆) has a t-resilient message-passing
protocol if and only if there is a continuous map

f : | skelt I| → |O|

carried by ∆,

Proof. Protocol implies Map. If a task has an (n+ 1)-process t-resilient
message-passing protocol, then it has an (n + 1)-process t-resilient layered
snapshot protocol (see Exercise 5.10). The claim then follows from Theo-
rem 5.2.7.
Map implies Protocol. The map

f : | skelt I| → |O|,

has a simplicial approximation,

φ : BaryN skelt I → O,

also carried by ∆. We construct a two-step protocol. In the first step, the
processes use the (t + 1)-set agreement protocol of Figure 5.8 to converge
to a simplex σ in skelt I, In the second step, they repeat the barycentric
agreement protocol of Figure 5.9 to converge to a simplex in BaryN skelt I.
Composing these protocols, and using φ as a decision map, yields the desired
protocol.

Theorem 5.5.4. For 2t < n + 1, (I,O,∆) has a t-resilient message-passing
protocol if and only if there is a subdivision Div of skelt I and a simplicial
map

φ : Div skelt I → O

carried by ∆.

Proof. See Exercise 5.16.

5.6. DECIDABILITY 165

Theorem 5.5.5. There is no t-resilient message-passing protocol for t-set
agreement.

Proof. See Exercise 5.17.

5.6 Decidability

This section uses more advanced mathematical techniques than the earlier
sections.

Now that we have necessary and sufficient conditions for a task to have
a protocol in various models, it is natural to ask whether we can automate
the process of deciding whether a given task has a protocol in a particular
model. Can we write a program (that is, a Turing machine) that takes
a task description as input, and returns a Boolean value indicating whether
a protocol exists?

Not surprisingly, the answer depends on the model of computation. For
wait-free layered snapshot protocols, or wait-free k-set layered snapshot pro-
tocols for k ≥ 3, the answer is no: there exists a family of tasks for which
it is undecidable whether a protocol exists. We will construct one such fam-
ily: the loop agreement tasks, discussed in Chapter 15. On the other hand,
for wait-free k-set layered snapshot protocols for k = 1 or 2, the answer is
yes: for every task, it is decidable whether a protocol exists. For any model
where the solvability question depends only on the 1-skeleton of the input
complex, solvability is decidable (see Exercise 5.19).

5.6.1 Paths and Loops

Let K be a finite 2-dimensional complex. Recall from Chapter 3 that
an edge path between vertices u and v in K is a sequence of vertices
u = v0, v1, . . . , v` = v such that each pair {vi, vi+1} is an edge of K, for
0 ≤ i < `. A path is simple if the vertices are distinct.

Definition 5.6.1. An edge path is an edge loop if its first and last vertices
are the same. An edge loop is simple if all the other vertices are distinct.
An edge loop’s first vertex is called its base point.

All edge loops considered here are assumed to be simple.

Informally, we would like to distinguish between edge loops that circum-
scribe “solid regions” and edge loops that circumscribe “holes”. To make
this notion precise, we must introduce some continuous concepts.

166 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

Figure 5.10: Non-Contractible (left) and Contractible (right) continuous
loops.

Definition 5.6.2. Fix a point s on the unit circle S1. A continuous loop in
|K| with base point x is a continuous map ρ : S1 → |K| such that ρ(s) = x.
A continuous loop ρ is simple if it has no self-intersections: ρ(s0) = ρ(s1)
only if s0 = s1.

All continuous loops considered here are assumed to be simple.

As illustrated in Figure 5.10, a continuous loop in |K| is contractible if it
can be continuously deformed to its base point in finite “time”, leaving the
base point fixed. Formally, we capture this notion as follows.

Definition 5.6.3. A continuous loop ρ : S1 → |K| in K is contractible if it
can be extended to a continuous map ρ̂ : D2 → X, where D2 denotes the
2-disk whose boundary is the circle S1, the input domain for ρ.

A simple continuous loop λ is a representative of a simple edge loop ` if
their geometric images are the same: |λ(S1)| = |`|.

5.6. DECIDABILITY 167

Definition 5.6.4. A simple edge loop p is contractible if it has a contractible
representative.

Although any particular simple edge loop has an infinite number of rep-
resentatives, it does not matter which one we pick.

Fact 5.6.5. Either all of an edge loop’s representatives are contractible, or
none are.

In Exercise 5.18, we ask you to construct an explicit representative of an
edge path.

Fact 5.6.6. The question whether an arbitrary simple edge loop in an arbi-
trary finite simplicial complex is contractible is undecidable.

Remarkably, the question remains undecidable even for complexes of
dimension 2 (see the chapter notes).

Mathematical Note 5.6.7. The notion of contractibility is a special case of
a more general notion, called loop homotopy. Given two continuous loops
with the same base point, we would like to treat them as equivalent if one
loop can be continuously deformed to the other in finite “time”, leaving their
common base point fixed. Formally, two loops ρ, ρ′ : S1 → |K| with common
base point x are homotopic if there is a continuous map h : S1× [0, 1]→ |K|,
such that h(s, 0) = ρ, h(s, 1) = ρ′, h(0, t) = h(1, t) = x, for all s, t ∈ [0, 1].
If we think of the second coordinate in S1 × [0, 1] as time, then h(s, 0) is ρ,
h(s, 1) is ρ′, and h(s, t) is the intermediate loop at time t, for 0 < t < 1.
Note that the base point does not move during the deformation.

The trivial loop never leaves its base point. It is given by τ : S1 → |K|,
where τ(s) = x, for all s ∈ S1. It is a standard fact that a loop is contractible
if and only if is homotopic to the trivial loop at its base point.

The homotopy classes of loops for a topological spaceX are used to define
that space’s fundamental group, usually denoted π1(X). These groups are
extensively studied in algebraic topology.

5.6.2 Loop Agreement

Let ∆2 denote the 2-simplex whose vertices are labeled 0, 1, and 2, and let
K denote an arbitrary 2-dimensional complex. We are given three distinct
vertices v0, v1, and v2 in K, along with three edge paths p01, p12, and
p20, such that each path pij goes from vi to vj . We let pij denote the
corresponding 1-dimensional simplicial subcomplex as well, in which case

168 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

we let pij = pji. We assume that the paths are chosen to be non-self-
intersecting, and that they intersect each other only at corresponding end
vertices.

Definition 5.6.8. These edge paths p01, p12, and p20 form a simple edge loop
`, with base point v0, which we call a triangle loop, denoted by the 6-tuple
` = (v0, v1, v2, p01, p12, p20).

In the loop agreement task, the processes start on vertices of ∆2, and con-
verge on a simplex in K, subject to the following conditions. If all processes
start on a single vertex i, they converge on the corresponding vertex vi. If
they start on two distinct input vertices, i and j, they converge on some
simplex (vertex or edge) along the path pij linking vi and vj . Finally, if the
processes start on all three input vertices, {0, 1, 2}, they converge to some
simplex (vertex, edge, or triangle) of K. See Figure 5.11 for an illustration.
More precisely:

Definition 5.6.9. The loop agreement task associated with a triangle loop `
in a simplicial complex K is a triple (∆2,K,Λ), where the carrier map Λ is
given by

Λ(τ) =

vi if τ = {i},
pij if τ = {i, j}, 0 ≤ i < j ≤ 2, and

K if τ = ∆2.

Since the loop agreement task is completely determined by the complex K
and the triangle loop `, we also denote it by Loop (K, `).

5.6.3 Examples of Loop Agreement Tasks

Here are some examples of interesting loop agreement tasks.

• A 2-set agreement task can be formulated as the loop agreement task
Loop (skel1(∆2), `), where ` = (0, 1, 2, ((0, 1)), ((1, 2)), ((2, 0))).

• Let Div ∆2 be an arbitrary subdivision of ∆2. In the 2-dimensional
simplex agreement task, each process starts with a vertex in ∆2. If
τ ∈ ∆2 is the face composed of the starting vertices, then the processes
converge on a simplex in Div τ . This task is the loop agreement task
Loop (Div ∆2, `), where ` = (0, 1, 2, p01, p12, p20), with pij denoting the
unique simple edge path from i to j in the subdivision of the edge
{i, j}.

5.6. DECIDABILITY 169

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Figure 5.11: Loop Agreement.

• The 2-dimensional N -th barycentric simplex agreement task is simplex
agreement for BaryN ∆2, the N -th iterated barycentric subdivision of
∆2. Notice that 0-barycentric agreement is just the trivial loop agree-
ment task Loop (∆2, `), where ` = (0, 1, 2, ((0, 1)), ((1, 2)), ((2, 0))),
since a process with input i can directly decide si.

• In the 2-dimensional ε-agreement task, input values are vertices of a
face τ of σ, and output values are points of |τ | that lie within ε > 0 of
one another in the convex hull of the input values. This task can be
solved by a protocol for N -barycentric simplex agreement, for suitably
large N .

• In the 1-dimensional approximate agreement task input values are
taken from the set {0, 1}, and output values are real numbers that
lie within ε > 0 of one another in the convex hull of the input values.
This task can be solved by a 2-dimensional ε-agreement protocol.

170 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

Of course, not all tasks can be cast as loop agreement tasks.

5.6.4 Decidability for Layered Snapshot Protocols

We now show that a loop agreement task Loop (K, `) has layered snapshot
protocol, for t ≥ 2 if and only if the triangle loop ` is contractible in K.
Loop contractibility, however, is undecidable, and therefore so is the question
whether an arbitrary loop agreement task has a protocol in this model.

We will need the following standard fact.

Fact 5.6.10. There is a homeomorphism from the 2-disk D2 to |∆2|,

g : D2 → |∆2|,

that carries boundary to boundary: g(S1) = skel1 ∆2.

Theorem 5.6.11. For t ≥ 2, the loop agreement task Loop (K, `) has a t-
resilient layered snapshot protocol if and only if the triangle loop ` is con-
tractible.

Proof. Note that because K has dimension 2, skeltK = K for t ≥ 2.
Protocol Implies Contractible. By Theorem 4.3.1, if the task

(∆2,K, `) has a wait-free layered snapshot protocol, then there exists a con-
tinuous map f : |∆2| → |K| carried by Λ. Because f is carried by Λ,
f satisfies f(i) = vi, for i = 0, 1, 2, and f({i, j}) ⊆ pij , for 0 ≤ i, j ≤ 2.
Composing with the homeomorphism g of Fact 5.6.10, we see that the map
g ◦ f : D2 → |K|, restricted to the 1-sphere S1, is a simple continuous loop
λ. Moreover, this continuous loop is a representative of `. Since the map λ
can be extended to all of D2, it is contractible, and so is the triangle loop `.
Contractible Implies Protocol. Let g : D2 → |∆2| be the homeomor-
phism of Fact 5.6.10.

The edge map ` induces a continuous map

|`| : | skel1 ∆2| → |K|

carried by Λ: |`|(i) = vi, for i = 0, 1, 2, and |`|({i, j}) ⊆ pij , for 0 ≤ i, j ≤ 2.
The composition of g followed by |`| is a simple loop:

λ : S1 → |K|

also carried by Λ. Because ` is contractible, Fact 5.6.5 implies that λ can
be extended to

f : D2 → |K|,

5.7. CHAPTER NOTES 171

also carried by Λ. It is easy to check that the composition

f ◦ g−1 : |∆2| → |K|,

is also carried by Λ. Theorem 5.2.7 implies that there is a t-resilient layered
snapshot protocol for this loop agreement task.

Corollary 5.6.12. It is undecidable whether a loop agreement task has a
t-resilient layered snapshot protocol for t ≥ 2.

5.6.5 Decidability with k-Set Agreement

Essentially the same argument shows that the existence of a wait-free loop
agreement protocol is also undecidable for k-set layered snapshot protocols,
for k > 2.

Corollary 5.6.13. A loop agreement task Loop (K, `) has a wait-free k-set
layered snapshot protocol for k > 2, if and only if the triangle loop ` is
contractible.

If follows from Fact 5.6.6 that it is undecidable whether a loop agreement
task has a protocol for three processes in this model.

The situation is different in models capable of solving 1-set or 2-set
agreement, such as 1-resilient layered snapshot or message-passing protocols,
or wait-free k-set layered snapshot protocols for k = 1 or 2.

Theorem 5.6.14. In any model capable of solving k-set agreement for k ≤ 2,
it is decidable whether a task has a protocol.

Proof. In each of these models, a task (I,O,∆) has a protocol if and only
if there exists a continuous map f : | skelk−1 I| → |O| carried by ∆.

When k = 1 this map exists if and only if ∆(v) is non-empty for each
v ∈ I, which is certainly decidable. When k = 2, this map exists if and only
if, in addition to the non-emptiness condition, for every pair of vertices v0, v1

in I, there is a path from a vertex of ∆(v0) to a vertex of ∆(v1) contained
in ∆({v0, v1}). This graph-theoretic question is decidable.

5.7 Chapter Notes

The layered approach used in this chapter was employed by Herlihy, Rajs-
baum, and Tuttle [90, 91] for message-passing systems. It was used to prove
connectivity is conserved across layers, something we will do later on. In
this chapter we used the more direct approach of showing that subdivisions

172 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

are created in each layer. Earlier work by Herlihy and Rajsbaum [81] and
Herlihy and Shavit [93] was based on the “critical state” approach, a style of
argument by contradiction pioneered by Fischer, Lynch, and Paterson [56].
This last paper proved that consensus is not solvable in a message-passing
system even if only one process may fail by crashing, a special case of The-
orem 5.5.5. Our message-passing impossibility result is simplified by using
layering.

In shared-memory systems the wait-free layered approach used in this
chapter was introduced as an “iterated model” of computation by Borowsky
and Gafni [26], see the survey by Rajsbaum [130] for additional references.
Algorithms in this model can be presented in a recursive form as described
by Gafni and Rajsbaum [69], and in the tutorial by Herlihy, Rajsbaum and
Raynal [89]. Fault-tolerant versions of the model were studied by Rajsbaum,
Raynal and Travers [134]. In Chapter 14 we study the relationship of this
model with a more standard model where processes can write and read the
same shared array any number of times.

The BG-simulation [27] provides a way to transform colorless tasks wait-
free impossibilities bounds to t-resilient impossibilities. As we shall see in
Chapter 7, the t-resilient impossibility theorems proved directly in this chap-
ter, can be obtain by reduction to the wait-free case using this simulation.
The BG-simulation and layered models are discussed by Rajsbaum and Ray-
nal [131]. Lubitch and Moran [113] provide a direct model-independent
t-resilient impossibility proof of consensus.

Early applications of Sperner’s Lemma to set agreement are due to
Chaudhuri [38], and to Chaudhuri, Herlihy, Lynch, and Tuttle [40]. Herlihy
and Rajsbaum [81] present critical state arguments to prove results about
the solvability of set agreement using set agreement objects. We will explore
in Chapter 9 why renaming is weaker than n-set agreement, as shown by
Gafni, Rajsbaum and Herlihy [70].

Junqueira and Marzullo [101, 100] introduced the core/survivor-set for-
malism for characterizing general adversaries used here, and derived the
first lower bounds for synchronous consensus against such an adversary.
Delporte-Gallet et al. [46] investigate the computational power of more gen-
eral adversaries in asynchronous shared memory, using simulation. By con-
trast, the analogous impossibility results proved here use direct combinato-
rial arguments. The colorless task solvability characterization theorem for
adversaries was proved by Herlihy and Rajsbaum [86] (and extended in [88],
as discussed in Chapter 13).

Biran, Moran and Zaks [19] showed that task solvability is decidable in
a message-passing system where at most one process can fail by crashing,

5.8. EXERCISES 173

providing a characterization of solvable tasks in terms of graph connectivity,
extending earlier work by Moran and Wolfstahl [120]. They further present
a setting where the decision problem is NP-hard [20]. Gafni and Koutsou-
pias [64] were the first to note that three-process tasks are undecidable for
wait-free layered snapshot protocols. This observation was generalized to
other models by Herlihy and Rajsbaum [82].

The message-passing barycentric agreement protocol of Figure 5.9 is
adapted from the stable vectors algorithm of Attiya et al. [9].

Attiya et al. [8] showed that it is possible to simulate shared memory
using message-passing when a majority of processes are non-faulty. One
could use this simulation to show that our message-passing characterization
follows from the shared-memory characterization.

The hierarchy of loop agreement tasks defined by Herlihy and Rajs-
baum [85] will be presented in Chapter 15. Several variants and extensions
have been studied. Degenerate loop agreement was defined in terms of two
vertices of the output complex instead of three, by Liu, Pu and Pan [110].
More general rendezvous task were studied by Liu, Xu and Pan [111]. Simi-
lar techniques were used by Fraigniaud, Rajsbaum and Travers [60] to derive
hierarchies of tasks motivated by checkability issues.

Contractibility is undecidable because it reduces to the word problem for
finitely-presented groups: whether an expression reduces to the unit element.
This problem was shown to be undecidable by S.P. Novikov [128] in 1955,
and the isomorphism problem (whether two such groups are isomorphic) was
shown to be undecidable by M.O. Rabin [129] in 1958. (For a more complete
discussion of these problems, see Stillwell [144] or Sergeraert [142].)

Biran, Moran and Zaks [21] study the round complexity of tasks in a
message-passing system where at most one process can fail by crashing.
Hoest and Shavit [96] consider non-uniform layered snapshot subdivisions
to study the number of layers needed to solve a task in the wait-free case.
(see Exercise 5.21, about the complexity of solving colorless tasks).

5.8 Exercises

Exercise 5.1. Show that the colorless complex corresponding to indepen-
dently assigning values from a set V in to a set of n + 1 processes is the
n-skeleton of a |V in|-dimensional simplex. Thus, it is homeomorphic to the
n-skeleton of a |V in|-disk.

Exercise 5.2. Show that any colorless task (I,O,∆), such that ∆(v) is non-
empty for every input vertex v, is solvable by a 0-resilient layered snapshot

174 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

colorless protocol and by a wait-free layered snapshot colorless protocol aug-
mented with consensus objects.

Exercise 5.3. Prove Theorem 5.2.9: There is no t-resilient layered snapshot
protocol for t-set agreement.

Exercise 5.4. Use the techniques of this chapter to show that there is a t-
resilient k-set agreement layered snapshot protocol for a task (I,O,∆) if
and only if there is a continuous map

f : | skelmin(k−1,t) I| → |O|

carried by ∆.

Exercise 5.5. Recall that the test-and-set atomically swaps 1 into a memory
location and returns that location’s prior value. Give an (n + 1)-process
protocol for solving

⌈
n+1

2

⌉
-set agreement using layered snapshots and test-

and-set instructions.

Exercise 5.6. Suppose we are given a “black box” object that solves k-set
agreement for m + 1 processes. Give a wait-free (n + 1)-process layered
snapshot protocol for K-set agreement, where

K =

⌊
n+ 1

m+ 1

⌋
+ min(n+ 1 mod m+ 1, k).

Exercise 5.7. Prove Theorem 5.3.6: there is no k-set layered snapshot pro-
tocol for (k − 1)-set agreement.

Exercise 5.8. Consider a model where message delivery is reliable, but the
same message can be delivered more than once, and messages may be de-
livered out of order. Explain why that model is or is not equivalent to the
one we use.

Exercise 5.9. Prove that the set agreement protocol of Figure 5.8 is correct.

Exercise 5.10. Show how to transform any t-resilient message-passing pro-
tocol into a t-resilient layered snapshot protocol, even when t > (n+ 1)/2.

Exercise 5.11. Show that barycentric agreement is impossible if a majority
of the processes can fail: 2t ≥ n + 1. (Hint: a partition occurs when two
disjoint sets of non-faulty processes both complete their protocols without
communicating.)

Exercise 5.12. Show that a barycentric agreement protocol is impossible if
a process stops forwarding messages when it chooses an output value.

5.8. EXERCISES 175

Exercise 5.13. Prove Theorem 5.5.5: there is no wait-free message-passing
protocol for (k − 1)-set agreement. (Hint: use Sperner’s Lemma.)

Exercise 5.14. Explain how to transform the set of cores of an adversary into
the set of survivor sets and vice versa. Hint: use disjunctive and conjunctive
normal forms of Boolean logic.

Exercise 5.15. Prove Theorem 5.4.5: there is no A-resilient c-set agreement
layered snapshot protocol.

Exercise 5.16. Prove Theorem 5.5.4: for 2t < n+1, (I,O,∆) has a t-resilient
message-passing protocol if and only if there is a subdivision Div of skelt I
and a simplicial map

φ : Div skelt I → O

carried by ∆.

Exercise 5.17. Prove Theorem 5.5.5: there is no t-resilient message-passing
protocol for t-set agreement.

Exercise 5.18. Construct a loop ρ : S1 → |K| that corresponds to the edge
loop given by e0 = {v0, v1}, e1 = {v1, v2}, . . ., e` = {v`, v`+1}, where v0 =
v`+1. (Hint: start by dividing the circle into `+ 1 equal parts.)

Exercise 5.19. Consider a model of computation where a colorless task
(I,O,∆) has a protocol (I,P,Ξ) if and only if there is a continuous map

f : | skel1 I| → |O| (5.8.1)

carried by ∆. Prove that it is decidable whether a protocol exists for a
colorless task in this model.

Exercise 5.20. Consider a model of computation where a colorless task
(I,O,∆) has a protocol (I,P,Ξ) if and only if there is a continuous map

f : | skel1 I| → |O| (5.8.2)

carried by ∆. Prove that every loop agreement task is solvable in this model.

Exercise 5.21. Show that for any n,m, and t ≥ 1, there is a loop agreement
task such that any (n + 1)-process t-resilient snapshot protocol that solves
it, requires more than m layers. In more detail, suppose the number of edges
in each path pij of the triangle loop ` = (v0, v1, v2, p01, p12, p20) of the task
is 2m, m ≥ 0. Then any t-resilient snapshot protocol that solves it requires
at least m layers. (Hint: Use Lemma 5.2.3.)

176 CHAPTER 5. SOLVABILITY OF COLORLESS TASKS

BaryAgree(vi: Vertex): set of Vertex
Vi : set of Vertex := {vi}
news: Boolean
for ` := 0 to n+ 1 do // execute n+ 1 layers
do
send(Pi, `, Vi) to all // send view and layer number
count := 0 // collect messages from at least n+ 1− t processes
while count < n+ 1− t do

on receive(Q, `, V) do //accepting only messages from layer `
count := count + 1
if Vi 6= V then

news := true
Vi := Vi ∪ V

if not news and no decision then // at least n+ 1− t collected
decision := Vi // decide but continue to next layer

return decision

Figure 5.12: Layered Barycentric agreement message-passing protocol

Exercise 5.22. Show that the t-resilient single-layer snapshot protocol for
(t + 1)-set agreement protocol of Figure 5.2 still works if we replace the
immediate snapshot with a non-atomic scan, reading the layer’s memory
one word at a time.

Exercise 5.23. Rewrite the protocol of Figure 5.6 to use immediate snap-
shots.

Exercise 5.24. As noted, because message-passing protocols do not use
shared memory, there is less motivation to use layered protocol. Figure 5.12
shows a layered message-passing barycentric agreement protocol. Is it is
correct?

Exercise 5.25. In the adversarial model, suppose we drop the requirement
that faulty sets be closed under inclusion. Show that without this require-
ment, that if all and only sets of n out of n + 1 processes are faulty sets,
then it is possible to solve consensus.

Exercise 5.26. Let F be a faulty set complex with vertices V . Show that a
set of process names S is a survivor set of F if and only if V \ S is a facet
of F .

Chapter 6

Byzantine-Resilient Colorless
Computation

Non Print Material 6. Abstract: We consider the Byzantine failure model,
where a faulty process can display arbitrary, even malicious, behavior. A
faulty process may fall silent, it may also lie about its input, or it may lie
about the information it has received from other processes.

Key words: Byzantine failures, reliable broadcast, witnesses

We now turn our attention from the crash failure model, in which a faulty
process simply halts, to the Byzantine failure model, where a faulty process
can display arbitrary, even malicious, behavior. We will see that the colorless
tasks computability conditions in the Byzantine model are similar to those
in the crash failure model, except that t, the number of failures that can
be tolerated, is substantially lower. Indeed, no process can “trust” any
individual input value it receives from another, because that other process
may be “lying”. A process can be sure an input value is genuine only if it
receives that value from at least t + 1 processes (possibly including itself),
because then at least one of those processes is non-faulty.

6.1 Byzantine failures

In a Byzantine failure model, a faulty process can display arbitrary, even
malicious, behavior. A Byzantine process can lie about its input value, it
can lie about the messages it has received from other processes, it can send

177

178 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

inconsistent messages to non-faulty processes, and it can collude with other
faulty processes. A Byzantine failure-tolerant algorithm is characterized by
its resilience t, the number of faulty processes with which it can cope.

The Byzantine failure model was originally motivated by hardware sys-
tems such as automatic pilots for airplanes or spacecraft, where sensors may
malfunction in complex and unpredictable ways. Rather then making risky
assumptions about the specific ways in which components might fail, the
Byzantine failure model simply assumes that faulty components might fail
in the worst way possible. As before, a faulty process may fall silent, but
it may also lie about its input, or lie about the information it has received
from other processes.

As in the colorless model, a task is defined by a triple (I,O,∆), where
the input and output complexes I and O define the possible input and
output values, and the carrier map ∆ : I → 2O specifies which output value
assignments are legal for which input value assignments. It is important to
understand that ∆ constrains the inputs and outputs of non-faulty processes
only, since a Byzantine process can ignore its input, and choose any output
it likes.

The principal difference between the Byzantine and crash failure models
is that no process can “trust” any individual input value it receives from
another, because that other process may be faulty. A process can be sure an
input value is genuine only if it receives that value from at least t+1 processes
(possibly including itself), because then at least one of those processes is
non-faulty1.

In this chapter, we restrict our attention to tasks (I,O,∆) whose carrier
maps are strict : for all input simplices σ0, σ1 ∈ I,

∆(σ0 ∩ σ1) = ∆(σ0) ∩∆(σ1).

We will see (Theorem 6.5.4) that without this restriction, it may be possible
to solve the task without any processes “learning” any other process’s input.

We will see that the computability conditions for strict tasks in the
Byzantine model are similar to those in the crash failure models, except
that t, the number of failures that can be tolerated, is substantially lower.
Namely, for n + 1 > (dim(I) + 2)t, a strict colorless task (I,O,∆) has a
t-resilient protocol in the asynchronous Byzantine message-passing model if
and only if there is a continuous map

f : | skelt I| → |O|
1A non-faulty process can be sure its own input value is authentic, but it cannot, by

itself, convince any other process to accept that value.

6.2. BYZANTINE COMMUNICATION ABSTRACTIONS 179

carried by ∆. The analogous condition for the crash failure models, given in
Chapter 5 (Theorem 5.2.7) is the same, except that it requires that t < n+1
for read-write memory, and that 2t < n+ 1 for message-passing. Note also
that the crash failure model, unlike the Byzantine failure model, places no
constraints on dim(I), the size (minus 1) of the largest simplex in the input
complex.

A necessary condition for a strict task (I,O,∆) to have a protocol is
that n+ 1 > (dim(I) + 2)t. Informally, it is easy to see why this additional
constraint is required. As noted, a process cannot “trust” any input value
proposed by t or fewer processes, because all the processes that proposed
that value may be lying. The requirement that n+1 > (dim(I)+2)t ensures
that at least one input value will be proposed by at least t + 1 processes,
ensuring that each non-faulty process will observe at least one “trustworthy”
input value.

When analyzing Byzantine failure models, it is natural to start with
message-passing systems, where faulty processes are naturally isolated from
non-faulty processes. Later, we discuss ways to extend Byzantine failures
to shared-memory systems, where we will see that the characterization of
solvability for strict colorless tasks remains essentially the same.

6.2 Byzantine Communication Abstractions

The first step in understanding the asynchronous Byzantine communication
model is to build higher-level communication abstractions. These abstrac-
tions will allow us to reuse, with some modifications, the protocols developed
for the crash failure model.

Communication is organized in asynchronous layers, where a layer may
involve several message exchanges. Messages have the form (P, tag, v) where
P is the sending process, tag is the message type, and v is a sequence of one
or more values. A faulty process can provide arbitrary values for tag and v,
but it cannot forge another process’s name in the first field.

Reliable broadcast is a communication abstraction constructed from sim-
ple message-passing that forces Byzantine processes to communicate consis-
tently with non-faulty processes. A process sends a message to all the others
by calling reliable send, RBSend(P, tag, v), where P is the name of the send-
ing process, tag is a tag, and v a value. A process receives a message by
calling reliable receive, RBReceive(P, tag, v), which sets P to the name of the
sending process, tag to the message’s tag, and v to its value. If fewer than a
third of the processes are faulty, that is, if n+1 > 3t, then reliable broadcast

180 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

1 protocol ReliableBroadcast
2 RBSend(P, v)
3 send(P,Send, v) to all
4

5 RBReceive()
6 upon receive (∗,Ready, Q, v) from at least n+ 1− t processes do
7 return (Q, v)
8

9 background // run forever
10 upon receive (Q,Send, v) from Q do
11

12 if P never sent a message of the form (P,Echo, Q, ∗)
13 send (P,Echo, Q, v) to all
14

15 upon receive (∗,Echo, Q, v) from n+ 1− t processes do
16 if P never sent a message of the form (P,Ready, Q, ∗)
17 send (P,Ready, Q, v) to all
18

19 upon receive (∗,Ready, Q, v) from at least t+ 1 processes do
20 if P never sent a message of the form (P,Ready, Q, ∗)
21 send (P,Ready, Q, v) to all

Figure 6.1: Reliable Broadcast

provides the following guarantees.

Non-Faulty Integrity: If a non-faulty P never reliably broadcasts
(P, tag, v) (by calling RBSend(P, tag, v)), then no non-faulty process
ever reliably receives (P, tag, v) (by calling RBReceive(P, tag, v)).

Non-Faulty Liveness: If a non-faulty P does reliably broadcast (P, tag, v),
then all non-faulty processes will reliably receive (P, tag, v).

Global Uniqueness: If non-faulty processes Q and R reliably receive, re-
spectively, (P, tag, v) and (P, tag′, v′), then the messages are equal
(tag = tag′ and v = v′) even if the sender P is faulty.

Global Liveness: For non-faulty processes Q and R, if Q reliably receives
(P, tag, v) then R will reliably receive (P, tag, v) even if the sender P
is faulty.

6.2. BYZANTINE COMMUNICATION ABSTRACTIONS 181

Figure 6.1 shows the protocol for reliable broadcast. In figures and proofs,
we use “*” as a wildcard symbol to indicate an arbitrary process name.

1. Each process P broadcasts its message v, labeled with the Send tag
(Line 3).

2. The first time a process receives a Send message from P (Line 12), it
broadcasts v with an Echo tag,

3. the first time a process receives n − t + 1 Echo messages for v from
Q (Line 16), it broadcasts Q and v with a Ready tag,

4. the first time a process receives t + 1 Ready messages for v from Q
(Line 20), it broadcasts Q and v with a Ready tag, and

5. the first time a process receives n− t+ 1 Ready messages for v from
Q (Line 6), (Q, v) is reliably delivered to that process.

Lemma 6.2.1. The reliable broadcast protocol satisfies non-faulty integrity.

Proof. Suppose non-faulty P reliably receives (Q, Input, v) from a non-
faulty Q. P must have received at least n+ 1− t (∗,Ready, Q, v) messages,
so at least n − 2t + 1 processes sent (∗,Echo, Q, v) messages. Let R be
the first non-faulty process to send (R,Echo, Q, v). Any Echo messages
R received from processes other than Q came from faulty processes, so it
cannot have received more than t, so it did not send its message at Line 10.
Instead, it must have received (Q, Input, v) directly from Q, implying that
Q sent the message.

Lemma 6.2.2. The reliable broadcast protocol satisfies non-faulty liveness.

Proof. If P broadcasts (P, Input, v), that message will eventually be re-
ceived by n+ 1− t non-faulty processes. Each one will send (∗,Echo, P, v)
to all processes, and each will eventually receive n+1−t such messages, and
send (∗,Ready, Q, v) to all processes. Each non-faulty process will eventu-
ally receive n+1−t of these messages, and reliably receive (P, Input, v).

Lemma 6.2.3. The reliable broadcast protocol satisfies global uniqueness.

Proof. The uniqueness tests at Lines 16 and 20 ensure that any pro-
cess that broadcasts (∗,Echo, P, v) or (∗,Ready, P, v) will not broadcast
(∗,Echo, P, v′) or (∗,Ready, P, v) where v 6= v.

Lemma 6.2.4. The reliable broadcast protocol satisfies global liveness.

182 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

getQuorum(tag : Tag): Set of Message
M := ∅
while |M | < n+ 1− t or Trusted(M) = ∅ do
upon RBReceive(Q, tag, v) do
M := M ∪ {(Q, tag, v)}

return M

Figure 6.2: Assemble a Byzantine quorum of messages.

Proof. Suppose non-faulty Q reliably receives (P, Input, v) from P , who
may be faulty, and letR be another non-faulty process. Qmust have received
at least n+1− t (∗,Ready, P, v) messages, and at least n−2t+1 ≥ t+1 of
these came from non-faulty processes. If at least t+ 1 non-faulty processes
send (∗,Ready, P, v) messages, then every non-faulty process will eventually
receive them, and will rebroadcast them at Line 21, ensuring that every
non-faulty process will eventually receive at least n+ 1− t (∗,Ready, P, v)
messages, causing that message to be reliably received by every non-faulty
process.

As in the crash failure model, our first step is to assemble a quorum of
messages. As noted earlier, a process can recognize an input as genuine only
if it receives that input from t + 1 distinct processes. Let M be a set of
messages reliably received during a protocol execution. We use Good(M)
to denote the set of input values that appear in messages of M that were
broadcast by non-faulty processes, and Trusted(M) to denote the set of
values that appear in t + 1 distinct messages. The getQuorum() method
shown in Figure 6.2 waits until (1) it has received messages from at least
n+1−t processes and (2) it recognizes at least one trusted value. It is safe to
wait for the first condition to hold because the process will eventually receive
messages from a least n + 1 − t non-faulty processes. It is safe to wait for
the second condition to hold because the requirement that n+ 1 > (d+ 1)t
ensures that some value is represented at least t + 1 times among the non-
faulty processes’ inputs. The process must wait for both conditions because
it may receive n + 1 − t messages without any individual value appearing
t+ 1 times.

Lemma 6.2.5. Each call to getQuorum() eventually returns, and, for any
non-faulty process Pi that receives message set Mi,

|Mi| ≥ n+ 1− t and Trusted(Mi) 6= ∅.

6.3. BYZANTINE SET AGREEMENT 183

Proof. Since n+1 > 3t, the processes can perform reliable broadcast. Notice
that the n+ 1− t messages sent by the non-faulty processes can be grouped
by their values:

n− t+ 1 =
∑

v∈Good(M)

|(P, v) : {(P, v) ∈M,P is non-faulty} |.

By way of contradiction, assume every value v in Good(M) was reliably
broadcast by at most t non-faulty processes. It follows that n + 1 − t ≤
|Good(M)|·t, which contradicts the hypothesis. Hence, at least one value in
Good(M) was reliably broadcast by more than t+1 non-faulty processes. By
the non-faulty liveness of the reliable broadcast, such a value will eventually
be reliably received by all non-faulty processes.

Lemma 6.2.6. After executing getQuorum(), for any non-faulty processes Pi
and Pj , |Mi \Mj | ≤ t.

Proof. If |Mi \Mj | > t, then Mj missed more than t messages in M , the
messages reliably broadcast in layer r. However, this contradicts the fact
that |Mj | ≥ n + 1 − t, where Mj was assembled by the reliable broadcast
and receive protocols.

6.3 Byzantine Set Agreement

SetAgree(v): value
RBSend(Pi, Input, v)
M : Set of Message := getQuorum(Input)
return min Trusted(M)

Figure 6.3: Byzantine k-set agreement protocol: code for Pi.

Theorem 6.3.1. The SetAgree() protocol shown in Figure 6.3 solves k-set
agreement when dim(σ) = d > 0, k > t, and n + 1 > (d + 2)t. At
most d + 1 distinct values are reliably broadcast by non-faulty processes,
so |Good(M)| ≤ d+ 1. As no more than t messages are missed by any non-
faulty Pi, the value chosen is among the (t + 1) least-ranked input values.
Because k > t, the value chosen is among the k least-ranked inputs.

184 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

1 BaryAgree(v: vertex): simplex
2 Ri : array 0.. n of Set of Message := (∅, . . . , ∅)
3 Mi : Set of Message := ∅
4 Bi : Set of Process := ∅
5

6 RBSend(Pi, Input, v)
7 Mi := getQuorum(Input)
8 while |Bi| < n+ 1− t do
9 upon RBReceive(Pj ,Report,Mj) do

10 Ri[j] := Mj

11 Bi := {P` : Ri[`] = Mi, 0 ≤ ` ≤ n}
12 return Trusted(Mi)
13

14 background // run forever
15 upon RBReceive(Pj , Input, u) do
16 Mi := Mi ∪ {u}
17 RBSend(Pi,Report,Mi)

Figure 6.4: Byzantine barycentric agreement protocol for Pi.

6.4 Byzantine Barycentric Agreement

In the Byzantine barycentric agreement protocol shown in Figure 6.4, each
process broadcasts an Input message with its input value (Line 6). In
the background, it collects the input vertices from the messages it receives
(Line 15) and forwards them to all processes in a Report message (Line 17).
Each Pi keeps track of a set Bi of buddies: processes that have reported the
same set of vertices (Line 11)). The protocol terminates when Bi contains
at least n+ 1− t processes (Line 8).

Lemma 6.4.1. The sequence of Mi message sets reliably broadcast by Pi
in Report messages is monotonically increasing, and all processes reliably
receive those simplices in that order.

Proof. Each Pi’s simplex σi is monotonically increasing by construction, and
so is the sequence of reports it reliably broadcasts. Because channels are
FIFO, any other non-faulty process reliably receives those reports in the
same order.

6.5. BYZANTINE TASK SOLVABILITY 185

Lemma 6.4.2. Protocol BaryAgree() guarantees that non-faulty processes Pi
and Pj have (i) |Mi ∩Mj | ≥ n+ 1− t, (ii) Trusted(Mi ∩Mj) 6= ∅, and (iii)
Mi ⊆Mj or Mj ⊆Mi.

Proof. Call Qi the set of processes whose reports are stored in Ri at some
layer `. Since all reports are transmitted via reliable broadcast, and every
non-faulty process collects n+1−t reports, |Qi\Qj | ≤ t with |Qi| ≥ n+1−t,
which implies that |Qi ∩ Qj | ≥ n + 1 − 2t. In other words, any non-faulty
processes have n+ 1− 2t > t+ 1 buddies in common, including a non-faulty
Pk. Therefore, Mi = R′k and Mj = R′′k, where R′k and R′′k are reports sent
by Pk possibly at different occasions.

Since the setMk is monotonically increasing, eitherR′k ⊆ R′′k orR′′k ⊆ R′k,
guaranteeing property (iii). Both R′k and R′′k contain Rk, the first report sent
by Pk, by Lemma 6.4.1. Lemma 6.2.5 guarantees that |Rk| ≥ n+ 1− t and
Trusted(Rk) 6= ∅, implying properties (i) and (ii).

Theorem 6.4.3. Protocol BaryAgree() solves barycentric agreement when n+
1 > (dim(I) + 2)t,.

Proof. By Lemma 6.4.2, non-faulty processes Pi and Pj , we have that Mi ⊆
Mj or Mj ⊆ Mi, and also that Trusted(Mi ∩ Mj) 6= ∅. It follows that
Trusted(Mi) ⊂ Trusted(Mj), or vice-versa, so the sets of values decided,
which are faces of σ, are ordered by containment.

6.5 Byzantine Task Solvability

Here is the main theorem for Byzantine colorless tasks.

Theorem 6.5.1. For n+1 > (dim(I)+2)t, a strict colorless task (I,O,∆) has
a t-resilient protocol in the asynchronous Byzantine message-passing model
if and only if there is a continuous map

f : | skelt I| → |O|

carried by ∆.

Proof. Map Implies Protocol. Given such a map f , by Theorem 3.7.5, f
has a simplicial approximation

φ : BaryN skelt I → O,

for some N > 0, also carried by ∆. Here is the protocol.

186 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

1. Call the Byzantine k-set agreement protocol, for k = t + 1, choosing
vertices on a simplex in skelt I.

2. Call the Byzantine barycentric agreement protocol N times to choose
vertices in BaryN skelt I.

3. Use φ : BaryN skelt I → O as the decision map.

Because φ and f are carried by ∆, non-faulty processes starting on vertices
of σ ∈ I finish on vertices of τ ∈ ∆(σ). Also, since dim(σ) ≤ dim(I), the
preconditions are satisfied for calling the protocols in each step.

Protocol Implies Map. Given a protocol, we argue by reduction to
the crash failure case. By Theorem 5.2.7, if there is a t-resilient protocol in
the crash failure model, then there is a continuous map f : | skelt(I)| → |O|
carried by ∆. But any t-resilient Byzantine protocol is also a t-resilient
crash-failure protocol, so such a map exists even in the more demanding
Byzantine model.

Remark 6.5.2. Because there is no t-resilient message-passing t-set agree-
ment protocol in the crash-failure model, there is no such protocol in the
Byzantine failure model.

If n + 1 ≤ (dim(I) + 2)t, there do exist non-trivial tasks, but they
make very weak guarantees. Consider the following k-weak agreement task.
Starting from input simplex σ, each Pi chooses a set of vertices Vi with the
following properties.

• Each Vi includes at least one valid input value: |σ ∩ Vi| > 0, and

• At most 2t+ 1 vertices are chosen: | ∪i Vi| ≤ 2t+ 1.

This task has a simple one-round protocol: each process reliably broadcasts
its input value, reliably receives values from n+ 1− t processes, and chooses
the least t + 1 values among the values it receives. It is easy to check that
this task is not monotonic, and there are executions in which no process ever
learns another’s input value (each process knows only that its set contains
a valid value).

We now show that any strict task that has a protocol when n + 1 <
(dim(I) + 2)t is trivial in the following sense.

Definition 6.5.3. A strict colorless task (I,O,∆) is trivial if there is a sim-
plicial map δ : I → O carried by ∆.

In particular, a trivial task can be solved without communication.

6.6. BYZANTINE SHARED MEMORY 187

Theorem 6.5.4. If a strict colorless task (I,O,∆) has a protocol for n+ 1 ≤
(dim(I) + 2)t, then that task is trivial.

Proof. Let {v0, . . . , vd} be a simplex of I. Consider an execution where each
process Pi has input vi mod d, all faulty processes behave correctly, and each
process in S = {P0, . . . , Pn−t} finishes the protocol with output value ui
without receiving any messages from T = {Pn+1−t, . . . , Pn}. Let

Sj = {P ∈ S|P has input vj} .

Note that because n+ 1− t < t(d+ 1), each |Sj | < t+ 1.

Note that if ui ∈ ∆(σi), and ui ∈ ∆(σ′i), then ui ∈ ∆(σi ∩ σ′i), so σ has
a unique minimal face σi such that ui ∈ ∆(σi). If σi = {vi} for all i, then
the task is trivial, so for some i, there is vj ∈ σi, for i 6= j.

Now consider the same execution except that the processes in Sj and
T all start with input vi, but the processes in Sj are faulty and pretend to
have input vj . To Pi, this modified execution is indistinguishable from the
original, so Pi still chooses ui, implying that ui ∈ ∆(σi \{vj}), contradicting
the hypothesis that σ′ has minimal dimension.

6.6 Byzantine Shared Memory

Because the study of Byzantine faults originated in systems where controllers
communicate with unreliable devices, most of the literature has focused on
message-passing systems. Before we can consider how Byzantine failures
might affect shared-memory protocols, we need to define a reasonable model.

We will assume that the shared memory is partitioned among the pro-
cesses, so that each process can write only to its own memory locations,
although it can read from any memory location. Without this restriction,
a faulty process could overwrite all of memory, and any kind of non-trivial
task would be impossible. In particular, a faulty process can write anything
to its own memory, but cannot write to the memory belonging to a non-
faulty process. As in the crash-failure case, non-faulty processes can take
immediate snapshots, writing a value to memory and in the very next step
taking an atomic snapshot of an arbitrary region of memory.

A natural way to proceed is to try to adapt the shared memory k-set
agreement (Figure 5.2) and barycentric agreement protocols from the crash-
failure model. It turns out, however, there are obstacles to such a direct
attack. As usual in Byzantine models, a process can “trust” an input value
only if it is written by at least t+ 1 distinct processes. It is straightforward

188 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

to write a getQuorum() protocol that mimics the message-passing protocol of
Figure 6.2, and a k-set agreement protocol that mimics the one of Figure 6.3
(see Exercise 6.7).

The difficulty arises when trying to solve barycentric agreement. Suppose
there are four processes P,Q,R, and S, where S is faulty. P has input value
u and Q has input value v. Suppose P and Q each writes its value to shared
memory, S writes u, and P takes a snapshot. P sees two copies of u and one
of v, so it accepts u and rejects v. Now S, who is faulty, overwrites its earlier
value of u with v. Q then takes a snapshot, sees two copies of v and one of
u, so it accepts v and rejects u. Although P and Q have each accepted sets
of valid inputs, their sets are not ordered by containment, even though they
were assembled by atomic snapshots!

Instead, the simplest approach to barycentric agreement is to simulate
the message-passing model in the read-write model. Each process has an
array whose ith location holds the ith message it sent, and ⊥ if that message
has not yet been sent. When P wants to check for a message from Q, it reads
through Q’s array from the last location it read, “receiving” each message
it finds, until it reaches an empty location. We omit the details, which are
straightforward.

Theorem 6.6.1. For n + 1 > (dim(I) + 2)t, a strict colorless task (I,O,∆)
has a t-resilient protocol in the asynchronous Byzantine read-write model if
and only if there is a continuous map

f : | skelt I| → |O|

carried by ∆

Proof. Map Implies Protocol. Given such a map f , by Theorem 6.5.1,
the task has a t-resilient message-passing protocol. This protocol can be
simulated in read-write memory as described above.

Protocol Implies Map. If the task has a t-resilient read-write protocol
in the Byzantine model, then it has such a protocol in the crash-failure
model, and the map exists by Theorem 5.2.7.

6.7 Chapter Notes

Much of the material in this chapter is adapted from Mendes, Tasson, and
Herlihy [117]. Barycentric agreement is related to lattice agreement [14, 54],
and to multidimensional ε-approximate agreement as studied by Mendes and
Herlihy [116] and to vector consensus, as studied by Vaidya and Garg [145],

6.8. EXERCISES 189

both in the case of byzantine message-passing systems. In the 1-dimensional
case, byzantine approximate agreement protocols were considered first by
Dolev et al. [47] and by Abraham et al. [1].

The k-weak consensus task mentioned in Section 6.5 was called to the
authors’ attention in a private communication from Zohir Bouzid and Petr
Kuznetsov.

The Byzantine failure model was first introduced by Lamport, Shostak,
and Pease [109], in the form of the Byzantine Generals problem, a prob-
lem related to consensus. Most of the literature in this area has focused
on the synchronous model (see the survey by Fischer [57]), not the (more
demanding) asynchronous model considered here.

Our reliable broadcast protocol is adapted from Bracha [28] and from
Srikanth and Toueg [143]. The stable vectors protocol is adapted from Attiya
et al. [9].

Malkhi et al. [114] propose several computational models where pro-
cesses that communicate via shared objects (instead of messages) can dis-
play Byzantine failures. Their proposals include “persistent” objects that
cannot be overwritten and access control lists. De Prisco et al. [43] consider
the k-set agreement task in a variety of asynchronous settings. Their notion
of k-set agreement, however, uses weaker notions of validity than the one
used here.

6.8 Exercises

Exercise 6.1. Consider two possible Byzantine failure models. In the first,
up to t faulty processes are chosen in the initial configuration, while in the
second, all processes start off non-faulty, but up to t of them are dynamically
designated as faulty in the course of the execution. Prove that these two
models are equivalent.

Exercise 6.2. Consider a Byzantine model where message delivery is reliable,
but the same message can be delivered more than once, and messages may
be delivered out of order. Explain why that model is or is not equivalent to
the one we use.

Exercise 6.3. Prove that the protocol of Figure 6.3 is correct.

Exercise 6.4. In the crash-failure model, show how to transform any t-
resilient message-passing protocol into a t-resilient read-write protocol.

Exercise 6.5. In the asynchronous message-passing model with crash fail-
ures, show that a barycentric agreement protocol is impossible if a majority
of the processes can crash (2t ≥ n+ 1).

190 CHAPTER 6. BYZANTINE COLORLESS COMPUTATION

Exercise 6.6. In the asynchronous message-passing model with crash fail-
ures, show that a barycentric agreement protocol is impossible if a process
stops forwarding messages when it chooses an output value.

Exercise 6.7. Write explicit protocols in the Byzantine read-write model
for getQuorum() and k-set agreement based on the protocols of Figures 5.2
and 5.9). Explain why your protocols are correct.

Exercise 6.8. Suppose the reliable broadcast protocol were shortened to
deliver a message as soon as it receives t + 1 Echo messages from other
processes. Describe a scenario where this shortened protocol fails to satisfy
the reliable broadcast properties.

Exercise 6.9. Let (I,P,Ξ) be a layered Byzantine protocol in which pro-
cesses communicate by reliable broadcast. Show that:

• Ξ is not monotonic: if σ ⊂ τ , then

Ξ(σ) 6⊆ Ξ(τ).

• For any σ0, σ1 in I,

Ξ(σ0) ∩ Ξ(σ1) ⊆ Ξ(σ0 ∩ σ1).

Exercise 6.10. Which of the decidability results of Section 5.6 apply to strict
tasks in the Byzantine message-passing model?

Exercise 6.11. Suppose we replace the send and receive statements in the
protocols shown in Figures 5.5.1 and 5.8 with reliable send and receive state-
ments. Explain why the result is not a correct Byzantine (t+ 1)-set agree-
ment protocol.

Chapter 7

Simulations and Reductions

Non Print Material 7. Abstract: In complexity theory, it is common to
prove results by reduction from one problem to another. For example, text-
books typically prove from first principles that satisfiability (SAT) is NP-
complete. To show that another problem is also NP-complete, it is enough
to show that SAT (or some other problem known to be NP-complete) re-
duces to the problem in question. Reductions are appealing because they
are often technically simpler than proving NP-completeness directly.

Reductions can also be applied in distributed computing. This chapter
describes a general technique for showing that a protocol in one model can
be transformed into a protocol in another model. In addition, we describe
a specific transformation, called BG-simulation.

Key words: BG-simulation, reduction, simulation.

We present here a general combinatorial framework to translate impossibil-
ity results from one model of computation to another. Once one has proved
an impossibility result in one model, one can avoid re-proving that result
in related models by relying on reductions. The combinatorial framework
explains how the topology of the protocol complexes in the two models have
to be related, to be able to obtain a reduction. We also describe an oper-
ational framework, consisting of an explicit distributed simulation protocol
that implements reductions. While this protocol provides algorithmic in-
tuition behind the combinatorial simulation framework, and may even be
of practical interest, a key insight behind this chapter is that there is of-
ten no need to construct such explicit simulations. Instead, we can treat
simulation as a task like any other, and apply the computability conditions

191

192 CHAPTER 7. SIMULATIONS AND REDUCTIONS

of Chapter 5 to show when a simulation protocol exists. These existence
conditions are given in terms of the topological properties of the models’
protocol complexes, instead of devising pair-wise simulations.

7.1 Motivation

Modern distributed systems are highly complex, yet reliable and efficient,
thanks to heavy use of abstraction layers in their construction. While at
the hardware level processes may communicate through low level shared-
register operations, at programmer uses complex shared objects to manage
concurrent threads. Also from the theoretical perspective, researchers have
devised algorithms to implement higher level of abstraction shared objects
from lower level of abstraction objects. We have already encountered this
technique. For example, to build larger set agreement boxes from smaller
ones (Exercise 5.6), or to implement snapshots from single-writer/multi-
reader registers (Exercise 4.12). We say snapshots can be simulated in a
wait-free system where processes communicate using single-writer/single-
reader registers. Simulations are useful also to deduce the relative power of
abstractions; in this case, snapshots are as powerful as single-writer/single-
reader registers, but not more powerful. In contrast, a consensus shared
black box cannot be simulated in a wait-free system where processes com-
municate using only read/write registers, as we have already seen.

Software systems are built in a modular fashion, using this simulation
technique, of assuming a black box for a problem has been constructed,
and using it to further extend the system. However, this technique is also
useful to prove impossibility results. In complexity theory, it is common to
prove results by reduction from one problem to another. For example, to
prove that there is not likely to exists a polynomial algorithm for a problem,
one may try to show that the problem is NP-complete. Textbooks typically
prove from first principles that satisfiability (SAT) is NP-complete. To show
that another problem is also NP-complete, it is enough to show that SAT
(or some other problem known to be NP-complete) reduces to the problem
in question. Reductions are appealing because they are often technically
simpler than proving NP-completeness directly.

Reductions can also be applied in distributed computing for impossibility
results. For example, suppose we know that a colorless task has no wait-free
layered immediate snapshot protocol, and we want to know whether it has
a t-resilient protocol, for some t < n. One way to answer this question is
to assume that an (n + 1)-process, t-resilient protocol exists, and devise a

7.2. COMBINATORIAL SETTING 193

wait-free protocol where t + 1 processes “simulate” the t-resilient (n + 1)-
process protocol execution in the following sense: the (t + 1)-processes use
the code of the protocol to simulate an execution of the (n + 1)-processes.
They assemble mutually consistent final views of an (n+1)-process protocol
execution during which at most t processes may fail. Each process halts
after choosing the output value that would have been chosen by one of the
simulated processes. Because the task is colorless, any process can choose
any simulated process’s output, so this simulation yields a wait-free (t+ 1)-
process layered protocol, contradicting the hypothesis that no such protocol
exists. Instead of proving directly that no t-resilient protocol exists, we
reduce the t-resilient problem to the previously solved wait-free problem.

In general, we can use simulations and reductions to translate impossi-
bility results from one model of computation to another. As in complexity
theory, once one has proved an impossibility result in one model, one can
avoid re-proving that result in related models by relying on reductions. One
possible problem with this approach is that known simulation techniques,
such as the BG-simulation protocol presented in Section 7.4, are model-
specific, and a new, specialized simulation protocol must be crafted for each
pair of models. Moreover, given two models, how do we know if there is a
simulation, before starting to try to design one?

The key insight behind this chapter is that there is often no need to
construct explicit simulations. Instead, we can treat simulation as a task
like any other, and apply the computability conditions of Chapter 5 to show
when a simulation protocol exists. These existence conditions are given are
in terms of the topological properties of the models’ protocol complexes, and
likely to be easier to determine in general than devising pair-wise simula-
tions. Once it is known that a simulation exists, one may then concentrate
on finding an efficient one, that might be of practical interest.

7.2 Combinatorial Setting

We have considered so far several models of computation. Each one is given
by a set of process names, Π, a communication medium, such as shared
memory or message-passing, a timing model, such as synchronous or asyn-
chronous, and a failure model, given by an adversary, A. For each model of
computation, once we fix a colorless input complex I, we may consider the
set of final views of a protocol. We have the combinatorial definition of a
protocol (Definition 4.2.2), as a triple (I,P,Ξ) where I is an input complex,
P is a protocol complex (of final views), and Ξ : I → 2P is an execution

194 CHAPTER 7. SIMULATIONS AND REDUCTIONS

P ′ P
φ
- P ′ P

φ
- P ′

I
∆
-

Ξ
′

-

O

δ′

?
I

Ξ

6

Ξ
′

-

I

Ξ

6

∆
-

Ξ
′

-

O

δ′

?

solves simulates reduces

Figure 7.1: Carrier maps are shown as dashed arrows, simplicial maps as
solid arrows. On the left, P ′ via δ′ solves the colorless task (I,O,∆). In the
middle, P simulates P ′ via φ. On the right, P via the composition of φ and
δ′ solves (I,O,∆).

map. For each I, a model of computation may be represented by all the
protocols on I.

Definition 7.2.1. A model of computation M on an input complex I is a
(countably infinite) family of protocols (I,Pi,Ξi), i ≥ 0.

Consider for instance the (n + 1)-process, colorless layered immediate
snapshot protocol of Chapter 4. If we take the wait-free adversary and
any input complex I, the model Mn

WF (I) obtained consists of all protocols
(I,Pr,Ξr), r ≥ 0, corresponding to having the layered immediate snapshot
protocol executed r layers, where Pr is the complex of final configurations,
and Ξr to corresponding carrier map. Similarly, taking the t-resilient layered
immediate snapshot protocol of Figure 5.1 for n + 1 processes and input
complex I, Mn

t (I) consists of all protocols (I,Pr,Ξr), r ≥ 0, corresponding
to executing the protocol r layers.

Definition 7.2.2. A model of computation M solves a colorless task (I,O,∆)
if there is a protocol in M that solves that task.

Recall that a protocol (I,P,Ξ) solves a colorless task (I,O,∆) if there
is a simplicial map δ : P → O carried by ∆. Operationally, in each
execution, processes end up with final views that are vertices of the same
simplex τ of P. Moreover, if the input simplex of the execution is σ, then
τ ∈ Ξ(σ). Each process finishes the protocol in a local state that is a vertex
of τ , and then applies δ to choose an output value. These output values
form a simplex in ∆(σ).

7.2. COMBINATORIAL SETTING 195

For example, the model MWF solves the iterated barycentric agreement
task (I,BaryN I,BaryN), for any N > 0. To see this, we must verify
that there is some rN , such that the protocol (I,PrN ,ΞrN) ∈ MWF , solves
(I,BaryN I,BaryN).

A reduction is defined in terms of two models of computation, a model R
(called the real model) and a model V (called the virtual model). They have
the same input complex I, but their process names, protocol complexes,
and adversaries may differ. The real model reduces to the virtual model if
the existence of a protocol in the virtual model implies the existence of a
protocol in the real model.

For example, the t-resilient layered immediate snapshot model Mn
t (I)

for n+ 1 processes trivially reduces to the wait-free model Mn
WF (I). Oper-

ationally it is clear why. If a wait-free n + 1-process protocol solves a task
(I,O,∆) it tolerates failures by n processes. The same protocol solves the
task if only t out of the n+ 1 may crash. Combinatorially, the definition of
reduction is as follows.

Definition 7.2.3. Let I be an input complex and R, V be two models on I.
The (real) model R reduces to the (virtual) model V, if, for any colorless
task T with input complex I, if there is a protocol for T in V, there is a
protocol for T in R.

We typically demonstrate reduction using simulation.

Definition 7.2.4. Let (I,P,Ξ) be a protocol in R and (I,P ′,Ξ′) a protocol
in V. A simulation is a simplicial map

φ : P → P ′,

such that for each simplex σ in I, φ maps Ξ(σ) to Ξ′(σ).

The operational intuition is that each process executing the real proto-
col chooses a simulated execution in the virtual protocol, where each virtual
process has the same input as some real process. However, from a combina-
torial perspective, it is sufficient to show that there exists a simplicial map
φ : P → P ′ as above. Note that φ may be collapsing: real processes with
distinct views may choose the same view of the simulated execution.

The left-hand diagram of Figure 7.1 illustrates how a protocol solves a
task. Along the horizontal arrow, ∆ carries each input simplex σ of I to
a subcomplex of O. Along the diagonal arrow, a protocol execution, here
denoted Ξ′, carries each σ to a subcomplex of its protocol complex, denoted
by P ′, which is mapped to a subcomplex of O along the vertical arrow
by the simplicial map δ′. The diagram semi-commutes: the subcomplex

196 CHAPTER 7. SIMULATIONS AND REDUCTIONS

of O reached through the diagonal and vertical arrows is contained in the
subcomplex reached through the horizontal arrow.

Simulation is illustrated in the middle diagram of Figure 7.1. Along the
diagonal arrow, Ξ′ carries each input simplex σ of I to a subcomplex of its
protocol complex P ′. Along the vertical arrow, Ξ carries each input simplex
σ of I to a subcomplex of its own protocol complex P, which is carried to
a subcomplex of P ′ by the simplicial map φ. The diagram semi-commutes:
the subcomplex of P ′ reached through the vertical and horizontal arrows is
contained in the subcomplex reached through the diagonal arrow. Thus, we
may view simulation as solving a task. If we consider (I,P ′,Ξ′) as a task,
where I as input complex and P ′ as output complex, then P solves this task
with decision map φ carried by Ξ′.

Theorem 7.2.5. If every protocol in V can be simulated by a protocol in R,
then R reduces to V.

Proof. Recall that if V has a protocol (I,P ′,Ξ′) for a colorless task (I,O,∆),
then there is a simplicial map δ′ : P ′ → O carried by ∆, that is, δ′(Ξ′(σ)) ⊆
∆(σ), for each σ ∈ I. If model R simulates model V, then for any protocol
P ′ ∈ V, R has a protocol (I,P,Ξ) in R and a simplicial map φ : P → P ′,
such that for each simplex σ in I, φ(Ξ(σ)) ⊆ Ξ′(σ).

Let δ be the composition of φ and δ′. To prove that (I,P,Ξ) solves
(I,O,∆) with δ, we need to show that δ(Ξ(σ)) ⊆ ∆(σ). By construction,

δ′(φ(Ξ(σ))) ⊆ δ′(Ξ′(σ)) ⊆ ∆(σ),

so R also solves (I,O,∆).

Theorem 7.2.5 depends only on the existence of a simplicial map. Our
focus in the first part of this chapter is to establish conditions under which
such maps exist. In the second part, we will construct one operationally.

7.3 Applications

In Chapters 5 and 6, we gave necessary and sufficient conditions for solving
colorless tasks in a variety of computational models. The table in Figure 7.2
lists these models, parameterized by an integer t ≥ 0. We proved that the
colorless tasks that can be solved by these models are the same, are those
colorless tasks (I,O,∆) for which there is a continuous map

f : | skelt I| → |O|

7.3. APPLICATIONS 197

Processes Fault-Tolerance Model

t+ 1 wait-free layered immed. snapshot

n+ 1 t-resilient layered immed. snapshot

n+ 1 wait-free (t + 1)-set layered immed.
snapshot

n+ 1 t-resilient for 2t < n+ 1 message-passing

n+ 1 A-resilient, min core size t+ 1 layered immed. snapshot
with adversary

n+ 1 t-resilient for n+ 1 > (dim I+
2)t

Byzantine

Figure 7.2: Models that solve the same colorless tasks, for each t ≥ 0.

carried by ∆. Another way of proving this result is showing that these
protocols are equivalent, in the sense simulation sense of Definition 7.2.4.

Lemma 7.3.1. Consider any input complex I, and any two models, R and
V with t ≥ 0. For any protocol (I,P ′,Ξ′) in V there is a protocol (I,P,Ξ)
in R, and a simulation map

φ : P → P ′,

carried by Ξ′.

Here are some of the implications of this lemma, together with Theo-
rem 7.2.5.

• A (t+1)-process wait-free model can simulate an (n+1)-process wait-
free model, and vice-versa. We will give an explicit algorithm for this
simulation in the next section.

• If 2t > n + 1, an (n + 1)-process t-resilient message-passing model
can simulate an (n+ 1)-process t-resilient layered immediate snapshot
model, and vice-versa.

• Any adversary model can simulate any other adversary model whose
minimum core size is the same or larger. In particular, all adversaries
with the same minimum core size are equivalent.

• An adversarial model with minimum core size k can simulate a wait-
free k-set layered immediate snapshot model.

• A t-resilient Byzantine model can simulate a t-resilient layered imme-
diate snapshot model if t is sufficiently small: n+ 1 > (dim(I) + 2)t.

198 CHAPTER 7. SIMULATIONS AND REDUCTIONS

1 protocol SafeAgree
2 shared level : array [0.. n] of int := {0,...,0}
3 shared announce: array [0.. n] of value := {⊥, ..., ⊥}
4

5 // my snapshot of the level array
6 local snap: array [0.. n] of int
7

8 method propose(input: value)
9 announce[i] := input // make input public

10 level [i] := 1 // enter unsafe zone
11 snap = snapshot(level)
12 if (∃ j | level [j] = 2) then
13 level [i] := 0 // leave unsafe zone
14 else
15 level [i] := 2 // leave unsafe zone
16

17 method resolve(): value
18 snap = snapshot(level)
19 if (∃ j | level [j] = 1) then
20 return ⊥
21 else
22 return announce[j] for minimal j such that level [j] = 2

Figure 7.3: Safe Agreement protocol: code for Pi.

7.4 BG-Simulation

In this section, we construct an explicit shared-memory protocol by which
n + 1 processes running agains adversary A can simulate m + 1 processes
running against adversary A′, where A and A′ have the same minimum core
size. We call this protocol BG-simulation, after its inventors, Elizabeth
Borowsky and Eli Gafni. As noted, the results of the previous section imply
that this simulation exists, but the simulation itself is an interesting example
of a concurrent protocol.

7.4.1 Safe Agreement

The heart of the BG-simulation is the notion of safe agreement. Safe agree-
ment is similar to consensus, except it is not wait-free (nor it is a colorless

7.4. BG-SIMULATION 199

task, see Chapter 11). Instead, there is an unsafe region during which a halt-
ing process will block agreement. This unsafe region encompasses a constant
number of steps. Formally, safe agreement satisfies these conditions:

• validity : all processes that decide, decide some process’s input.

• agreement : all processes that decide, decide the same value.

To make it easy for processes to participate in multiple such protocols si-
multaneously, the safe agreement illustrated in Figure 7.4.1 is split into two
methods: propose(v) and resolve (). When a process joins the protocol with
input v, it calls propose(v) once. When a process wants to discover the pro-
tocol’s result, it calls resolve (), which returns either a value, or ⊥, if the
protocol has not yet decided. A process may call resolve () multiple times.

The processes share two arrays: announce[] holds each process’s input,
and level [] holds each process’s level, either 0, 1, or 2. Each Pi starts
by storing its input in announce[i], making that input visible to the other
processes (Line 9). Next, Pi raises its level from 0 to 1 (Line 10), entering the
unsafe region. It then takes a snapshot of the level [] array (Line 11). If any
other process is at level 2 (Line 12), it leaves the unsafe region by resetting
its level to 0 (Line 13). Otherwise, it leaves the unsafe region by advancing
its level to 2 (Line 15). This algorithm uses only simple snapshots, because
there is no need to use immediate snapshots.

To discover whether the protocol has chosen a value, and what that
value is, Pi calls resolve (). It takes a snapshot of the level [] array (Line 18).
If there is a process still at level 1, then the protocol is unresolved, and
the method returns ⊥. Otherwise, Pi decides the value announced by the
processes at level 2 whose index is least (Line 22).

Lemma 7.4.1. At Line 18, once Pi observes that level [j] 6= 1 for all j, then
no process subsequently advances to level 2.

Proof. Let k be the least index such that level [k] = 2. Suppose for the sake
of contradiction that P` later sets level [`] to 2. Since level [`] = 1 when
the level is advanced, P` must have set level [`] to 1 after Pi’s snapshot,
implying that P`’s snapshot would have seen that level [k] is 2, and it would
have reset its level to 0, a contradiction.

Lemma 7.4.2. If resolve () returns a value v distinct from ⊥, then all such
values are valid and they agree.

Proof. Every value written to announce[] is some process’s input, so validity
is immediate. Agreement follows from Lemma 7.4.1.

200 CHAPTER 7. SIMULATIONS AND REDUCTIONS

If a process fails in its unsafe region, it may block another process from
eventually returning a value different from ⊥, but only if it fails in this
region.

Lemma 7.4.3. If all processes are non-faulty, then all calls to resolve () even-
tually return a value distinct from ⊥.

Proof. When each process finishes propose(), its level is either 0 or 2, so
eventually no process has level 1. By Lemma 7.4.1, eventually no processes
sees another at level 1.

7.4.2 The Simulation

1 protocol BGSimulation
2 shared mem: array[0..R][0.. m] of value
3 shared agree: array [0.. R][0.. m] of SafeAgree
4

5 local pc: array [0.. m] of int := {0,...,0}
6

7 method run(input: value): state // return simulated view
8 for j := 0 to m do // set simulated input to mine
9 agree [0][j]. propose(input)

10 do forever
11 for j := 0 to m do // simulate Qj
12 r := pc[j] // next simulated layer
13 v := agree[r][j]. resolve () // resolve last layer ’ s snapshot
14 if v 6= ⊥ then // resolved ?
15 mem[r][j] := v // write snapshot
16 if pc[j] = R then // if simulated state is final ...
17 return v // ... return it , otherwise
18 if arrived (r , j) then // survivor set present?
19 snap := snapshot(mem[r]) // take snapshot
20 view := values(snap) // discard process names
21 agree[r+1][j]. propose(view) // propose it
22 pc[j] := pc[j] + 1 // step complete

Figure 7.4: BG-Simulation Protocol: code for Pi.

For BG-simulation, the real model R is an A-resilient snapshot protocol
with n + 1 processes, P0, . . . , Pn (it is not layered, see chapter notes). The

7.4. BG-SIMULATION 201

1 method arrived(layer : int , i : int): Boolean
2 shared bitmap: array [0.. R][0.. m] of Boolean := {false ,..., false}
3

4 bitmap[r][i] := true
5 snap = snapshot(bitmap[r])
6 return {p | snap[p] = true} is a survivor set for A’

Figure 7.5: Testing whether a simulated survivor set has reached a layer.

virtual model V is the A′-resilient layered snapshot protocol with m + 1
processes, Q0, . . . , Qm. They have the same colorless input complex I, and
both adversaries have the same minimum core size t + 1. For any given
R-layered protocol (I,P ′,Ξ′) in V, we need to find a protocol (I,P,Ξ) in R
and a simplicial map

φ : P → P ′,

such that for each simplex σ in I, φ maps Ξ(σ) to Ξ′(σ). We take the code of
protocol (I,P ′,Ξ′) (as in Figure 5.5), and construct (I,P,Ξ) explicitly, with
a shared-memory protocol by which the n+1 processes can simulate the code
of (I,P ′,Ξ′). Operationally, in the BG-simulation, an A-resilient, (n + 1)-
process protocol produces output values corresponding to final views an R-
layered, A′-resilient, (m + 1)-process protocol. The processes Pi start with
input values which form some simplex σ ∈ I. They run against adversary
A, and end up with final views in P. If Pi has final view v, then Pi produces
as output a view φ(v), which could have been the final view of a process Qj
in an R-layer execution of the virtual model under adversary A′, with input
values taken from σ.

The BG-simulation code is shown in Figure 7.4. In the simulated com-
putation, m + 1 processes Q0, . . . , Qm share a two-dimensional memory
mem[0..R][0..m]. At layer 0, the state of each Qi is its input. At layer
r, for 0 ≤ r ≤ R, Qi writes its current state to mem[r][i], then waits until
the set of processes that have written to mem[r][·] constitutes a survivor set
for A. Qi then takes a snapshot of mem[r][·], which becomes its new state.
After completing R steps, Qi halts.

This computation is simulated by n + 1 processes P0, . . . , Pn. Each Pi
starts the protocol by proposing its own input value as the input initially
written to memory by each Qj (Line 8). Because the task is colorless, the
simulation is correct even if simulated inputs are duplicated or omitted.
Thus, if σ is the (colorless) input simplex of the n+ 1 processes, then each

202 CHAPTER 7. SIMULATIONS AND REDUCTIONS

simulated Qj will take a value from σ as input, and altogether, the simplex
defined by the m+ 1 processes’ inputs will be a face of σ.

In the main loop (Line 10), Pi tries to complete a step on behalf of
each Qj in round-robin order. For each Qj , Pi tries to resolve the value
Qj wrote to memory during its previous layer (Line 13). If the resolution
is successful, Pi writes the resolved value on Qj ’s behalf to the simulated
memory (Line 15). Although multiple processes may write to the same
location on Qj ’s behalf, they all write the same value. When Pi observes
that all R simulated layers have been written by simulated survivor sets
(Line 16), then Pi returns the final state of some Qj .

Otherwise, if Pi did not return, Pi checks (Line 18) whether a survivor set
for A′ of simulated processes has written values for that layer (Figure 7.5).
If so, it takes a snapshot of those values, and proposes that snapshot (after
discarding process names, since the simulated protocol is colorless) as Qj ’s
state at the start of the next layer. Recall that adversaries A, A′ have
minimum core size t+1. Thus, when Pi takes a snapshot in Line 19, at least
m + 1 − t entries in mem[r][∗] have been written, and hence the simulated
execution is A′-resilient.

Theorem 7.4.4. The BG simulation protocol is correct if s, the maximum
survivor set size for the adversaries A, A′ is less than or equal to m+ 1− t.

Proof. At most t of the n + 1 processors can fail in the unsafe zone of the
safe agreement protocol, blocking at most t out of the m + 1 simulated
processes, leaving m+ 1− t simulated processes capable of taking steps. If
s ≤ m + 1 − t, there are always enough unblocked simulated processes to
form a survivor set, ensuring that eventually, some process completes each
simulated layer.

7.5 Conclusions

In this chapter we have seen the two faces of distributed computing once
more, algorithmic and combinatorial topology. If we know a task is unsolv-
able in a certain model R and we want to show it is unsolvable in another
model, V, then it is natural to try to reduce model R to model V, instead
of proving the impossibility result from scratch in V, especially if model V
seems more difficult to analyze than model R. The end result of a reduction
is a simplicial map from protocols in R to protocols in V. We can produce
such a simplicial map operationally, using a protocol in R, or we can show
it exists, reasoning about the topological properties of the two models.

7.6. CHAPTER NOTES 203

The first reduction studied was for k-set agreement. It was known that
it is unsolvable in a (real) wait-free model Mn

WF even when k = n, for n+ 1
processes. Proving directly that k-set agreement is unsolvable in a (virtual)
t-resilient model, Mn

t , when k ≤ t, seemed more complicated. Operationally,
one assumes (for contradiction) that there is a k-set agreement protocol in
Mn
t , and considers an explicit code for the protocol. Then, a generic protocol

in Mn
WF is used to simulate one by one the instructions of the code, to obtain

a solution for k-set agreement in Mn
WF .

This operational approach has several benefits, including the algorithmic
insights discovered while designing a simulation protocol, and its potential
applicability for transforming solutions from one model of computation to
another. However, to understand the possible reductions among a set of
N models of computation, we would have to devise O(N2) explicit pair-
wise simulations, each simulation intimately connected with the detailed
structure of two models. Each simulation is likely to be a protocol of non-
trivial complexity, requiring a non-trivial operational proof.

By contrast, the combinatorial approach described in this chapter re-
quires analyzing the topological properties of the protocol complexes for
each of the N models. Each such computation is a combinatorial exercise
of the kind that has already been undertaken for many different models
of computation. This approach is more systematic, and, arguably, reveals
more about the underlying structure of the models than explicit simulation
algorithms. Indeed, in the operational approach, once a simulation is found,
we learn also why it existed, but this new knowledge is not easy to formalize;
it is hidden inside the correctness proof of the simulation protocol.

We note that the definitions and constructions of this chapter, both
the combinatorial and the operational, work only for colorless tasks. For
arbitrary tasks, we can also define simulation in terms of maps between
protocol complexes, but these maps require additional structure (they must
be color-preserving, mapping real to virtual processes in a one-to-one way).
See Chapter 14.

7.6 Chapter Notes

Borowsky and Gafni [23] introduced the BG-simulation to extend the
wait-free set agreement impossibility result to the t-resilient case. Later,
Borowsky, Gafni, Lynch, and Rajsbaum [27] formalized and studied the
simulation in more detail.

Borowsky, Gafni, Lynch and Rajsbaum [27] identified the tasks for which

204 CHAPTER 7. SIMULATIONS AND REDUCTIONS

the BG-simulation can be used as the colorless tasks. This class of tasks was
introduced in Herlihy and Rajsbaum [82, 83] under the name convergence
tasks, to study questions of decidability.

Borowsky and Gafni [25] and later Chaudhuri and Reiners [41] used
the BG-simulation to define and study the set agreement partial order [81].
Gafni and Kuznetsov [66] used the simulation to reduce solvability of col-
orless tasks under adversaries to wait-free solvability (see Exercise 7.3).
Imbs and Raynal [99] consider a variant of the BG-simulation where pro-
cesses communicate through objects that can be used by at most x pro-
cesses to solve consensus, as well as read/write registers. More broadly,
BG-simulation can be used to relate the power of different models to solve
colorless tasks (see Exercise 7.10). Gafni, Guerraoui and Pochon [61] use
BG-simulation to derive a lower bound on the round complexity of k-set
agreement in synchronous message-passing systems.

Gafni [63] extends the BG-simulation to certain colored tasks, and Imbs
and Raynal [98] discuss this simulation further.

The BG-simulation protocol we described not layered (though the simu-
lated protocol is layered). This protocol can be transformed into a layered
protocol (see Chapter 14 and the next paragraph). Herlihy, Rajsbaum and
Raynal [89] present a layered safe agreement protocol (see Exercise 7.6).

Other simulations [26, 68] address the computational power of layered
models, where each shared object can be accessed only once. We consider
such simulations, between models with the same sets of processes, but dif-
ferent communication mechanisms, in Chapter 14.

Chandra [35] uses a simulation argument to prove the equivalence of
t-resilient and wait-free consensus protocols using shared objects.

Exercise 7.1 is based on Afek, Gafni, Rajsbaum, Raynal and Travers [4],
where reductions between simultaneous consensus and set agreement are
described.

7.7 Exercises

Exercise 7.1. In the k-simultaneous consensus task a process has an input
value for k independent instances of the consensus problem and is required
to decide in at least one of them. A process decides a pair (c, d), where c
is an integer between 1 and k, and if two processes decide pairs (c, d) and
(c′, d′), with c = c′, then d = d′, and d was proposed by some process to
consensus instance c and c′. State formally the k-simultaneous consensus
problem as a colorless task, and draw the input and output complex for

7.7. EXERCISES 205

k = 2. Show that k-set agreement and k-simultaneous consensus (both with
sets of possible input values of the same size) are wait-free equivalent (there
is a read/write layered protocol to solve one using objects that implement
the other).

Exercise 7.2. Prove that if there is no protocol for a task using immediate
snapshots, then there is no protocol using simple snapshots.

Exercise 7.3. Using the BG-simulation, show that a colorless task is solvable
by an A-resilient layered snapshot protocol if and only if it is solvable by
a t-resilient layered immediate snapshot protocol, where t is the size of the
minimum core of A (and in particular by a t + 1 process wait-free layered
immediate snapshot protocol).

Exercise 7.4. Explain why the wait-free safe agreement protocol does not
contradict the claim that consensus is impossible in the wait-free layered
immediate snapshot memory.

Exercise 7.5. The BG-simulation uses safe agreement objects which are not
wait-free. Suppose consensus objects are available. What would be the
simulated executions if in the code of the BG-simulation consensus objects
are used instead of safe agreement objects?

Exercise 7.6. Describe an implementation of safe agreement using two layers
of wait-free immediate snapshots. Explain why your protocol is not colorless.

Exercise 7.7. Prove Lemma 7.3.1.

Exercise 7.8. In the BG-simulation, what is the maximum number of snap-
shots a process can take to simulate an R-round layered protocol?

Exercise 7.9. For the BG-simulation, show that the map φ, carrying final
views of the simulating protocol to final views of the simulated protocol, is
onto: every simulated execution is produced by some simulating execution.

Exercise 7.10. Consider Exercise 5.6, where we are given a “black box” ob-
ject that solves k-set agreement for m + 1 processes. Define a wait-free
layered model that has access to any number of such boxes, as well as read-
/write registers. Use simulations to find to which of the models considered
in this chapter it is equivalent, in the sense that the same colorless tasks can
be solved.

Exercise 7.11. We have seen that it is undecidable whether a colorless task
has a t-resilient layered snapshot protocol for t ≥ 2 (Corollary 5.6.12). Use
simulations to conclude undecidability results in other models. More gener-
ally, suppose that in a virtual model V colorless task solvability is undecid-
able. State a theorem that allows to conclude undecidability in a real model
R.

206 CHAPTER 7. SIMULATIONS AND REDUCTIONS

Part III

General Tasks

207

Chapter 8

Read-Write Protocols for
General Tasks

Non Print Material 8. Abstract: So far we have focused on protocols for
colorless tasks, tasks in which we care only about the task’s sets of input
and output values, not which processes are associated with which values.
While many important tasks are colorless, not all of them are. because it
matters which process takes which value. While we have been able to analyze
colorless tasks using very simple tools from combinatorial topology, we will
see that understanding more general kinds of tasks will require slightly more
sophisticated concepts and techniques.

Key words: general tasks, protocol complex, protocol, task.

So far we have focused on protocols for colorless tasks, tasks in which we care
only about the task’s sets of input and output values, not which processes
are associated with which values. While many important tasks are colorless,
not all of them are. Here is a simple example of a “colored” task. In the
get-and-increment task, if n+1 processes participate, then each must choose
a unique integer in the range 0, . . . , n. (If a single process participates, it
chooses 0, if two participate, one chooses 0 and the other chooses 1, and so
on.) This task is not colorless, because it matters which process takes which
value. In this chapter we will see that the basic framework for tasks and
protocols extends easily to study general tasks. However, we will have to
defer the computability analysis to later chapters. While we have been able
to analyze colorless tasks using simple tools from combinatorial topology,

209

210 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

// There are N layers
shared mem: array[0..N−1][0..n] of Value
protocol ColorlessLayered (input : Value): Value

view: Value := input // initial view is input value
for ` := 0 to N − 1 do
immediate

mem[`][i] := view
snap := snapshot(mem[`][∗])

view := snap
return δ(view) // apply decision map to final view

Figure 8.1: Layered Immediate Snapshot Protocol: pseudo-code for Pi.

we will see that understanding more general kinds of tasks will require more
sophisticated concepts and techniques.

8.1 Overview

The underlying operational model is the same as the one described in Chap-
ter 4. The notion of processes, configurations, and executions are all un-
changed.

As with colorless protocols, computation is split into two parts: a task-
independent full-information protocol, and a task-dependent decision. In the
task-independent part, each process repeatedly communicates its view to the
others, receives their views in return, and updates its own state to reflect
what it has learned. When enough communication layers have occurred,
each process chooses an output value by applying a task-dependent decision
map to its final view. In contrast to colorless protocols, each process keeps
track not only of the set of views it has received, but also which process sent
which view.

In more detail, each process executes the a layered immediate snapshot
protocol of Figure 8.1. This protocol is very similar to the one in Figure 4.1,
except that a process does not discard the process names when it constructs
its view. Initially, Pi’s view is its input value. During layer `, Pi performs
an immediate snapshot: it writes its current view to mem[`][i], and in the
very next step takes a snapshot of that layer’s row, mem[`][∗]. mem[`][∗].
Instead of discarding process names, Pi takes as its new view its most recent
immediate snapshot. As before, after completing all layers, Pi chooses a

8.2. TASKS 211

decision value by applying a deterministic decision map δ to its final view.
An execution produced by a layered immediate snapshot protocol is called
a layered execution.

Now that processes may behave different according to which process
has which input value, we can consider task specifications that encompass
process names, as in the get-and-increment example earlier. We first ex-
tend colorless tasks to general tasks, and then we extend the combinatorial
notions of protocols and protocol complexes to match.

8.2 Tasks

Recall that there are n + 1 processes, with names taken from Π, V in is a
domain of input values, and V out a domain of output values.

The principal difference between colorless tasks and general tasks is that
for general tasks, the vertices of the input and output complexes are labeled
with process names, and the task carrier map preserves process names.

Definition 8.2.1. A (general) task is a triple (I,O,∆), where

• I is a pure chromatic input complex, colored by Π, and labeled by V in,
such that each vertex is uniquely identified by its color together with
its label;

• O is a pure chromatic output complex, colored by Π and labeled by
V out, such that each vertex is uniquely identified by its color together
with its label;

• ∆ is a name-preserving (chromatic) carrier map from I to O.

If v is a vertex, we let name(v) denote its color (usually a process
name) and view(v) its label (usually that process’s view). The first two
conditions of Definition 8.2.1 are equivalent to requiring that the functions
(name, view) : V (I) → Π × V in and (name, view) : V (O) → Π × V out be
injective.

Here is how to use these notions to define a specific task. In the get-
and-increment task described at the start of this chapter, one imagines the
processes share a counter, initially set to zero. Each participating process
increments the counter, and each process returns as output the counter’s
value immediately prior to the increment. If k + 1 processes participate,
each process chooses a unique value in the range [k].

This task is an example of a fixed-input task, where V in contains only one
element, ⊥. If in addition the process names are Π = [n], the input complex

212 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

0

01 20

12

01 20

0

Figure 8.2: Output complex for the three-process get-and-increment task.
(Note that some vertices depicted as distinct are actually the same.)

consists of a single n-simplex and all its faces, whose ith vertex is labeled with
(i,⊥). Figure 8.2 shows the output complex for the three-process get-and-
increment task. The output complex O consists of six triangles representing
the distinct ways one can assign 0, 1, 2 to three processes. The color of a
vertex (white, gray, or black) represents its name. Note that for ease of
presentation, some of the vertices drawn as distinct are actually the same.

In general, the facets of the output complex of this task are indexed by
all permutations of the set [n], and the carrier map ∆ is given by

∆(σ) = {τ ∈ O | name(τ) ⊆ name(σ), and value(τ) ⊆ {0, . . . ,dimσ}} .

We will review many more examples of tasks in Section 8.3.

8.3. EXAMPLES OF TASKS 213

0 0

11 11

00

0 0

1

0 0

1

1

1

1

Figure 8.3: Input complexes for two and three processes with binary inputs.
Here and elsewhere, vertex colors indicate process names and numbers in-
dicate input values.

Mathematical Note 8.2.2. The output complex for the get-and-increment
task is a well-known simplicial complex, which we call a rook complex. In the
rook complex Rook (n+1, N+1), simplices correspond to all rook placements
on an (n+ 1)× (N + 1) chess-board so that no two rooks can capture each
other (using n+ 1 rooks). For get-and-increment, O = Rook (n+ 1, n+ 1).
The topology of these complexes is complicated and not generally known.

8.3 Examples of Tasks

In this section, we describe a number of tasks, some of which will be familiar
from earlier chapters on colorless tasks. Expressing these tasks as general
tasks casts new light on their structures. Some of these tasks cannot be

214 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

expressed as colorless tasks, and could not be analyzed using our earlier
concepts and mechanisms.

8.3.1 Consensus

Recall that in the consensus task, each process starts with an input value.
All processes must agree on a common output value, which must be some
process’s input value. In the binary consensus task, the input values can
be either 0 or 1. Formally, there are n+ 1 processes. The input complex I
has vertices labeled (P, v), where P ∈ Π, v ∈ {0, 1}. Furthermore, for any
subset S ⊆ Π, S = {P0, . . . , P`}, and any collection of values {v0, . . . , v`}
from {0, 1}, the vertices (P0, v0) · · · (P`, v`) form an `-simplex of I, and such
simplices are precisely all the simplices of I. Figure 8.3 shows two examples.

Mathematical Note 8.3.1. In binary consensus, the input complex I is the
join of n + 1 simplicial complexes IP , for P ∈ Π. Each IP consists of two
vertices, (P, 0) and (P, 1), and no edges. This complex is homeomorphic to
an n-dimensional sphere, and we sometimes call it a combinatorial sphere.

There is a geometrically descriptive way to view this complex embedded
in (n+1)-dimensional Euclidean space, with axes indexed by names from Π.
For every P ∈ Π, we place the vertex (P, 1) on the P ’s axis at coordinate 1,
and vertex (P, 0) on at coordinate −1. The simplices fit together to form a
boundary of a polytope known as a crosspolytope.

The output complex O for binary consensus consists of two disjoint n-
simplices. One simplex has n + 1 vertices labeled (P, 0), for P ∈ Π and
the other one has n + 1 vertices labeled (P, 1), for P ∈ Π. This complex is
disconnected, with two connected components - a fact which will be crucial
later.

Finally, we describe the carrier map ∆ : I → 2O. Let σ =
{(P0, v0), . . . , (P`, v`)} be a simplex of I. The subcomplex ∆(σ) is defined
by the following rules.

1. If v0 = · · · = v` = 0, then ∆(σ) contains the `-simplex with vertices
labeled by (P0, 0), . . . , (P`, 0), and all its faces;

2. If v0 = · · · = v` = 1, then ∆(σ) contains the `-simplex with vertices
labeled by (P0, 1), . . . , (P`, 1), and all its faces;

8.3. EXAMPLES OF TASKS 215

3. if {v0, . . . , v`} contains both 0 and 1, then ∆(σ) contains the two dis-
joint `-simplices: one has vertices (P0, 0), . . . , (P`, 0), and the other has
vertices labeled (P0, 1), . . . , (P`, 1), together with all their faces.

It is easy to check that ∆ is a carrier map. It is clearly rigid and name-
preserving. To see that it satisfies monotonicity, note that if σ ⊂ τ then the
set of process names in σ is contained in the set of process names of τ , and
similarly for their sets of values. Adding vertices to σ can only increase the
set of simplices in ∆(σ), implying that ∆(σ) ⊂ ∆(τ).

Although the carrier map ∆ is monotonic, it is not strict. For example,
if σ = {(0, 0), (1, 1)}, and τ = {(1, 1), (2, 0)}. then σ ∩ τ = {(1, 1)}, and

∆(σ ∩ τ) = ∆({(1, 1)}) = {(1, 1)} .

But ∆(σ) has facets

{(0, 0), (1, 0)} and {(0, 1), (1, 1)} ,

and ∆(τ) has facets

{(1, 0), (2, 0)} and {(1, 1), (2, 1)} .

It follows that
∆(σ) ∩∆(τ) = {{(1, 0)} , {(1, 1)}} ,

and so
∆(σ ∩ τ) ⊂ ∆(σ) ∩∆(τ).

If there can be more than two possible input values, we call this task
(general) consensus. As before, there are n+ 1 processes with names taken
from [n], that can be assigned input values from a finite set, which we can
assume without loss of generality to be [m], for m > 0. The input complex
I has (m+ 1)(n+ 1) vertices, each labeled by process name and value. Any
set of vertices having different process names forms a simplex. This complex
is pure of dimension n.

Mathematical Note 8.3.2. In topological terms, the input complex for con-
sensus with m + 1 possible input values is a join of n + 1 copies of sim-
plicial complexes IP , for P ∈ Π. Each IP consists of the m + 1 vertices
(P, 0), . . . , (P,m), and no higher-dimensional simplices. This complex arises
often enough we give it a special name: it is a pseudosphere. and it will be
discussed in more detail in Chapter 13.

216 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

Recall the input complex for binary consensus is a topological n-sphere,
which is a manifold (every (n − 1)-simplex is a face of exactly two n-
simplices). In the general case, the input complex is not a manifold, since
an (n − 1)-dimensional simplex is a face of exactly m n-simplices. Never-
theless, I is fairly standard and its topology (meaning homotopy type) is
well-known, and as we shall see, it is similar to that of an n-dimensional
sphere.

The output complex O, however, remains simple, consisting of m + 1
disjoint simplices of dimension n, each corresponding to a possible com-
mon output value. The carrier map ∆ is defined as follows. Let σ =
{(P0, v0), . . . , (P`, v`)} be an `-simplex of I. The subcomplex ∆(σ) is the
union of the simplices τ0∪· · ·∪τ`, where τi = {(P0, vi), . . . , (P`, vi)} ∈ O, for
all i = 0, . . . , `. Note that two simplices in this union are either disjoint or
identical. Again, the carrier map ∆ is rigid and name-preserving. Further-
more, monotonicity is satisfied, as growing the simplex can only increase the
number of simplices in the union.

8.3.2 Approximate Agreement

In the binary approximate agreement task, each process is again assigned
input 0 or 1. If all processes start with the same value, they must all decide
that value, and otherwise they must decide values that lie between 0 and 1,
all within ε of each other, for a given ε > 0.

As in Section 4.2.2, we assume for simplicity that t = 1
ε is a natural

number, and allows values 0, 1
t ,

2
t , . . . ,

t−1
t , 1 as output values for the

n + 1 processes. The input complex I is the same as in the case of binary
consensus, namely the combinatorial n-sphere. The output complex O here
is a bit more interesting. It consists of (n+1)(t+1) vertices, indexed by pairs
(P, vt), where P ∈ Π, and v ∈ [t]. A set of vertices {(P0,

v0
t), . . . , (P`,

v`
t)}

forms a simplex if and only if the following two conditions are satisfied:

• the P0, . . . , P` are distinct;

• for all 0 ≤ i < j ≤ `, we have |vi − vj | ≤ 1.

Mathematical Note 8.3.3. It is easy to describe the topology of the output
complex for approximate agreement. For i = 0, . . . , t− 1, let Oi denote the
subcomplex of O consisting of all simplices spanned by vertices (0, it), . . . ,

8.3. EXAMPLES OF TASKS 217

(n, it), (0, i+1
t), . . . , (n, i+1

t). As noted before, each Oi is a combinatorial
n-sphere. By the definition of O we have O = O0 ∪ · · · ∪ Ot−1. So O is
a union of t copies of combinatorial n-spheres. Clearly, the spheres Oi and
Oj share an n-simplex if |i− j| = 1, and are disjoint otherwise.

The concrete geometric visualization of the complex O is as follows.
Start with t disjoint copies of combinatorial n-spheres O0, . . . , Ot−1. Glue
O0 with O1 along the simplex ((0, 1

t), . . . , (n,
1
t)), glue O1 with O2 along the

simplex ((0, 2
t), . . . , (n,

2
t)), and so on. Note that, for each i = 1, . . . , t − 1,

the simplices σi = ((0, it), . . . , (n,
i
t)) and σi+1 = ((0, i+1

t), . . . , (n, i+1
t)) are

opposite inside of Oi. So one can view O as a stretched n-sphere, whose
inside is further subdivided by t− 1 n-disks into t chambers.

If we are interested in homotopy type only, then we can do a further
simplification. It is a well-known fact in topology that shrinking a simplex
to a point inside of a simplicial complex does not change its homotopy
type. Accordingly, we can also shrink any number of disjoint simplices. In
particular, we can shrink the simplices σ1, . . . , σt−1 to points. The result is
a chain of n-spheres attached to each other sequentially at opposite points.
One can then let the attachment points slide on the spheres. This does not
change the homotopy type, and in the end we arrive at a space obtained
from t copies of an n-sphere by picking a point on each sphere and then
gluing them all together. We obtain what is called a wedge of t copies of
n-spheres.

Finally, we describe the carrier map ∆. Take a simplex σ in I, σ =
((P0, v0), . . . , (P`, v`)). We distinguish two different cases.

1. If v0 = · · · = v` = v, then ∆(σ) is the simplex spanned by the vertices
(P0, v), . . . , (P`, v), together with all its faces.

2. If the set {v0, . . . , v`} contains two different values, then ∆(σ) is the
subcomplex of O consisting of all the vertices whose name label is in
the set {P0, . . . , P`}, together with all the simplices of O spanned by
these vertices.

8.3.3 Set Agreement

Approximate agreement is one way of relaxing the requirements of the con-
sensus task. Another natural relaxation is the k-set agreement task. Like
consensus, each process’s output value must be some process’s input value.

218 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

1 11 1

11 1 1

0 0 22

0

0

0 2

0

22

2

Figure 8.4: Output complex for 3-process, 2-set agreement.

Unlike consensus, which requires that all processes agree, k-set agreement
imposes the more relaxed requirement that that no more than k distinct
output values be chosen. Consensus is 1-set agreement.

In an input n-simplex, each vertex can be labeled arbitrarily with a value
from [m], so the input complex is the same pseudosphere as for general
consensus. In an output n-simplex, each vertex is labeled with a value from
[m], but the simplex can be labeled with no more than k distinct values.
The carrier map ∆ is defined by the following rule: for σ ∈ I, ∆(σ) is the
subcomplex of O consisting of all τ ∈ O, such that

• value(τ) ⊆ value(σ),

• name(τ) ⊆ name(σ),

• | value(τ)| ≤ k.

Figure 8.4 shows the output complex for three-process 2-set agreement. This
complex consists of three combinatorial spheres “glued together” in a ring.

8.3. EXAMPLES OF TASKS 219

0

11

00

1

00

Figure 8.5: Output complex: 2-process weak symmetry breaking.

It represents all the ways one can assign values to three processes so that
all three processes are not assigned distinct values.

8.3.4 Chromatic Agreement

We will find that one of the most useful tasks is the chromatic agreement
task. Here, processes start on the vertices of a simplex σ in an arbitrary
input complex, I, and they decide on the vertices of a single simplex in the
standard chromatic subdivision Chσ (as defined in Section 3.6.3). Formally,
the chromatic agreement task with input complex I is the task (I,Ch I,Ch),
where in triple’s last element, the chromatic subdivision operator Ch is
interpreted as a carrier map.

220 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

8.3.5 Weak Symmetry Breaking

In the weak symmetry breaking task, each process is assigned a unique input
name from Π, and the participating processes must sort themselves into two
groups by choosing as output either 0 or 1. In any final configuration in
which all n + 1 processes participate, at least one process must choose 0,
and at least one must choose 1. That is, the output complex O consists of
all simplices with at most n+ 1 vertices, of the form {(P0, v0) . . . , (P`, v`)},
with Pi ∈ Π, vi ∈ {0, 1}, and if ` = n, then not all vi are equal. The
part of the output complex for 2-process weak symmetry breaking, shown
in Figure 8.5, is for three specific names, represented with colors white, gray
and black. It is an annulus, a combinatorial disk with a hole in the center
where the all-zero simplex is missing. One may also think of this complex
as a combinatorial cylinder in 3-dimensional Euclidean space, where the
all-zero and the all-one simplices are missing.

If the names of the processes are taken from a space of names Π with
n + 1 names, say Π = [n], weak symmetry breaking has a trivial protocol:
the process with name 0 decides 0, all others decide 1. The task becomes
interesting when |Π| is large, because no fixed decisions based on input
names will work. We study this task in the next chapter.

The weak symmetry-breaking task is formally specified as follows. The
input complex I has |Π| vertices, labeled by pairs (P,⊥), where P ∈ Π.
A set of vertices {(P0,⊥) . . . , (P`,⊥)} forms a simplex if and only if the Pi
are distinct and it contains at most n+1 vertices. We assume Π = [N], with
N � n. Each input simplex represents a way of assigning distinct names
from [N] to the n+ 1 processes.

The carrier map ∆ : I → 2O is defined as follows:

∆(σ) = {τ ∈ O | name(τ) ⊆ name(σ)}.

Mathematical Note 8.3.4. The input complex for weak-symmetry breaking
is the n-skeleton of an N -simplex. The output complex O is a combinatorial
cylinder: the standard combinatorial n-sphere with two opposite n-simplices
removed.

8.3.6 Renaming

In the renaming task, as in the weak symmetry-breaking task, processes are
issued unique input names taken from [N], where N � n. In this task,
however, they must choose unique output names taken from [M], where M

8.4. PROTOCOLS 221

is typically much smaller than N . Here, too trivial solutions where processes
decide output names based on their input names without communication are
not possible, when N � n. We discuss this task, and its relation with weak
symmetry breaking, in Chapter 12.

Formally, the input complex for renaming is the same as the input com-
plex for weak symmetry-breaking. The output complex consists of simplices
with distinct output values taken from [M]. This complex is known in math-
ematics as the rook complex. The carrier map ∆ is given by

∆(σ) = {τ ∈ O | name(τ) ⊆ name(σ)}.

8.4 Protocols

Definition 8.4.1. A protocol for n+ 1 processes is a triple (I,P,Ξ) where

• I is a pure n-dimensional chromatic simplicial complex colored with
names from Π and labeled with values from V in, such that each vertex
is uniquely identified by its color together with its label;

• P is a pure n-dimensional chromatic simplicial complex colored with
names from Π and labeled with values from Views, such that each
vertex is uniquely identified by its color together with its label;

• Ξ : I → 2P is a chromatic strict carrier map, such that P = ∪σ∈IΞ(σ).

Definition 8.4.2. Assume we are given a task (I,O,∆) for n+ 1 processes,
and a protocol (I,P,Ξ). We say that the protocol solves the task if there
exists a chromatic simplicial map δ : P → O, called the decision map,
satisfying

δ(Ξ(σ)) ⊆ ∆(σ), (8.4.1)

for all σ ∈ I.

Treating configurations as simplices gives us an elegant vocabulary for
comparing global states. Two configurations σ0 and σ1 of a complex are
indistinguishable to a process if that process has the same view in both. As
simplices, σ0 and σ1 share a face, σ0 ∩ σ1, that contains the processes for
which σ0 and σ1 are indistinguishable. The higher the dimension of this
intersection, the more “similar” the configurations.

Just as for colorless tasks, each process executes a layered immediate
snapshot protocol with a two-dimensional array mem[`][i], where row ` is
shared only by the processes participating in layer `, and column i is written

222 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

P, {(P,p)}

Q, {(P,p), (Q,q)}

α

R, {(P,p),(Q,q),(R,r)}Q, {(P,p),(Q,q),(R,r)}

α

ββ

P, {(P,p),(Q,q),(R,r)}{(p) (q) ()}

Figure 8.6: Single-layer immediate snapshot executions for three processes.
In this figure and others, we use vertex colors to stand for process names.
Here P is black, Q is gray, and R is white. Note that this complex is is a
standard chromatic subdivision.

only by Pi. Initially, Pi’s view is its input value. During layer `, Pi executes
an immediate snapshot, writing its current view to mem[`][i], and in the very
next step, taking a snapshot of that layer’s row. Finally, after completing
all layers, Pi chooses a decision value by applying a deterministic decision
map δ to its final view, Unlike the protocols we used for colorless tasks,
the decision map does not operate on colorless configurations. Instead, the
decision map may take process names into account.

8.4.1 Single-Layer Immediate Snapshot Protocols

Figure 8.6 shows the protocol complex for three-process, single-layer imme-
diate snapshot protocol. Here, process P (black) has input p, Q (gray) has
input q, and R (white) has input r. In the vertex marked at the top, P ’s im-

8.4. PROTOCOLS 223

mediate snapshot returns only its own value, while in the vertex marked on
the right edge, Q’s immediate snapshot returns both its own value and P ’s
value, while at each vertex marked in the center, each immediate snapshot
returns all three processes’ values.

The 2-simplex marked α corresponds to the fully-sequential execution
where P , Q, and R take steps sequentially,. It consists of three vertices,
each labeled with process state at the end of this execution. The black
vertex is labeled with (P, {(P, p)}), the gray vertex (Q, {(P, p), (Q, q)}), and
the white vertex (R, {(P, p), (Q, q), (R, r)}).

Similarly, the 2-simplex marked as β corresponds to the fully-concurrent
execution all three processes take steps together. Because the fully-
sequential and fully-concurrent executions are indistinguishable to R, these
two simplices share the white vertex labeled (R, {(P, p), (Q, q), (R, r)}).

Figure 8.6 reveals why we choose to use immediate snapshots as our basic
communication pattern: the protocol complex for a single-input simplex σ
is a subdivision of σ. In fact, this complex is none other than Chσ, the
standard chromatic subdivision of σ, defined in Section 3.6.3. Also it is clear
that the protocol complex for a single-input simplex σ is a manifold : each
(n− 1)-dimensional simplex is contained in either one or two n-dimensional
simplices. We will show in Chapter 16 that protocol complexes for layered
immediate snapshot executions are always subdivisions of the input complex.

What happens if we add one more initial configuration? Suppose R
can have two possible inputs, r and s. The input complex consists of two
2-simplices (triangles) that share an edge. Figure 8.7 shows the resulting
protocol complex, where some of the vertices are labeled with processes’
final views. (As one would expect, the protocol complex is the chromatic
subdivision of two 2-simplices that share an edge.) R has two vertices cor-
responding to solo executions, where it completes the protocol before any
other process has taken a step. In each vertex, it sees only its own value, at
one vertex r and the other s.

The vertices along the subdivided edge between the subdivided triangles
correspond to executions in which P and Q finish the protocol before R
takes a step. These final states are the same whether R starts with input
r or s, which is the formal way of saying that “P and Q never learn R’s
input”.

We are ready to define precisely the one-layer immediate snapshot pro-
tocol.

Definition 8.4.3. The one-layer layered immediate snapshot protocol
(I,P,Ξ) for n+ 1 processes is

224 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

R, {(R,s)}P, {(P,p)}

Q, {(P,p),(Q,q)}

P, {(P,p),(Q,q)}

Q, {(Q,q)}R, {(R,r)}

Figure 8.7: Protocol complex for two inputs and one layer (selected final
views are labeled).

• The input complex I can be any pure n-dimensional chromatic sim-
plicial complex colored with names from Π and labeled with V in.

• The carrier map Ξ : I → 2P sends each simplex σ ∈ I to the subcom-
plex of final configurations of single-layer immediate snapshot execu-
tions where all and only the processes in σ participate.

• The protocol complex P, is the union of Ξ(σ), over all σ ∈ I.

It is easy to check that the one-layer immediate snapshot protocol is
indeed a protocol, according to Definition 8.4.1. One needs to verify the
three items in this definition; the most interesting is stated as a lemma:

Lemma 8.4.4. Ξ is a chromatic strict carrier map, with P = ∪σ∈IΞ(σ).

The carrier map Ξ describes the structure of P, identifying parts of P
where processes run without hearing from other processes. For example, for

8.4. PROTOCOLS 225

P Q

I

P,Ø PQPQ Ø,Q

Ch(I)

PØ, Ø PØ,PQ PQ,PQ PQ, Ø PQ, ØQ

Ch2(I)
PØ,PQ Ø,PQ PQ,PQ PQ, ØQ Ø, ØQ

Ch2(I)

Figure 8.8: Input and protocol complexes for two processes: zero, one, and
two layers. Each input vertex is labeled with that process’s name, and
each protocol complex vertex is labeled with the values received from each
process, or ∅ if no value was received.

a vertex q ∈ I, Ξ(q) is a vertex q′ ∈ P, with name(q) = name(q′) = P , and
view(q′) = {q}. The final state q′ is at the end of the execution

C0, {P} , C1

for one process, P , where both C0 and C1 contain the state of only P . That
is, the (n+1)-process protocol encompasses a solo protocol for each process.

Similarly, a one-layer protocol for two processes, say P,Q, can be ob-
tained by focusing on the executions where only P and Q participate, con-
sidering the subcomplex I ′ of I of initial states for P and Q, and applying
Ξ to I ′. See for example Figure 8.7, where the solo protocol and the two
process protocol correspond to the “boundary” of the subdivision. (We will
formalize this notion later.) Meanwhile, notice that a boundary is where
some processes do not see others, and hence the inputs of those processes

226 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

can change without the boundary processes noticing. In the figure, the final
states corresponding to executions where only P and Q participate are a
boundary 1-dimensional complex (a line) that is contained in two subdivi-
sions for three processes, one for the case where the input of R is r and the
other where its input is s. Also, the boundary of this 1-dimensional complex
contains two vertices, one for the solo execution of P , the other for the solo
execution of Q.

In general, take any subcomplex I ′ of the input complex I, where I ′ is
pure and k-dimensional, colored with names Π′, where Π′ ⊆ Π, |Π′| ≥ k+ 1.
Let Ξ′ be the restriction of Ξ to I ′. Then (I ′,P ′,Ξ′) is a protocol for k + 1
processes, where P ′ is the image of I ′ under Ξ′. This protocol corresponds
to executions where k+ 1 processes participate, and the others crash before
taking a step.

8.4.2 Multi-Layer Protocols

In a one-layer protocol, each process participates in exactly one step, com-
municating exactly once with the others. There are several ways to gener-
alize this model to allow processes to take multiple steps. One approach is
to allow processes to take more than one step in a layer. We will consider
this extension in later chapters. For now, however, we will construct lay-
ered protocols using composition. Recall from Definition 4.2.3 that in the
composition of two protocols, each view from the first protocol serves as the
input to the second protocol. We define an (r-layer) layered execution pro-
tocol to be the r-fold composition of one-layer protocols. (Operationally, the
corresponding execution is just the concatenation of each layer’s execution.)

For example, Figure 8.8 shows a single-input, two-process protocol com-
plex for one and two layers. Here, we assume each process has its name as
its input value. Each input vertex is labeled with that process’s name, and
each protocol complex vertex is labeled with the values received from each
process, or ∅ if no value was received. Each process communicates its initial
state in the first layer, and its state at the end of the layer becomes its input
to the second layer.

For three processes, Figure 8.9 shows part of the construction of a two-
layer protocol complex, where all three processes are active in each layer.
As before, assume that processes P,Q,R start with respective inputs p, q, r.
The simplex marked α in the single-layer complex corresponds to the single-
layer execution where P takes an immediate snapshot, and then Q and R
take concurrent immediate snapshots. If the protocol now runs for another
layer, the input simplex for the second layer is labeled with views (P, {p}) for

8.4. PROTOCOLS 227

Ch α

Ch β

d t il

Ch α

detail
α

β

Figure 8.9: The complex at the bottom is the protocol complex for a single-
layer immediate snapshot protocol, and the complex at the top is a detail
of the two-layer protocol complex, which is a subdivision of the single-layer
complex.

P and {(P, p), (Q, q), (R, r)} for Q and R. The set of all possible one-layer
executions defines a subdivision of α.

Similarly, the simplex marked β corresponds to the execution where P ,
Q, and R take their immediate snapshots sequentially, one after the other.
Here, P and Q have the same views in α and β. Namely, α and β share an
edge, and R has different views in the two simplices (R has view {p, q} in
σ2). The input simplex for the second layer is labeled with views {(P, p)}
for P , {(P, p), (Q, q)} for R, and {(P, p), (Q, q), (R, r)} for Q. The set of all
possible one-layer executions defines a subdivision of σ0. Continuing in this
way, the two-layer protocol complex for an input n-simplex σ is the two-fold
subdivision Ch2 σ.

The k-layered layered immediate snapshot protocol (I,P,Ξ) for n + 1
processes is the composition of k one-layer protocols. As in the one-layer

228 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

case, if I ′ is a subcomplex of the input complex I, where I ′ is pure, and
k-dimensional, colored with names Π′, where Π′ ⊆ Π, |Π′| ≥ k+ 1, and Ξ′ is
the restriction of Ξ to I ′, then (I ′,P ′,Ξ′) is a protocol for k + 1 processes,
where P ′ is the image of I ′ under Ξ′. It corresponds to executions where
k+1 processes participate, and they never see the other processes; the others
crash initially.

Protocol complexes for layered immediate snapshot have the following
“manifold” property.

Lemma 8.4.5. If (I,P,Ξ) is a layered immediate snapshot protocol complex
for n + 1 processes, and σ is an (n − 1)-dimensional simplex of Ξ(τ), for
some n-simplex τ , then σ is contained either in one or in two n-dimensional
simplices of Ξ(τ).

The proof of these important property will be discussed in Chapter 9.

8.4.3 Protocol Composition

Recall from (4.2.3) that the composition of two protocols (I,P,Ξ) and
(I ′,P ′,Ξ′), where P ⊆ I ′, is the protocol (I,P ′,Ξ′ ◦Ξ), where (Ξ′ ◦Ξ)(σ) =
Ξ′(Ξ(σ)). (This definition applies to protocols for both colored and general
tasks.)

8.5 Chapter Notes

The first formal treatment of the consensus task is due to Fischer, Lynch
and Paterson [56], who proved that this task is not solvable in a message
passing system even if only one process may crash, and processes have direct
communication channels with each other. The result was later extended to
shared memory by Loui and Abu-Amara in [112], and by Herlihy in [80].

Chaudhuri [37] was the first to investigate k-set agreement, where a
partial impossibility result was shown. In 1993, three papers were published
together at the same conference [23, 92, 136] showing that there is no wait-
free protocol for set agreement using shared read-write memory or message-
passing. Herlihy and Shavit [92] introduced the use of simplicial complexes
to model distributed computations. Borowsky and Gafni [23] and Saks and
Zaharoughu [136] introduced layered read-write executions. The first paper
called them “immediate snapshot executions” while the second called them
“block executions”.

Attiya and Rajsbaum [16] later used layered read-write executions in
a combinatorial model to show the impossibility of k-set agreement. They

8.5. CHAPTER NOTES 229

explain that the crucial properties of layered executions is (1) that they are a
subset of all possible wait-free executions, and (2) that they induce a protocol
complex which is a divided image (similar to a subdivision) of the input
complex. In our terminology, there is a corresponding strict carrier map on
a protocol complex that is an orientable manifold. A proof that layered read-
write executions induce a subdivision of the input complex appears in [103].
The standard chromatic subdivision of a simplex has appeared before in
discrete geometry literature under the name anti-prismatic subdivision, see
[?]. dmitry: Maurice: please

add the following refer-
ence [IJ] I. Izmestiev, M.
Joswig, Branched cover-
ings, triangulations, and
3-manifolds, Adv. Geom. 3
(2003), no. 2, 191–225.

The renaming task was first proposed by Attiya, Bar-Noy, Dolev, Pe-
leg, and Reischuk [9]. Herlihy and Shavit [93] together with Castañeda and
Rajsbaum [34] showed that there is no wait-free shared-memory protocol
for certain instances of renaming. Several authors [16, 93, 104] have used
weak symmetry breaking to prove the impossibility of renaming. A sym-
metry breaking family of fixed-input tasks was studied by Castañeda, Imbs,
Rajsbaum and Raynal [29, 97]. For an introductory overview of renaming
in shared-memory systems see Castañeda, Rajsbaum and Raynal [34].

The get-and-increment task is an adaptive instance of perfect renaming,
where processes have to choose names in the range 0 to n. A renaming
algorithm is adaptive if the size of the new name space depends only on
the number of processes that ask for a new name (and not on the total
number of processes). See Exercise 8.1. Gafni et al. [67] show that adaptive
(2k−1)-renaming (output name space is 1, . . . , 2k−1, where k is the number
of processes that actually participate in the execution) is equivalent to n-set
agreement (where n+ 1 processes agree on at most n input values).

In the strong symmetry breaking task, processes decide binary values,
and not all processes decide the same value when all participate, as in weak
symmetry breaking. In addition, in every execution (even when fewer than
n + 1 participate) at least one process decides 0. Borowsky and Gafni [23]
show that strong symmetry breaking (which they call (n,n-1)-set-test-and-
set) is equivalent to n-set agreement, and hence is strictly stronger than
weak symmetry breaking, as we explain in Chapter 9. See Exercise 8.3.

Borowsky and Gafni [24] introduced the immediate snapshot model,
showed how to implement immediate snapshots in the conventional read-
write model, and how immediate snapshots can be used to solve renaming.
Later, they introduced the iterated immediate snapshot model [26]. Gafni
and Rajsbaum [68] present a simulation that shows that if a task is solvable
using read-write registers directly, it can also be solved in the iterated model
where each register is accessed only once.

We use the term layered executions for our high-level abstract model

230 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

(sometimes called iterated executions in the literature). In the terminology
of Elrad and Francez [51], the layered execution model is a communication-
closed layered model. Instances of this model include the layered read-write
memory model and the layered message-passing model. Rajsbaum [130]
gives a survey how layered (iterated) immediate snapshots executions have
proved useful. Hoest and Shavit [95] examine their implications for com-
plexity.

Other high-level abstract models have been considered by Gafni [62]
using failure detectors notions, and by Moses and Rajsbaum [122] for
situations where at most one process may fail. Various cases of the
message passing model have been investigated by multiple researchers
[3, 36, 105, 122, 138, 140].

Rook complexes appeared first in Garst’s Ph.D. thesis [72], and are also
known under the name chessboard complexes.

The condition-based consensus task of Exercise 8.11 is taken from Moste-
faoui, Rajsbaum, and Raynal [124].

8.6 Exercises

Exercise 8.1. Show that the map ∆ defined for the get-and-increment task
is indeed a chromatic carrier map from I to O. Consider other chromatic
carrier maps from I to O, and compare the corresponding variants of get-
and-increment they define.

Exercise 8.2. In Exercise 5.1 we considered the colorless complex corre-
sponding to independently assigning values from a set V in to a set of n+ 1
processes. The colored version of the complex is more complicated. As we
shall see in Chapter 13 it is a pseudosphere. Give an informal argument
that when |V in| = 2 the complex constructed by assigning all combinations
of binary values to n + 1 processes is a combinatorial sphere. (Hint: think
of equators, north and south poles, and argue by induction on n.)

Exercise 8.3. In the strong symmetry breaking task processes decide binary
values, and not all processes decide the same value when all participate, as
in weak symmetry breaking. In addition, in every execution (even when
less that n + 1 participate) at least one process decides 0. Define the in-
put complex, output complex and carrier map formally. Show that strong
symmetry breaking is equivalent to n-set agreement: there is a wait-free
read/write layered protocol that can invoke n-set agreement objects and
solves strong symmetry breaking, and vice-versa.

8.6. EXERCISES 231

Exercise 8.4. Let (I,P,Ξ) be a protocol for a task (I,O,∆). Explain why
the decision map δ : P → O must be a simplicial map.

Exercise 8.5. Explicitly write out the approximate agreement protocol de-
scribed in Section 8.3.2 for shared memory and for message-passing. Prove
it is correct. (Hint: use induction on the number of layers.)

Exercise 8.6. Consider the following protocol intended to solve k-set agree-
ment, for k ≤ n. Each process has an estimate, initially its input. For
r layers, each process communicates its estimate, receives estimates from
others, and replaces its estimate with the smallest value it sees.

Prove that this protocol does not work for any value of r.

Exercise 8.7. Show that both the binary consensus and leader election tasks
defined in Section 8.2 are monotonic.

Exercise 8.8. In the barycentric agreement task covered in earlier chapters,
processes start on the vertices of a simplex σ in a chromatic complex I, and
must decide on the vertices of a simplex in Bary σ. (More than one process
can decide the same vertex.) Explain how the chromatic agreement task of
Section 8.3.4 can be adapted to solve this task.

Exercise 8.9. In the ε-approximate agreement task covered in earlier chap-
ters, processes are assigned as inputs points in a high-dimensional Euclidean
space RN , and must decide on points that lie within the convex hull of their
inputs, and within ε of one another, for some given ε > 0. Explain how the
iterated chromatic agreement task of Section 8.3.4 can be adapted to solve
this task.

Exercise 8.10. Prove that the standard chromatic subdivision is mesh-
shrinking.

Exercise 8.11. In a condition-based consensus task, processes can start with
input values from some set V ≥ 2, and must agree on the input value of
one of the processes, as in consensus. However, not all input assignments
with values from V are possible. A condition defines which input assign-
ments are possible. In the C-consensus task, the condition C states that the
largest input value assigned to a process, must be assigned to at least f + 1
processes. Show that although there is no t-resilient colorless protocol that
solves C-consensus, there is a t-resilient C-consensus protocol in the form
of Figure 5.1, except that instead of computing view using the set of values
with values(M), the view is the multi-set of values, and hence allowing to
count how many times each value is the input of some process.

232 CHAPTER 8. READ-WRITE MODEL FOR GENERAL TASKS

Chapter 9

Manifold Protocols

Non Print Material 9. Abstract: Theoretical distributed computing is pri-
marily concerned with classifying tasks according to their difficulty. Which
tasks can be solved in a given distributed computing model? We consider
here two important tasks, set agreement and weak symmetry-breaking. It
turns out that the immediate snapshot protocols of Chapter 8 cannot solve
these tasks. Moreover, we will identify a broader class of protocols , called
manifold protocols, that cannot solve k-set agreement. (The impossibility
proof for weak symmetry breaking is more complicated, and is deferred to
Chapter 12.)

Key words: Moebius task, Sperner’s lemma, chromatic subdivision,
connectivity, dual graph, manifold protocols, manifolds, pseudomanifolds,
set agreement, subdivisions.

Theoretical distributed computing is primarily concerned with classifying
tasks according to their difficulty. Which tasks can be solved in a given
distributed computing model? We consider here two important tasks, set
agreement and weak symmetry-breaking. It turns out that the immediate
snapshot protocols of Chapter 8 cannot solve these tasks. Moreover, we will
identify a broader class of protocols , called manifold protocols, that cannot
solve k-set agreement. (The impossibility proof for weak symmetry breaking
is more complicated, and is deferred to Chapter 12.)

Given that neither task can be solved by layered immediate snapshots, it
is natural to ask which task is harder. One way of comparing the difficulty
of two tasks, T1, T2, is to assume we have access to an “oracle” or “black
box” that can solve instances of T1, and ask whether we can now solve

233

234 CHAPTER 9. MANIFOLD PROTOCOLS

T2. In this sense, we will show that set agreement is strictly stronger than
weak symmetry-breaking: we can construct a protocol for weak symmetry-
breaking if we are given a “black box” that solves set agreement, but not
vice-versa.

We investigate these particular questions here because they can be ad-
dressed with a minimum of mathematical machinery. We will rely on two
classical constructs. The first is a class of complexes called pseudomani-
folds, and the second is a classical result concerning pseudomanifolds called
Sperner’s Lemma1. In later chapters, we generalize these techniques to ad-
dress broader questions.

9.1 Manifold Protocols

The single-layer immediate snapshot protocol introduced in Chapter 8 has
a simple, but interesting property: in any (n+ 1)-process protocol complex,
each (n − 1)-simplex is contained in either one or two n-simplices. In the
three-process case, the resulting complex looks like a discrete approximation
to a surface.

In this section we define this property formally. A protocol that has this
property is called a manifold protocol, and we will see that any such protocol
is limited in the tasks it can solve. Moreover, we will see that all layered
immediate snapshot protocols are manifold protocols.

9.1.1 Subdivisions and Manifolds

In Figure 8.6, it is apparent that the single-layer immediate snapshot pro-
tocol complex shown is a subdivision of the input complex. Formally, an
(n + 1)-process protocol (I,P,Ξ) is a subdivision protocol, if P is a subdi-
vision of I and the subdivision carrier map Ξ is chromatic (recall Defini-
tion 3.4.9). Furthermore, Figure 8.9 suggests that longer executions produce
finer subdivisions. A subdivision protocol is a special case of a manifold pro-
tocol, and we will prove that any such protocol is limited in the tasks it can
solve.

Mathematical Note 9.1.1. In point-set topology an n-manifold is a space
where every point has a neighborhood homeomorphic to n-dimensional Eu-
clidean space, while an n-manifold with boundary is a space where every

1We saw a restricted version of Sperner’s Lemma in Chapter 5

9.1. MANIFOLD PROTOCOLS 235

point has a neighborhood homeomorphic either to n-dimensional Euclidean
space or to n-dimensional Euclidean half-space. A torus, for example, is a
2-dimensional manifold or surface. A pinched torus, shown in Figure 9.1, is
not a manifold, because the “pinch” has no neighborhood homeomorphic to
the plane.

Figure 9.1: A pinched torus is not a point-set manifold.

Definition 9.1.2. We say that a pure abstract simplicial complex of dimen-
sion n is strongly connected if any two n-simplices can be connected by
a sequence of n-simplices in which each pair of consecutive simplices has
a common (n− 1)-dimensional face.

For brevity, we sometimes simply say that two such n-simplices can be
linked, understanding that every n-simplex is linked to itself. Being linked
is clearly an equivalence relation. In particular, it is transitive.

Definition 9.1.3. A pure abstract simplicial complex M of dimension n is
called a pseudomanifold with boundary if it is strongly connected, and each
(n− 1)-simplex in M is a face of precisely one or two n-simplices.

Because “pseudomanifold with boundary” is such a long and awkward
term, we will refer to such complexes simply as “manifolds” in this book,
even though, as noted in Remark 9.1.1, this term has a slightly different
meaning in other contexts.

An (n− 1)-simplex in M is an interior simplex if it is a face of exactly
two n-simplices, and a boundary simplex if it is a face of exactly one. The
boundary subcomplex of M, denoted ∂M, is the set of simplices contained
in its boundary (n − 1)-simplices. For an n-dimensional simplex σ, let 2σ

be the complex containing σ and all its faces, and ∂ 2σ the complex of faces
of σ of dimension n − 1 and lower. (When there is no ambiguity, we will
sometimes denote these complexes simply as σ and ∂ σ.)

Manifolds are preserved by subdivisions: ifM is an n-manifold, then any
subdivision ofM is again an n-manifold. Figure 9.2 shows a two-dimensional

236 CHAPTER 9. MANIFOLD PROTOCOLS

Every (n-1)-simplex a
face of 2 n-simplexesface of 2 n simplexes

Figure 9.2: A manifold complex.

manifold (with an empty boundary complex).

Indeed, the single-layer protocol complex for three processes in Figure 8.6
is a manifold with boundary, as we shall soon prove. Furthermore, the
single-layer protocol complex has a recursive structure of manifolds within
manifolds, similarly to subdivision protocols, with subdivisions within sub-
divisions. The boundary of a single-layer three-process layered snapshot
protocol complex contains the executions where only two processes partici-
pate, and itself consists of the union of three manifolds with boundary. For
every two processes, the executions where only they participate, again form
a manifold with boundary (and in fact, a subdivision), and contains exe-
cutions where only one process participates. An execution where a single
process participates, is itself a degenerate manifold, consisting of a single
vertex. This structure is conveniently captured using carrier maps.

Definition 9.1.4. An (n+1)-process protocol (I,P,Ξ) is a manifold protocol,
if

9.1. MANIFOLD PROTOCOLS 237

• for any simplex σ of I the subcomplex Ξ(σ) is a manifold (automati-
cally it will have the same dimension as σ);

• the protocol map commutes with the boundary operator:

∂ Ξ(σ) = Ξ(∂ σ), (9.1.1)

for all σ ∈ I.

We say Ξ is a manifold protocol map, and P is a manifold protocol complex.

Note that this definition applies to arbitrary protocols, not just layered
immediate snapshot protocols.

Here is the operational intuition behind Property 9.1.1. Let σ be an
input simplex, and σn−1 an (n− 1)-face of σ where the vertex labeled with
process P is discarded. Recall from Chapter 8 that Ξ(σn−1) is the com-
plex generated by executions starting from σ where P does not participate.
Consider the following execution: the processes other than P execute by
themselves, halting on the vertices of an (n−1)-simplex τ ∈ Ξ(σn−1). After
that, P starts, running deterministically by itself until it halts. Because
there is only one such execution, there is only one n-simplex τ ′ containing
τ .

For layered immediate snapshot protocols, the protocol complexes are
subdivisions of the input complex. However, the manifold protocol defini-
tion is more general. Consider the manifold protocol shown in Figure 9.3.
The input complex I is a 2-dimensional simplex with all its faces. The
protocol complex is a 2-dimensional “punctured torus”, a torus with one
2-simplex removed. The map Ξ sends the boundary of the input complex
to the boundary of the punctured torus, and the input complex vertices to
the boundary vertices. Ξ sends the input complex’s 2-simplex to the en-
tire protocol complex. (While we are not aware of any existing computer
architecture that supports such a protocol, it is nevertheless a well-defined
mathematical object.)

Except for layered immediate snapshots, few of the protocol complexes
that arise naturally in the study of distributed computing are manifolds.
Nevertheless, we start with the study of manifold protocols because the
insights they provide will ease our approach to more complicated models.

9.1.2 Composition of Manifold Protocols

In this section we prove that the composition of two manifold protocols
is again a manifold protocol. In Section 9.2 we will see that any single-
layer immediate snapshot protocol is a manifold protocol. Any multi-layer

238 CHAPTER 9. MANIFOLD PROTOCOLS

Input Complex

Protocol Complex

Figure 9.3: This 3-process manifold protocol complex is not a subdivision.

protocol is therefore a manifold protocol, since it is the composition of single-
layer manifold protocols.

We have seen in subsection 4.2.4 that protocols compose in a natural way:
if (I,P,Ξ) and (P,P ′,Ξ′) are two protocols, where the protocol complex
for the first is contained in the input complex for the second, then their
composition is the protocol (I,P ′,Ξ′ ◦ Ξ), where (Ξ′ ◦ Ξ)(σ) = Ξ′(Ξ(σ)).
Informally, the processes first participate in the first protocol, and then they
participate in the second, using their final views from the first as inputs to
the second.

We now proceed with the proof that (I,P ′,Ξ′◦Ξ) is a manifold protocol,
whenever both (I,P,Ξ) and (P,P ′,Ξ′) are manifold protocols. Following
Definition 9.1.4, we must show that

• for any simplex σ of I the subcomplex (Ξ′ ◦ Ξ)(σ) is a manifold, and

• the protocol map commutes with the boundary operator:

∂(Ξ′ ◦ Ξ)(σ) = (Ξ′ ◦ Ξ)(∂ σ),

9.1. MANIFOLD PROTOCOLS 239

for all σ ∈ I.

To prove that for any m-simplex σ of I the subcomplex (Ξ′ ◦ Ξ)(σ) is
a manifold, we first need to prove that (Ξ′ ◦ Ξ)(σ) is strongly connected:
any two n-simplices can be connected by a sequence of n-simplices in which
each pair of consecutive simplices has a common (n− 1)-dimensional face.

n

0
n-1

n

Figure 9.4: Lemma 9.1.5: showing strong connectivity of the composition of
manifold protocols.

Lemma 9.1.5. For any simplex σ of I the subcomplex (Ξ′ ◦Ξ)(σ) is strongly
connected.

Proof. Assume without loss of generality that dim(σ) = n. Thus, (Ξ′◦Ξ)(σ)
is a pure simplicial complex of dimension n. Let αn and βn be n-simplices
of (Ξ′ ◦ Ξ)(σ). If αn and βn are in Ξ′(σ′) for some σ′ ∈ Ξ(σ) we are done,
because by assumption (P,P ′,Ξ′) is a manifold protocol, and hence Ξ′(σ′)
is strongly connected.

Assume that αn is in Ξ′(σα) and βn is in Ξ′(σβ), for some σα, σβ in Ξ(σ).
Moreover, we can assume that σα ∩σβ = σn−1 for some (n− 1)-dimensional

240 CHAPTER 9. MANIFOLD PROTOCOLS

face, because by assumption (I,P,Ξ) is a manifold protocol, and hence Ξ(σ)
is strongly connected. See Figure 9.4.

As the carrier Ξ′ is strict, Ξ′(σα∩σβ) = Ξ′(σα)∩Ξ′(σβ). Let γn−1
0 be an

(n−1)-dimensional simplex, such that γn−1
0 ∈ Ξ′(σα)∩Ξ′(σβ). Now, because

Ξ′ is a manifold protocol map, there is a unique n-dimensional simplex θn,
that contains γn−1

0 and such that θn ∈ Ξ′(σα). Similarly, there is a unique
n-dimensional simplex ηn, that contains γn−1

0 and such that ηn ∈ Ξ′(σβ).
Finally, because Ξ′(σα) is strongly connected, the two simplices αn and

θn can be linked, and because Ξ′(σβ) is strongly connected, the two simplices
βn and ηn can be linked. To complete the proof, observe that θn and ηn are
linked, because γn−1

0 = θn ∩ ηn.

Now that we have seen that (Ξ′ ◦ Ξ)(σ) is strongly connected, we need
to check the status of the complex’s (n− 1)-simplices.

Lemma 9.1.6. If (I,P,Ξ) is manifold protocol where I is an n-manifold,
then every (n− 1)-simplex of P belongs to one or to two n-simplices.

Proof. Let γn−1 be an arbitrary (n − 1)-simplex of P. Let σn1 , . . . , σ
n
k be

the complete list of those n-simplices of I for which γn−1 ∈ Ξ(σni). The
simplicial complex P is a union of pure n-dimensional complexes, so it itself
is pure and n-dimensional as well. Therefore k ≥ 1.

We have γn−1 ∈ ∩ki=1Ξ(σni) = Ξ(∩ki=1σ
n
i). Hence ∩ki=1σ

n
i is an (n − 1)-

simplex, which we denote ρn−1. Since I is an n-manifold, we must have
k ≤ 2. Now we consider two cases.

Case 1 k = 1. All n-simplices containing γn−1 are contained in Ξ(σn1),
which is an n-manifold, thus γn−1 is contained in one or two n-simplices.

Case 2: k = 2. In this case, each n-simplex of P containing γn−1 is
contained either in Ξ(σn1) or in Ξ(σn2). On the other hand, we have

γn−1 ⊆ Ξ(ρn−1) ⊆ Ξ(∂ σn1) = ∂ Ξ(σn1),

implying that γ belongs to precisely one n-simplex from Ξ(σn1). The analo-
gous argument for σn2 , together with the fact that Ξ(σn1) and Ξ(σn2) have no
common n-simplices, as their intersection is pure (n−1)-dimensional, yields
that γn−1 is contained in exactly two n-simplices.

It remains to show that the protocol map commutes with the boundary
operator:

∂(Ξ′ ◦ Ξ)(σ) = (Ξ′ ◦ Ξ)(∂ σ),

9.2. LAYERED IMMEDIATE SNAPSHOT PROTOCOLS 241

for all σ ∈ I.

Theorem 9.1.7. If (I,P,Ξ) is a manifold protocol such that I is a manifold,
then the simplicial complex P is also a manifold, and furthermore ∂ P =
Ξ(∂ I).

Proof. The first part of the statement is the content of Lemmas 9.1.5
and 9.1.6, hence we just need to show that ∂ P = Ξ(∂ I).

First, we show that ∂ P ⊆ Ξ(∂ I). Let τn−1 be an (n − 1)-simplex in
∂ P. There exists a unique n-simplex αn such that τn−1 ⊂ αn. Furthermore,
there exists a unique n-simplex σn in I such that αn is in Ξ(σn). We
have τn−1 ∈ ∂ Ξ(σn) = Ξ(∂ σn). Hence there exists γn−1 ∈ ∂ σn, such
that αn ∈ Ξ(γn−1). We just need to show that γn−1 ∈ ∂ I. If this is
not the case, there exists an n-simplex σ̃n 6= σn such that γn−1 ⊂ σ̃n.
But then τn−1 ∈ Ξ(σ̃n), and there will exist an n-simplex in Ξ(σ̃n) (hence
different from αn) which contains τn−1, contradicting our assumption that
τn−1 ∈ ∂ P.

Next, we show that Ξ(∂ I) ⊆ ∂ P. Let τn−1 be an (n − 1)-simplex of
Ξ(∂ I)). Assume γn−1 is the unique (n−1)-simplex in ∂ I such that τn−1 ∈
Ξ(γn−1). Let σn be the unique n-simplex in I such that γn−1 ⊂ σn. Since
τn−1 ∈ Ξ(∂ σn) = ∂ Ξ(σn), there will be precisely one n-simplex in Ξ(σn)
containing τn−1. On the other hand, assume there exists an n-simplex σ̃n,
other than σn, such that τn−1 ∈ Ξ(σ̃n). We have τn−1 ∈ Ξ(σ̃n)∩Ξ(γn−1) =
Ξ(σ̃n∩γn−1), but dim(σ̃n∩γn−1) ≤ n−2, which yields a contradiction.

A simple inductive argument yields:

Corollary 9.1.8. The composition of any number of manifold protocols is
itself a manifold protocol.

9.2 Layered Immediate Snapshot Protocols

We will show that the any single-layer immediate snapshot protocol is a
manifold protocol. Since manifold protocols compose, multi-layered imme-
diate snapshot protocols are also manifold protocols..

9.2.1 Properties of Single-Layer Protocol Complexes

A single-layer immediate snapshot execution is a sequence

C0, S0, C1, S1, . . . , Sr, Cr+1,

242 CHAPTER 9. MANIFOLD PROTOCOLS

P0 P1 P2
p q r
{p}

{pq}
{pqr}

P0 P1 P2
p q r
{p}

{pqr} {pqr}

P0 P1 P2
p q r
{pqr} {pqr} {pqr}

Figure 9.5: Protocol complex for three-process single-layer executions.

where C0 is the initial configuration, step Si is a set of active processes that
execute concurrent immediate snapshots, and each process appears at most
once in the schedule S0, S1, . . . , Sr.

When a process P participates in step Sj , its immediate snapshot returns
the states of processes that participated in Sj and in earlier steps. The
process states in the final configuration of an execution satisfy the following
properties, where qi is Pi’s final state.

Property 9.2.1. Each process’s initial state appears in its view, and Pi ∈
names(qi).

Property 9.2.2. Because processes in the same step see the same initial states,
final states are ordered: for 0 ≤ i, j ≤ n, either view(qi) ⊆ view(qj) or vice-
versa.

Property 9.2.3. For 0 ≤ i, j ≤ n, if Pi ∈ names(qj), then Pi is active in the
same or earlier step, hence view(qi) ⊆ view(qj).

Consider all one-layer executions starting in an initial configuration C0,

9.2. LAYERED IMMEDIATE SNAPSHOT PROTOCOLS 243

where every processes appears exactly once in the schedule. Figure 9.5
combines Figures 4.4 and 8.6. It shows a 3-process example, with initial
process states p, q, and r, respectively for P0, P1, and P2. Thus, C0 =
{(P0, p), (P1, q), (P2, r)}, which we write as pqr to avoid clutter. Steps are
shown as arrows, and the new value is shown only when a process state
changes. Recall from Chapter 8 that the execution at the top right is the
execution where P0, P1, and P2 take steps sequentially:

C0, {P0} , C1, {P1} , C2, {P2} , C3,

where

C0 = pqr

C1 = {p} qr
C2 = {p} {pq} r
C3 = {p} {pq} {pqr}

At the bottom left is the fully-concurrent execution where all three processes
take steps together:

C0, {P0, P1, P2} , C1

where C1 = {pqr} {pqr} {pqr}. At the top left is the execution where P0

takes a step, followed by a step by P1, P2:

C0, {P0} , C1, {P1, P2} , C2,

where

C0 = pqr

C1 = {p} qr
C2 = {p} {pqr} {pqr}

When do the final configurations of two executions differ only in the state
of a single process? Consider the fully sequential execution above, where P1

is alone in a step. If we want to change its final state without modifying the
state of any other process, the only choice is to move it to the next step,
resulting in the top left execution:

C0, {P0} , C1, {P1, P2} , C2.

We cannot move P1 to an earlier step because doing so would change the
final states of that step’s processes.

244 CHAPTER 9. MANIFOLD PROTOCOLS

What if we want to modify the final state of P2 in the fully concurrent
execution? That process is alone in the last step, so no other process sees its
initial state. P2 cannot be moved because there is no other execution where
P0, P1 have the same final states. Indeed, as far as P0, P1 are concerned, the
execution could have ended without P2 participating.

In summary, if in an execution the state of process P is seen by some
other process, then either P appears alone in a step, which is not the last
one, or else P appears together with other processes in a step. In either
case, we can modify the final state of P without modifying the final states
of the others. In the first case, P is moved to the next step, while in the
second case, P is removed from its step, and placed alone in a new step
immediately before its old one. Finally, if P is not seen by other processes
in an execution, it is alone in the last step, and P ’s state cannot be changed
without affecting the others. The next lemma states this property formally.

Lemma 9.2.4. Consider these two one-layer executions:

α = C0, S0, C1, S1, . . . , Sr, Cr+1,

α′ = C0, S
′
0, C

′
1, S
′
1, . . . , S

′
t, C

′
t+1,

and their final configurations Cr+1 and C ′t+1.

1. The two configurations Cr+1 and C ′t+1 differ in exactly the state of
one process, P , if and only if for some i, i < r, Si = {P}

α = C0, S0, C1, S1, . . . , Si = {P} , Ci+1, Si+1, Ci+2, . . . , Sr, Cr+1,

and

α′ = C0, S0, C1, S1, . . . , S
′
i, C
′
i+2, Si+2, . . . , Sr−1, C

′
r,

with S′i = Si ∪ Si+1, and Sj = S′j , Cj+1 = C ′j+1, for all j < i. In this
case, for all j ≥ i + 2, Cj and C ′j differ in exactly the state of P and
Sj = Sj (or symmetrically for the other execution).

2. If Sr = {P} (or symmetrically for the other execution), then if Cr+1

and C ′t+1 differ in the state of P , then they differ in the state of at
least another process.

9.2.2 One-Layer Protocol Complexes are Manifolds

When a process P takes an immediate snapshot in step Si, P ’s view is
the face of the input simplex whose vertices are colored by the processes
that participated in the same or earlier steps. For input n-simplex σ, the

9.2. LAYERED IMMEDIATE SNAPSHOT PROTOCOLS 245

set of layered executions defines a subdivision of σ, the standard chromatic
subdivision Chσ (see Figure 9.5). Each vertex in this subdivision is a pair
(Pi, σi), where Pi is the name of process taking the steps, and σi, the result
of its snapshot, is a face of the input simplex σ. In this chapter, we will
not prove that Chσ is a subdivision, only that it is a manifold. A proof
that Chσ is actually a subdivision requires more advanced tools, and is
postponed to Chapter 16.

Figure 9.5 shows the standard chromatic subdivision of an input sim-
plex for three processes, highlighting the simplices corresponding to certain
schedules. Informally, we can see that this complex is a manifold.

First we show that Chσ is strongly connected. Each simplex in Chσ
corresponds to a particular layered execution. We proceed by “perturbing”
executions so that only one process’s view is changed by each perturbation.
First, we show that any execution can be linked to a sequential execution
in which only one process is scheduled during each step. Next, we show
that any sequential execution can be linked to the unique fully-concurrent
execution in which all processes are scheduled in a single step. In this way,
any simplex can be linked to the fully-concurrent simplex, and any two
simplices can be linked to each other.

Lemma 9.2.5. Any simplex τ ∈ Chσ can be linked to a simplex τ̂ corre-
sponding to a sequential execution.

Proof. Suppose σ corresponds to the execution S0, S1, . . . , Sk. If each |Si| =
1, the execution is already sequential, and we are done. Otherwise, let ` any
index such that |S`| > 1, and let P` be a process in S`. We now “perturb”
the execution by moving P` to a new step immediately before the steps of
the other processes in S`. See Figure 9.6.

Formally, we construct the schedule S′0, . . . , S
′
k+1, where

S′i =

Si if i < `,

{P`} if i = `,

Si−1 \ {P`} if i = `+ 1,

Si−1 if i > `+ 1.

It is easy to check the view of every process other than P` is unchanged
by this move, implying that for τ ′, the simplex generated by this schedule,
dim(τ ∩ τ ′) = n− 1.

Continuing in this way, we can repeatedly reduce the number of processes
scheduled during each step, eventually reaching a sequential schedule.

246 CHAPTER 9. MANIFOLD PROTOCOLS

P0 P1 P2
p q r
{p}

{pq}
{pqr}

P0 P1 P2
p q r
{pq} {pq}

{pqr}

Figure 9.6: Linking an execution to a sequential execution, changing one
view at a time.

Lemma 9.2.6. Any simplex τ ∈ Chσ can be linked to a simplex τ̃ corre-
sponding to a fully-concurrent execution.

Proof. We will prove something slightly stronger. An immediate snapshot
execution with schedule S0, S1, . . . , Sk is tail-concurrent if all steps except
possibly the last are sequential: |Si| = 1 for 0 ≤ i < k. Both sequential
executions and the fully-concurrent execution are tail-concurrent.

We claim that any tail-concurrent execution can be shortened as follows.
Let Sk−1 = {Pk−1}. If we merge Pk−1 into Sk, then only the view of Pk−1

changes. Figure 9.7 shows an example of such a transformation.

Formally, we construct the schedule S′0, . . . , S
′
k−1, where

F ′i =

{
Si if i < k,

{Pk−1} ∪ Sk if i = k − 1.

9.3. NO SET AGREEMENT FROM MANIFOLD PROTOCOLS 247

P0 P1 P2
p q r
{p}

{pqr} {pqr}

P0 P1 P2
p q r
{p}

{pq}
{pqr}

P0 P1 P2
p q r
{pqr} {pqr} {pqr}

Figure 9.7: Linking a sequential execution to the fully-concurrent execution
in Chσ, changing one view at a time.

Continuing in this way, we can repeatedly reduce the number of layers in any
tail-concurrent schedule, eventually reaching the fully-concurrent schedule.

Lemmas 9.2.5 and 9.2.6 imply the following:

Corollary 9.2.7. The simplicial complex Chσ is strongly connected.

Finally, this corollary and Lemma 9.2.4 imply the main result of this
section.

Theorem 9.2.8. For any simplex σ, the simplicial complex Chσ is a manifold.

9.3 No Set Agreement from Manifold Protocols

Recall that in the k-set agreement task (Section 8.3.3), is often described
in the literature using three (informal) requirements. Each process starts

248 CHAPTER 9. MANIFOLD PROTOCOLS

with a private input value, communicates with the others, every process
must decide on some process’s input, and no more than k distinct inputs
can be chosen. For brevity we use set agreement as shorthand for (n + 1)-
process n-set agreement, where the processes agree to discard a single value.
We now demonstrate that no manifold protocol can solve set agreement.
We will prove a slightly more general result any protocol that satisfies the
termination and validity properties must violate the agreement property in
an odd number of distinct executions.

9.3.1 Sperner’s Lemma

Before we turn our attention to set agreement, we provide a statement of the
classical Sperner’s Lemma for manifolds. We provide a proof for complete-
ness, and because this lemma is so important. The proof consists of a simple
counting argument which perfectly illustrates the beauty of combinatorial
topology as argued in Chapter 3: deep, powerful properties of spaces made
up of simple pieces can be characterized by counting. Readers uninterested
in the proof may read the statement of the lemma and skip to the next
subsection.

Recall that an (n + 1)-labeling of a complex K is a simplicial map
χ : K → ∆n, where ∆n is an n-simplex (we use the same name for a
simplex and the complex which consists of the simplex and all its faces).
We say that χ sends a simplex σ onto ∆n if every vertex in ∆n is the image
of a vertex in σ. If σ ∈ K and ∆n have the same dimension and χ maps σ
onto ∆n, so that each vertex of σ is assigned a distinct color, then we say
that σ is properly colored.

To state Sperner’s Lemma in our notation, let ∆n be equal to the n-
simplex {(P, P)|P ∈ Π}, for a set of n + 1 names Π. We then take ∆n

and its faces to be an input complex. Sperner’s Lemma is usually stated
in terms of a subdivision of ∆n, but the combinatorial proof requires only
the manifold property. Thus, instead of a subdivision of ∆n, consider a a
manifold protocol, (∆n,P,Ξ).

A Sperner coloring of P is a labeling δ : P → ∆n that satisfies
the properties illustrated in the left-hand complex of Figure 9.3.4. Here,
n is 2. Choose three colors, say the names of Π. The three “corners” of
the subdivision are colored with distinct colors. In a Sperner coloring, the
interior vertices on each boundary connecting any two corners are colored
arbitrarily using only the colors from those two corners,, and the interior
vertices in each 2-simplex are colored arbitrarily using only colors from those
three colors. Sperner’s Lemma states that no matter how the arbitrary

9.3. NO SET AGREEMENT FROM MANIFOLD PROTOCOLS 249

coloring choices are made, there must be an odd number of 2-simplices that
are properly colored (with all three colors). In particular, there must be at
least one.

More formally, consider Ξi, the identity carrier map from ∆n to itself:
for each σ ∈ ∆n, Ξi(σ) is equal to the complex 2σ, consisting of σ and all
its faces. The labeling is a Sperner coloring if δ is carried by Ξi. Namely,
for each σ ∈ ∆n,

δ(Ξ(σ)) ⊆ Ξi(σ).

Lemma 9.3.1 (Sperner’s Lemma). For any manifold protocol, (∆n,P,Ξ),
and any Sperner’s coloring δ : P → ∆n, δ sends an odd number of
n-simplices of P onto ∆n.

Sperner’s Lemma says, in particular, that there exists no Sperner’s col-
oring δ : P → ∂∆n.

The proof follows from an inductive application of a rather surprising
property: for an n-dimensional manifold, the number of properly-colored
(n − 1)-simplices on the boundary can reveal something about the number
of properly-colored n-simplices in the interior.

First, we recall a simple lemma from graph theory. Recall that a graph is
a one-dimensional complex given by a set of vertices V and a set of edges E.
The degree of a vertex, deg(v), is the number of edges that contain v.

Lemma 9.3.2. In any graphG = (V,E), the sum of the degrees of the vertices
is twice the number of edges:

2|E| =
∑
v∈V

deg(v).

Proof. Each edge e = {v0, v1} adds one to the degree of v0 and one to the
degree of v1, contributing two to the sum of the degrees.

Corollary 9.3.3. Any graph has an even number of vertices of odd degree.

Lemma 9.3.4 (Sperner’s Lemma for Manifolds).

Let M be an n-dimensional manifold2, and let χ : M → ∆n be an
(n+ 1)-labeling. If χ sends an odd number of (n− 1)-simplices of ∂M onto
Facen ∆n, then χ sends an odd number of n-simplices of M onto ∆n.

Proof. Define G to be the dual graph whose vertices are indexed by the n-
simplices ofM, with the addition of one more “external” vertex e. There is

2We do not need strong connectivity here.

250 CHAPTER 9. MANIFOLD PROTOCOLS

e

Figure 9.8: A colored manifold (top) and its dual graph (bottom) linking
triangles that share black-and-white faces.

an edge between two vertices if their corresponding simplices share a com-
mon (n − 1)-face colored with all colors except n; that is, χ sends that
(n−1)-face onto Facen ∆n. There is also an edge from the external vertex e
to every n-simplex σ with a boundary face colored with every color except n;
that is, σ has an (n− 1)-face in ∂M, and χ sends that face onto Facen ∆n.
As an example, Figure 9.8 shows a manifold, in fact a subdivided triangle,
where each vertex is colored black, white, or gray, along with its dual graph
whose edges cross black-and-white faces.

For an n-simplex σ we let vσ denote the dual graph vertex corresponding
to σ, and we let χ(σ) denote the set of colors of the vertices of σ. We claim
that vσ has an odd degree if and only if χ(σ) = [n]. There are three cases
to consider.

Case 1. Assume χ(σ) = [n]. In this case each color from [n] occurs among
the vertices of σ exactly once. In particular, precisely one of the boundary
(n− 1)-simplices has [n− 1] as the set of colors, and hence the degree of vσ

9.3. NO SET AGREEMENT FROM MANIFOLD PROTOCOLS 251

is equal to 1.

Case 2. Assume χ(σ) = [n − 1]. In this case there exists one color which
occurs on two vertices of σ, say a and b, while each other color from [n]
occurs among the vertices of σ exactly once. This means that there are
exactly two (n−1)-simplices on boundary of σ, specifically these are σ \{a}
and σ \ {b}, which are mapped onto [n − 1] by χ. Hence in this case the
degree of vσ = 2.

Case 3. Finally assume χ(σ) 6⊇ [n− 1]. Then χ does not map any (n− 1)-
face of σ onto [n− 1], so the vertex vσ has degree 0.

Moreover, the vertex e has odd degree, since by our assumptions, χ sends
an odd number of boundary (n−1)-simplices onto [n−1], producing an odd
number of edges at e.

According to Lemma 9.3.2 the graph G has an even number of vertices
of odd degree. Since the external node e has odd degree, the dual graph
must include an odd number of other vertices vσ with odd degree. Each of
these vertices corresponds to an n-simplex that χ maps onto ∆n.

Mathematical Note 9.3.5. Sperner’s Lemma is equivalent to the celebrated
Brouwer fixed-point theorem, used across numerous fields of mathematics,
we could say it is its discrete version. In its simplest form, Brouwer’s fixed-
point theorem states that for any continuous function f : D → D, mapping
an n-dimensional unit disk D into itself there is a point x0 such that f(x0) =
x0. This is a generalization of the simple intermediate value theorem, which
says that every continuous function f : [0, 1]→ [0, 1] has a fixed point (when
the function crosses the diagonal of the unit square). See Figure 9.9. There
are many proofs of Brouwer’s fixed-point theorem, an elegant one is using
Sperner’s Lemma.

9.3.2 Application to Set Agreement

The set validity task is set agreement without the requirement that at most
n distinct values may be decided. The validity requirement is maintained:
any value decided was some process’s input. Thus, any protocol that solves
set agreement also solves set validity. We will prove that any layered protocol
solving set validity has an execution where n+1 different values are decided,
hence no set agreement protocol is possible in the layered execution model.

In the set validity task, (I,O,∆), each process has one possible input
value: its own name. Processes are required to halt with the name of some

252 CHAPTER 9. MANIFOLD PROTOCOLS

1
f

a afa

a

1

1a 1

Figure 9.9: Brouwer’s fixed-point theorem in dimension 1 and 2.

participating process (perhaps its own). Formally, there is a single input
n-simplex σ = {(P, P)|P ∈ Π}, and the input complex I is 2σ, the complex
consisting of σ and its faces. The output complex O has vertices of the
form (P,Q), for P,Q ∈ Π, and a set of vertices is an output simplex if the
process names in the first component are distinct. The validity condition
means that

∆(σ) = {τ ∈ O | names(τ) ⊆ names(σ) and value(τ) ⊆ names(σ)} .

Let (I,P,Ξ) be a manifold protocol that solves set validity with decision
map δ. The decision map δ : P → O induces a map χ : P → I by
projecting onto the output vertex’s value: suppose that in a vertex v of P,
the decision value is v, namely v = value(δ(v)). Then, χ(v) = (v, v). Notice
that χ is a Sperner’s coloring of P, because to solve the validity task, for
each input simplex σ, χ(Ξ(σ)) is sent to a simplex of 2σ. Using Sperner’s
Lemma (9.3.1), we obtain that χ sends P onto an odd number of simplices
with n+ 1 different output values.

9.4. SET AGREEMENT VS WEAK SYMMETRY-BREAKING 253

Theorem 9.3.6. There is no manifold protocol for set agreement.

Because every protocol complex in a layered execution model is a mani-
fold complex, we have:

Corollary 9.3.7. No set agreement protocol is possible in a layered execution
model.

We will discuss again this impossibility result in Chapter 10, where we
will consider the connectivity of the protocol complex.

9.4 Set Agreement versus Weak Symmetry-
Breaking

In the weak symmetry-breaking task of Section 8.3.5, each process is assigned
a distinct input name taken from Π, and chooses a binary output, so that
if all n + 1 processes participate, at least one chooses 0, and at least one
chooses 1. We saw that the number of possible names |Π| is important when
considering the difficulty of this task. For impossibility results, the size of
the name space is unimportant: any task that cannot be solved if names are
taken from a small name space also cannot be solved if names are taken from
a larger name space. For algorithms, however, it may be possible to abuse
the small name space assumption to derive trivial protocols. If Π = [n] then
weak symmetry-breaking can be solved with no communication at all: the
process with name 0 decides 0, all others decide 1. Lower bounds will be
discussed in Chapter 12.

One way of comparing the difficulty of two tasks, T1, T2, as in classical
(sequential) computability theory, is to assume the layered execution model
has access to an “oracle” or “black box” that can solve instances of T1, and
ask whether it can now solve T2. Real multi-core systems use this approach,
by including a hardware implementation of the desired black box.

In this section, we compare the “computational power” of weak
symmetry-breaking and set agreement. Given a “black-box” protocol for set
agreement, we will show that we can implement weak symmetry-breaking,
but not vice-versa. It follows that weak symmetry-breaking is weaker than
set agreement, an example of a separation result.

9.4.1 Comparing the Powers of Tasks

There are various ways of comparing the power of tasks. Here we consider
a setting, that although it is not the most general, it is particularly elegant.

254 CHAPTER 9. MANIFOLD PROTOCOLS

We say a task T implements a task S if one can construct a protocol for
S by composing one or more instances of protocols for T , along with one
or more layered immediate snapshot protocols. If T implements S, but
not vice-versa, then we say that S is weaker than T . Otherwise, they are
equivalent.

Recall from subsection 4.2.4 that given two protocols (I,P,Ξ) and
(P,P ′,Ξ′), such that the first’s protocol complex is contained in the sec-
ond’s input complex, their composition is the protocol (I,P ′,Ξ′ ◦Ξ), where
(Ξ′ ◦ Ξ)(σ) = Ξ′(Ξ(σ)), which we denote

(I,P,Ξ) ◦ (P,P ′,Ξ′).

Now, consider tasks T = (I,O,∆) and S = (I ′,O′,∆′). If their carrier
maps are strict, then the tasks can be treated like protocols. Then, task T
implements task S if there exist a protocol (P0,Pk,Ξ) equal to the compo-
sition

(P0,P1,Ξ1) ◦ (P1,P2,Ξ2) ◦ · · · ◦ (Pk−1,Pk,Ξk)

consisting of a sequence of (consecutively compatible) protocols
(Pi−1,Pi,Ξi), 1 ≤ i ≤ k, where each is either an immediate snapshot pro-
tocol or else it is T = (I,O,∆), and furthermore, the composed protocol
(P0,Pk,Ξ) solves S = (I ′,O′,∆′). Operationally, the processes go through
the protocols (Pi−1,Pi,Ξi) in the same order, asynchronously. The processes
execute the first protocol, and once a process finishes, it starts the next with-
out waiting for other processes to finish the previous protocol. Each process
uses its final view from each protocol as its input value for the next.

Recall that (P0,Pk,Ξ) solves S = (I ′,O′,∆′) if P0 = I ′ and there exists
a chromatic simplicial decision map δ : Pk → O′, satisfying

δ(Ξ(σ)) ⊆ ∆′(σ),

for all σ ∈ I ′.

9.4.2 Weak Symmetry-Breaking from Set Agreement

Here we show that one can use a set agreement protocol to implement weak
symmetry-breaking. Formally, we construct a two-layer protocol, where
the first layer is a set-agreement protocol, and the second an immediate
snapshot. The “program logic” resides in the decision map.

For readability, we describe this protocol in terms of a program and
flow-charts, but of course this program is just a readable way to specify a
protocol complex.

9.4. SET AGREEMENT VS WEAK SYMMETRY-BREAKING 255

n+1 processes

set agreement

d id 0my name no
decide 0my name

chosen?

decide 1
yes

Figure 9.10: Flowchart for weak symmetry-breaking from set agreement.

1 // code for Pi
2 protocol WSB
3 shared chosen: array [0.. n] of int // initially null
4 shared setAgree: SetAgreeProtocol; // set agreement
5 Boolean decide (input : int)
6 chosen[i] := setAgree. decide(input)
7 return input ∈ snapshot(chosen)

Figure 9.11: Pseudo-code for weak symmetry-breaking from set agreement.

Figures 9.10 and 9.11 shows the control structure and pseudo-code to
implement weak symmetry-breaking using set agreement. The processes
share an (n + 1)-element array of input names, chosen[·], whose entries are
initially ⊥ (Line 3). The processes also share a set agreement protocol
instance (Line 4). Each process Pi calls the set agreement object’s decide()
method, using its own input name as input, and stores the result in chosen[i]

256 CHAPTER 9. MANIFOLD PROTOCOLS

(Line 6). The process then takes a snapshot and returns the value 1, if and
only if its own input is in the set of inputs chosen by the set agreement
protocol (Line 7).

Lemma 9.4.1. If all n+ 1 processes participate, some process decides 1.

Proof. The last process to take a step, among the processes that were se-
lected by the set agreement protocol, will observe its own name and return
1.

Lemma 9.4.2. If all (n+ 1) processes participate, some process decides 0.

Proof. If all n+ 1 processes decide 1, then n+ 1 distinct inputs were chosen
by the set agreement protocol, violating the set agreement specification.

Thus, the protocol (I,O,∆) ◦ (O,P2,Ξ2) with decision map δ, that cor-
responds to the code in Figure 9.11 solves weak symmetry-breaking.

Theorem 9.4.3. Set agreement implements weak symmetry-breaking.

Notice that for this result, the size of the name space Π is immaterial.

9.4.3 Weak Symmetry-Breaking does not Implement Set
Agreement

For the other direction, we wish to show that weak symmetry-breaking can-
not implement set agreement. We will prove this claim indirectly, by con-
structing a manifold protocol that implements weak symmetry-breaking.
If weak symmetry-breaking could implement set agreement, then we could
replace the weak symmetry-breaking objects with their manifold task im-
plementations, yielding a manifold protocol for set agreement, contradicting
Theorem 9.3.6.

We introduce a new task, (I,M,∆), which we call the Moebius task.
First, we construct the two-dimensional Moebius task. The input complex
is the same as for weak symmetry-breaking: each process starts with a
distinct input name.

The task’s output complexM is illustrated in Figure 9.12. Take three 2-
simplices, σ0, σ1, σ2, each colored by process names, and define ξi := Chσi,
for i = 0, 1, 2, a chromatic subdivision. Abusing notation, let Facej ξi :=
Ch Facej σi ⊂ ξi. We call Facei ξi the external face of ξi, (even though it
is technically a complex), and Facejξi, for i 6= j, the internal faces. We
then identify (that is, “glue together”) Face0 ξ1 and Face0 ξ2, Face1 ξ0 and
Face1 ξ2, and Face2 ξ0 and Face2 ξ1. The resulting complex is a manifold,
whose boundary complex consists of the external faces of the ξi.

9.4. SET AGREEMENT VS WEAK SYMMETRY-BREAKING 257

Face2 ξ2
Face0 ξ0

ξ0 ξ2

ξ1

Face0 ξ0

Figure 9.12: The Moebius task output complex for three processes. The
edges on the sides are identified (glued together) in the direction of the
arrows.

Figure 9.13 illustrates the task’s carrier map ∆ for the two-dimensional
case. Each process chooses an output vertex of matching color. If a proper
subset of the processes participate, they choose to the vertices of a simplex
in an external face. If they all participate, they converge to the vertices of
any simplex.

Although we have defined the Moebius task (I,M,∆) as a task, we can
also treat it as a protocol, where I is the protocol’s input complex, M is
its protocol complex, and ∆ is its (strict) execution carrier map. It is easy
to check that the Moebius protocol is a manifold protocol. As such, the
Moebius protocol cannot solve 2-set agreement.

As illustrated in Figure 9.14, however, the Moebius protocol can solve
weak symmetry-breaking. We color each vertex with black and white “peb-

258 CHAPTER 9. MANIFOLD PROTOCOLS

∆

∆

Figure 9.13: Carrier map for the Moebius task: one and two-process execu-
tions. Note that because the left and right-hand edges are glued together in
the directions of the arrows, some vertices depicted twice are actually the
same.

bles” (that is, 0 or 1 values) as follows. For each central simplex of ξi, color
each node black except for the one labeled with Pi. For the central sim-
plex of each external face Facei ξi, color the vertices of the central 2-simplex
black. The rest of the vertices are colored white. It is easy to check that
(1) no 2-simplex is monochromatic, and (2) the protocol is well-defined;
namely, there is a corresponding decision map δ. To solve 3-process weak
symmetry-breaking, run the Moebius protocol from each 2-simplex σ in the
weak symmetry-breaking input complex I.

It follows that the two-dimensional Moebius task separates weak
symmetry-breaking and set agreement, in the sense that it can implement
one, but not the other.

9.4. SET AGREEMENT VS WEAK SYMMETRY-BREAKING 259

ξ0 ξ2ξ0 ξ2

ξξ1

Figure 9.14: How the Moebius task solves weak symmetry-breaking.

Now we generalize this construction to even dimensions. Let n = 2N .
Start with n + 1 n-simplices, σ0, . . . , σn, colored with process names, and
set ξi := Chσi. As before, we call the complex Facei ξi the external face of
ξi and Facejξi, for i 6= j, the internal faces.

The rank of Pi’s name in a set of process names is the of names in [n]
smaller than i in that set. For each j, 0 ≤ j ≤ n, let πj : [n]\{j} → [n]\{j}
be the map sending the name with rank r in [n]\{j} to the name with rank
r +N mod 2N .

For each i, and each j 6= i, πj(i), identify the internal face Facej ξi with
Facej ξπj(i). Because πj(i) 6= i, πj(i) 6= j, and πj(πj(i)) = i, each (2N − 1)-
simplex in each internal face lies in exactly two (2N)-simplices, so the result
is a manifold. (This why this construction works only in even dimensions.)

Let σ be an input n-simplex. The Moebius task’s carrier map carries
each proper face τ of σ to Ch τ . It carries σ itself to all n-simplices of ∆(σ).

260 CHAPTER 9. MANIFOLD PROTOCOLS

Theorem 9.4.4. The Moebius task cannot solve Set Agreement.

Proof. The one-layer Moebius task is a manifold protocol, so composing
the Moebius task with itself, or with one-layer protocols, or with any other
manifold task yields a manifold task. The claim then follows from Theo-
rem 9.3.6.

To show this task solves weak symmetry-breaking, we again color the
edges with black and white pebbles so that no simplex is monochromatic,
and the coloring on the boundary is symmetric. For the central simplex of
each ξi, color each node black except for the one labeled with Pi. For the
central simplex of each external face ξii, color the central (2N − 2)-simplex
black. The rest are white.

Every (2N − 1)-simplex ξ in ξi intersects both a face, either internal or
external, and a central (2N−1)-simplex. If ξ intersects an internal face, then
the vertices on that face are white, but the vertices on the central simplex
are black. If ξ intersects an external face, then it intersects the white node
of the central simplex of ξi, and a black node of the central simplex of ξii.
To solve (n+1)-process weak symmetry-breaking, run the Moebius protocol
from each n-simplex σ in the weak symmetry-breaking input complex I.

Corollary 9.4.5. Set agreement implements weak symmetry-breaking, but
not vice-versa.

The techniques studied here illustrate how combinatorial and algorith-
mic techniques complement one another: combinatorial techniques are often
effective to prove impossibility, while algorithmic techniques are convenient
to show that something is possible.

Mathematical Note 9.4.6. The notion of a pseudomanifold (Definition 9.1.3)
can be strengthened as follows.

Definition 9.4.7. AssumeM is a pure abstract simplicial complex of dimen-
sion n.

(1) M is called a simplicial manifold if the geometric realization of the
link of every simplex σ is homeomorphic to a sphere of dimension
n− 1− dimσ;

(2) M is called a simplicial manifold with boundary if the geometric re-
alization of the link of every simplex σ is either homeomorphic to
a sphere or to a closed ball, in each case of dimension n− 1− dimσ.

9.4. SET AGREEMENT VS WEAK SYMMETRY-BREAKING 261

Identify these
vertices

Figure 9.15: A triangulation of a pinched torus.

Note that in the special case when dimσ = n−1 we have n−1−dimσ = 0.
The 0-dimensional sphere consists of two points, whereas the 0-dimensional
ball consists of one point, so conditions of (1) and (2) of Definition 9.4.7
specialize precisely to the conditions of Definition 9.1.3.

There is also the following standard topological notion.

Definition 9.4.8. Assume X is an arbitrary Hausdorff3 topological space.

(1) X is called a topological manifold of dimension n, if every point of X
has a neighborhood homeomorphic to an open ball of dimension n;

(2) X is called a topological manifold with boundary of dimension n, if
every point of X has a neighborhood homeomorphic to an open subset
of Euclidean half-space:

Rn+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

262 CHAPTER 9. MANIFOLD PROTOCOLS

The interior of X, denoted IntX, is the set of points in X which have
neighborhoods homeomorphic to an open ball of dimension n. The boundary
of X, denoted ∂ X, is the complement of IntX in X. The boundary points
can be characterized as those points which land on the boundary hyperplane
xn = 0 of Rn+ in their respective neighborhoods. If X is a manifold of
dimension n with boundary, then IntX is a manifold of dimension n, and
IntX is a manifold of dimension n− 1.

We note that if M is a simplicial manifold with boundary, then its
geometric realization is a topological manifold with boundary of the same
dimension; moreover, the geometric realization of the boundary ofM is pre-
cisely the boundary of |M|. As you can see in Figure 9.2, a two-dimensional
manifold is a kind of a discrete approximation to a surface.

On the other hand, the geometric realization of the pseudomanifold does
not have to be a manifold. Perhaps the simplest example is obtained if we
take a simplicial 2-dimensional sphere, and then glue together the north
and south poles,4 as shown in Figure 9.15. This space is also called the
pinched torus. Clearly, the condition of being a manifold fails at the glued
poles, but the condition of being a pseudomanifold is still satisfied, since it
is a condition for edges and triangles, and is untouched by vertices being
glued together.

9.5 Chapter Notes

Immediate snapshot executions are due to Borowsky and Gafni [23], and to
Saks and Zaharoughu [136], who called them block executions. Borowsky
and Gafni also showed that the layered execution model is equivalent to the
standard read-write memory model.

Many the basic properties of one-layered executions presented here were
first shown by Attiya and Rajsbaum [16], although in the more general situ-
ation where processes execute repeatedly immediate snapshot operations in
the same shared memory. The example of a manifold protocol in Figure 9.3
which is not a subdivision is from Attiya and Rajsbaum [16]. Attiya and
Castañeda [12] prove the set agreement impossibility by applying Sperner’s
Lemma directly on executions.

Sperner’s Lemma and its relation with Brouwer’s fixed-point theorem has
been well-studied. See for example Bondy and Murty [22] and Henle [79]
for a self-contained, elementary proof of Sperner’s Lemma (the same argu-
ment we presented here) and how it is used to prove Brouwer’s fixed-point

9.6. EXERCISES 263

theorem.

The separation between weak symmetry-breaking and set agreement is
adapted from Gafni, Rajsbaum, and Herlihy [70]. They proved that weak
symmetry-breaking cannot implement set agreement when the number of
processes n + 1 is odd. It was shown by Castañeda and Rajsbaum [31, 33]
that weak symmetry-breaking can be solved wait-free, without the help of
any tasks (e.g. in the multi-layer model), if the number of processes is
not a prime power. Thus, in this case too, weak symmetry-breaking can-
not implement set agreement, because it is known that set agreement is
not wait-free solvable [23, 93, 137]. Therefore, the only case that remains
open, to prove that weak symmetry-breaking cannot implement set agree-
ment, is when the number of processes is at least 4, and a power of 2 (for
two processes the tasks are equivalent). Castañeda, Imbs, Rajsbaum and
Raynal [29, 30] prove this case in a weaker model, and study various defini-
tions of the non-determinism of the objects involved. More about renaming
and its relation to weak symmetry-breaking can be found in the survey by
Castañeda, Rajsbaum and Raynal [34].

9.6 Exercises

Exercise 9.1. Show that the following tasks are all equivalent to set agree-
ment, in the sense that any protocol for this task can be adapted to solve set
agreement (possibly with some extra read-write memory), and vice-versa.

1. Fixed-input set agreement : each process has its own name as input,
each process decides the name of some participating process, and no
more than k distinct names may be decided.

2. Strong set agreement : each process decides some process’s input, no
more than k distinct inputs may be decided, and at least one process
decides its own input.

Exercise 9.2. Check that the carrier maps for both the Moebius task of
Section 9.4.3 and k-set agreement are strict.

Exercise 9.3. Count the number of simplices in Chσ, for an n-simplex σ.

Exercise 9.4. Count the number of simplices in the output complex for
(n+ 1)-process weak symmetry-breaking.

Exercise 9.5. Compute the Euler characteristic of Chσ, for an n-simplex σ.

264 CHAPTER 9. MANIFOLD PROTOCOLS

Figure 9.16: The bridges of Königsberg.

Exercise 9.6. Once upon a time, the city of Königsberg, then in Prussia,
included two islands connected to each other and to the city itself by seven
bridges as shown in Figure 9.16. The residents amused themselves by trying
to find a way to through the city by crossing each bridge exactly once. Prove
that such a tour is impossible. Hint: use reasoning similar to the proof of
Lemma 9.3.2.

Exercise 9.7. Using read-write memory, implement the Set<Name> object
used in Figure 9.11. You may assume names are integers in the range [1 : N],
for some N > n+ 1. Do not worry about efficiency.

Exercise 9.8. Show that if M is a manifold and v a vertex not in M, then

• the cone v ∗M, and

• the cone v ∗ ∂M

are manifolds.

9.6. EXERCISES 265

Exercise 9.9. Prove that if (I,M,Ξ) is a manifold protocol, then

1. for any input simplex σ, ∂ Ξ(σ) = Ξ(∂ σ), and

2. if I is a manifold, Ξ(I) = Ξ(∂ I).

Exercise 9.10. Prove that no manifold protocol can solve the following task.
Suppose we want the processes to announce when they have all seen each
other. For this purpose, it is sufficient to assume processes have no inputs
(except for their names). The outputs can be anything, but they include a
special value “all”. The task requirement is that, in at least one execution
where all processes see each other (namely, each process sees at least one
value written to the shared memory by each other process), all processes
output “all”. Also, whenever a process does not see another process, it
should not output “all.”

Exercise 9.11. Prove that weak symmetry-breaking and set agreement are
equivalent in the case of two processes.

266 CHAPTER 9. MANIFOLD PROTOCOLS

Chapter 10

Connectivity

Non Print Material 10. Abstract: In Chapter 9, we considered models
of computation where, for any protocol Ξ and any input simplex σ, the
subcomplex Ξ(σ) ⊂ P is a manifold. We saw that any such protocol cannot
solve k-set agreement for k ≤ dimσ. In this chapter, we investigate another
important topological property of the complex Ξ(σ): having no “holes” in
dimensions m and below, a property called m-connectivity. We will see that
if every Ξ(σ) is (k− 1)-connected, then Ξ cannot solve k-set agreement. We
will see later that there are natural models of computation where protocol
complexes are not manifolds, but they arem-connected, for some 0 ≤ m ≤ n.
This notion of connectivity will also be used in later chapters to characterize
when protocols exist for certain tasks.

Key words: connected, critical configuration, nerve complex, nerve
graph, nerve lemma, path connected, reachable complex.

In Chapter 9, we considered models of computation where, for any protocol Ξ
and any input simplex σ, the subcomplex Ξ(σ) ⊂ P is a manifold. We saw
that any such protocol cannot solve k-set agreement for k ≤ dimσ. In
this chapter, we investigate another important topological property of the
complex Ξ(σ): having no “holes” in dimensions m and below, a property
called m-connectivity. We will see that if every Ξ(σ) is (k − 1)-connected,
then Ξ cannot solve k-set agreement. We will see later that there are natural
models of computation where protocol complexes are not manifolds, but they
are m-connected, for some 0 ≤ m ≤ n. This notion of connectivity will also
be used in later chapters to characterize when protocols exist for certain
tasks.

267

268 CHAPTER 10. CONNECTIVITY

10.1 Consensus and Path-Connectivity

We start with the familiar, one-dimensional notion of connectivity, and ex-
plore its relation to the consensus task.

Recall from Section 8.3.1 that in the consensus task for n+ 1 processes,
each process starts with a private input value and halts with an output value
such that (1) all processes choose the same output value, and (2) that value
was some process’s input.

Here we consider the consensus task (I,O,∆) with an arbitrary input
complex. In other words, instead of requiring that the input complex contain
all possible assignments of values to processes, we allow I to consist of
an arbitrary collection of initial configurations. There are particular input
complexes for which consensus is easily solvable. An input complex is said
to be degenerate for consensus if every process has the same input in every
configuration. Consensus is easy to solve if the input complex is degenerate:
each process simply decides its input. We will see that if a protocol’s carrier
map takes each simplex to a path-connected subcomplex of the protocol
complex, then that protocol cannot solve consensus for any non-degenerate
input complex.

Informally, consensus requires that all participating processes “commit”
to a single value. Expressed as a protocol complex, executions in which they
all commit to one value must be distinct, in some sense, from executions in
which they commit to another value. We now make this notion more precise.

Recall from subsection 3.5.1 that a complex K is path-connected if there
is an edge path linking any two vertices of K. In the next theorem, we show
that if a protocol carrier map satisfies a local path-connectivity condition,
then it cannot solve consensus for non-degenerate input complexes.

Theorem 10.1.1. Let I be a non-degenerate input complex for consensus. If
(I,O,∆) is an (n + 1)-process consensus task, and (I,P,Ξ) is a protocol
such that Ξ(σ) is path-connected for all simplices σ in I, then (I,P,Ξ)
cannot solve the consensus task (I,O,∆).

Proof. Assume otherwise. Because I is not degenerate, it contains an edge
{v, w} such that view(v) 6= view(w). (That is, there is an initial configura-
tion where two processes have distinct inputs.) By hypothesis, Ξ({v, w}) is
path-connected, and by Proposition 3.5.3, δ(Ξ({v, w})) is path-connected as
well, and lies in a single path-connected components of O. But each path-
connected component of the consensus output complex O is a single simplex
whose vertices are all labeled with the same output value, so δ(Ξ({v, w}))
is contained in one of these simplices, τ .

10.2. IMMEDIATE SNAPSHOT MODEL AND CONNECTIVITY 269

Because Ξ is a carrier map, Ξ(v) ⊂ Ξ({v, w}), δ(Ξ(v)) ⊂ ∆({v, w}) ⊂ τ .
Similarly, δ(Ξ(w)) ⊂ ∆({v, w}) ⊂ τ . It follows that δ(Ξ(v)) and δ(Ξ(w))
are both vertices of τ , hence they must labeled with the same value.

Because the protocol (I,P,Ξ) solves the task (I,O,∆), δ(Ξ(v)) is a
vertex of ∆(v) ∈ O, and δ(Ξ(w)) is a vertex of ∆(w) ∈ O. Consensus
defines ∆(v) to be a single vertex labeled with view(v), and therefore δ(Ξ(v))
is also labeled with view(v). By a similar argument, δ(Ξ(w)) is labeled with
view(w). It follows that δ(Ξ(v)) and δ(Ξ(w)) must be labeled with distinct
values, a contradiction.

This impossibility result is model-independent: it requires only that each
Ξ(σ) be path-connected. We will use this theorem, and others like it, to
derive three kinds of lower bounds.

• In asynchronous models, the adversary can typically enforce these con-
ditions for every protocol complex. For these models, we can prove
impossibility : consensus cannot be solved by any protocol.

• In synchronous models, the adversary can typically enforce these con-
ditions for r or fewer rounds, where r is a property of the specific
model. For these models, we can prove lower bounds: consensus can-
not be solved by any protocol that runs in r or fewer rounds.

• In semi-synchronous models, the adversary can typically enforce these
conditions for every protocol that runs in less than a particular time T ,
where T is a property of the specific model. For these models, we can
prove time lower bounds: consensus cannot be solved by any protocol
that runs in time less than T .

In the next section, we show that layered immediate snapshot protocol com-
plexes are path-connected.

10.2 Immediate Snapshot Model and Connectiv-
ity

We now show that if (I,Ξ,P) is a layered immediate snapshot protocol,
then Ξ(σ) is path-connected for every simplex σ ∈ I.

10.2.1 Critical Configurations

Here, we introduce a style of proof that we will use several times, called a
critical configuration argument. This argument is useful in asynchronous

270 CHAPTER 10. CONNECTIVITY

models, where processes can take steps independently. As noted earlier, we
can think of the system as a whole as a state machine, where each local
process state is a component of the configuration. Each input n-simplex σ
encodes a possible initial configuration, the protocol complex Ξ(σ) encodes
all possible protocol executions starting from σ, and each facet of Ξ(σ) en-
codes a possible final configuration. In the beginning, all interleavings are
possible, and the entire protocol complex is reachable. At the end, a com-
plete execution has been chosen, and only a single simplex remains reachable.
In between, as the execution unfolds, we can think of the reachable part of
the protocol complex as shrinking over time, as each step renders certain
final configurations inaccessible.

We use simplex notation (such as σ, τ) for initial and final configurations,
since they correspond simplices of the input and protocol complexes. We
use Latin letters for transient intermediate configurations (C).

We want to show that a particular property, such as having a path-
connected reachable protocol complex, that holds in each final configura-
tion, also holds in each initial configuration. We argue by contradiction.
We assume the property does not hold at the start, and we maneuver the
protocol into a critical configuration where the property still does not hold,
but where any further step by any process will make it hold henceforth (from
that point on). We then do a case analysis of each of the process’s possi-
ble next steps, and use a combination of model-specific reasoning and basic
topological properties to show that the property of interest must already
hold in the critical configuration, a contradiction.

Let σ be an input m-simplex, 0 ≤ m ≤ n, and let C be a configura-
tion reached during an execution of the protocol (I,P,Ξ) starting from σ.
A simplex τ of Ξ(σ) is reachable from C if there is an execution starting
from configuration C and ending in final configuration τ . The subcomplex
of the protocol complex P consisting of all simplices which are reachable
from intermediate configuration C, is called the reachable complex from C,
and is denoted Ξ(C).

Definition 10.2.1. Formally, a property P is a predicate on isomorphism
classes of simplicial complexes. A property is eventual if it holds for any
complex consisting of a single n-simplex and its faces.

For brevity, we say that a property P holds in configuration C if P holds
for Ξ(C), the reachable complex from C.

Definition 10.2.2. A configuration C is critical for an eventual property P
if P does not hold in C, but does hold for every configuration reachable
from C.

10.2. IMMEDIATE SNAPSHOT MODEL AND CONNECTIVITY 271

Informally, a critical configuration is a last configuration where P fails
to hold.

Lemma 10.2.3. Every eventual property P either holds in every initial con-
figuration, or it has a critical configuration.

Proof. Starting from an initial configuration where P does not hold, con-
struct an execution by repeatedly choosing a step that carries the protocol
to another configuration where P does not hold. Because the protocol must
eventually terminate in a configuration where P holds, advancing in this way
will eventually lead to a configuration C where P does not hold, but every
possible next step produces a configuration where P holds. The configura-
tion C is the desired critical configuration.

10.2.2 The Nerve Graph

We need a way to reason about the path-connectivity of a complex from the
path-connectivity of its subcomplexes.

Definition 10.2.4. Let I be a finite index set. A set of simplicial complexes
{Ki|i ∈ I} is called a cover for a simplicial complex K, if K = ∪i∈IKi.

Definition 10.2.5. The nerve graph G(Ki|i ∈ I) is the 1-dimensional complex
(often called a graph) whose vertices are the components Ki, and whose
edges are the pairs of components {Ki,Kj}, where i, j ∈ I, that have non-
empty intersections.

Note that the nerve graph is defined in terms of the cover, not just the
complex K.

The lemma that follows is a special case of the more powerful Nerve
Lemma (Lemma 10.4.2) used later on to reason about higher-dimensional
notions of connectivity.

Lemma 10.2.6. If each Ki is path-connected, and the nerve graph G(Ki|i ∈ I)
is path-connected, then K is also path-connected.

Proof. We will construct a path between two arbitrary vertices vi ∈ Ki
and vj ∈ Kj , for i, j ∈ I. By hypothesis, the nerve graph contains a path
Ki = Ki0 , . . . ,Ki` = Kj , for 0 ≤ j < `, where Kij ∩ Kij+1 6= ∅.

We argue by induction on `, the number of edges in this path. When
` = 0, vi, vj are both in Ki0 , and they can be connected by a path because
Ki0 is path-connected by hypothesis.

Assume the claim for paths with fewer than ` edges, and let L = ∪`−1
j=0Kij .

By construction, L ∩ Ki` is non-empty. Pick a vertex v in L ∩ Ki` . By the

272 CHAPTER 10. CONNECTIVITY

induction hypothesis, L is path-connected, so there is a path p0 from vi to
v in L. By hypothesis, Ki` is path-connected, so there is a path p1 from v
to vj in Ki` . Together, p0 and p1 form a path linking vi and vj .

10.2.3 Reasoning about Layered Executions

To reason about the connectivity of layered protocol complexes, we need
some basic lemmas about their structure. Assume C is a configuration,
U ⊆ [n] is a subset of process names, and (I,P,Ξ) is a protocol. We
introduce the following notations:

• let C ↑ U denote the configuration obtained from C by running the
processes in U in the next layer;

• let Ξ(C) denote the complex of executions which can be reached start-
ing from C; we call Ξ(C) the reachable complex from C;

• let (Ξ ↓ U)(C) denote the complex of executions where, starting from
C, the processes in U halt without taking further steps, and the rest
finish the protocol.

In the special case U = ∅, (Ξ ↓ U)(C) = Ξ(C).
These notations may be combined to produce expressions like (Ξ ↓

V)(C ↑ U), the complex of executions in which, starting from configura-
tion C, the processes in U simultaneously take immediate snapshots (write
then read), the processes in V then halt, and the remaining processes run
to completion.

For future reference we note that for all U, V ⊆ Π, and all configura-
tions C, we have

((Ξ ↓ U) ↓ V)(C) = (Ξ ↓ U ∪ V)(C). (10.2.1)

Recall that each configuration, which describes a system state, has two
components: the state of the memory, and the states of the individual pro-
cesses. Let U and V be sets of process names, where |U | ≥ |V |.
Lemma 10.2.7. If V ⊆ U , then configurations C ↑ U and (C ↑ V) ↑ (U \ V)
agree on the memory state and on the states of processes not in V , but
disagree on the states of processes in V .

Proof. Starting in C, we reach C ↑ U by letting the processes in U take
immediate snapshot in a single layer. Each process in U reads the values
written by the processes in U .

10.2. IMMEDIATE SNAPSHOT MODEL AND CONNECTIVITY 273

P0

0

P1 P2 P3 P0

0

P1 P2 P3

01

0 ⊥ ⊥ ⊥

0 1 2 3

0 1 ⊥⊥

0 1 2 3

01

U
V

C ↑ V (C ↑ V) ↑ U \ V

0 1 ⊥⊥

P1 P2 P3

01

⊥ ⊥ ⊥ ⊥

P0 P1 P2 P3

0 1 ⊥⊥⊥ ⊥ ⊥ ⊥

C 01 01

⊥⊥

P0 P1 P2 P3

0 1 ⊥⊥

C ↑ U

Figure 10.1: Proof of Lemma 10.2.7: The starting configuration C is shown
on the left, where U = {P0, P1}, V = {P1}, and each memory element is
initialized to ⊥. Two alternative executions appear at the top and bottom
of the figure. The top shows an execution where V = {P0} writes and reads
first, followed by V \ U = {P1}. The bottom shows an execution where
U = {P0, P1} writes and reads first. In both executions, if we halt the
processes in V , then we end up at the same configuration, shown on the
right.

Starting in C, we reach C ↑ V by letting the processes in V write then
read in the first layer, and we reach (C ↑ V) ↑ (U \ V) by then letting
the processes in U but not in V write then read in the second layer. Each
process in V reads the values written by the processes in V , but each process
in U \ V reads the values written by U .

Both executions leave the memory in the same state, and both leave
each process not in V in the same state, but they leave each process in V in
different states.

Figure 10.1 shows an example where there are four processes, P0, P1, P2,

274 CHAPTER 10. CONNECTIVITY

P0

01

P1 P2 P3

01

P0

01

P1 P2 P3

01 012

0 1 ⊥ ⊥

0 1 2 3

0 1 ⊥2

0 1 2 3

U
V

C ↑ V (C ↑ V) ↑ U \ V

0 1 ⊥2
P3

⊥ ⊥ ⊥ ⊥

P0 P1 P2 P3

⊥ ⊥ ⊥ ⊥

C 012 12 1212 12

⊥

P0 P1 P2 P3

⊥ ⊥

P0 P1 P2 P3

0 1 ⊥2⊥ 1 2 ⊥

C ↑ U (C ↑ U) ↑ V \ U

Figure 10.2: Proof of Lemma 10.2.8: The starting configuration C is shown
on the left, where U = {P1, P2}, V = {P0, P1}, and each memory element
is initialized to an arbitrary value ⊥. Two alternative executions appear
at the top and bottom of the figure. The top shows an execution where
V = {P0, P1} writes and reads first, followed by V \U = {P2}. The bottom
shows an execution where U = {P1, P2} writes and reads first, followed by
U \ V = {P0}. In both executions, if we halt the processes in U ∪ V , then
we end up at the same configuration, shown on the right.

and P3, where U = {P0, P1} and V = {P0}. The initial configuration C is
shown on the left. The top part of the figure shows an execution in which
P0 writes 0 to its memory element and then reads the array to reach C ↑ V ,
and then P1 writes 1 and reads to reach (C ↑ V) ↑ (U \V). The bottom part
shows an alternative execution in which P0 and P1 write 0 and 1 respectively,
and then read the array to reach C ↑ U .

Lemma 10.2.8. If V 6⊆ U and U 6⊆ V , configurations (C ↑ U) ↑ (V \ U) and
(C ↑ V) ↑ (U \ V) agree on the memory state and on the states of processes

10.2. IMMEDIATE SNAPSHOT MODEL AND CONNECTIVITY 275

not in U ∪ V , but disagree on the states of processes in U ∪ V .

Proof. Starting in C, we reach C ↑ U by letting the processes in U write
then read in the first layer, and we reach (C ↑ U) ↑ (V \ U) by letting the
process in V \ U write then read in the second layer. Each process in the
first layer reads the states written by U , and each process in the second layer
reads the states written by U ∪ V . Similarly, starting in C, we reach C ↑ V
by first running V , then U \ V . Each process in the first layer reads the
states written by V , and each process in the second layer reads the states
written by U ∪ V . Both configurations agree on the memory state and on
states of processes not in U ∪V , but they disagree on the states of processes
in U ∪ V .

Figure 10.2 shows an example where there are four processes, P0, P1, P2,
and P3, where U = {P1, P2} and V = {P0, P1}. The initial configuration C
is shown on the left. The top part of the figure shows an execution in which
P0, P1 write 0 and 1 respectively, read the array to reach C ↑ V , and then
P2 writes 2 and reads to reach (C ↑ V) ↑ (U \ V). The bottom part shows
an alternative execution in which in which P1, P2 write 0 and 1 respectively,
read the array to reach C ↑ U , and then P0 writes 0 and reads to reach
(C ↑ U) ↑ (V \ U).

Proposition 10.2.9. Assume C is a configuration, and U, V ⊆ Π, then we
have

Ξ(C ↑ V) ∩ Ξ(C ↑ U) = (Ξ ↓W)(C ↑ U ∪ V)

where W , the set of processes that take no further steps, satisfies

W =

V, if V ⊆ U ;

U, if U ⊆ V ;

U ∪ V, otherwise.

Proof. There are two cases. For the first case, suppose V ⊆ U . For inclusion
in one direction, Lemma 10.2.7 states that configurations C ↑ U and (C ↑
V) ↑ (U \ V) disagree on the states of processes in V , implying that every
execution in Ξ(C ↑ V) ∩ Ξ(C ↑ U) is an execution in Ξ(C ↑ U) where no
process in V takes a step:

Ξ(C ↑ V) ∩ Ξ(C ↑ U) ⊆ (Ξ ↓ V)(C ↑ U).

For inclusion in the other direction, Lemma 10.2.7 also states that configu-
rations C ↑ U and (C ↑ V) ↑ (U \ V), agree on the memory and on states
of processes not in V , implying that every execution starting from C ↑ U

276 CHAPTER 10. CONNECTIVITY

in which the processes in V take no steps is also an execution starting from
C ↑ V :

(Ξ ↓ V)(C ↑ U) ⊆ Ξ(C ↑ V) ∩ Ξ(C ↑ U).

The case U ⊆ V is settled analogously.
For the second case, suppose V 6⊆ U and U 6⊆ V . For inclusion in one

direction, Lemma 10.2.8 states that in (C ↑ U) ↑ (V \ U), and (C ↑ V) ↑
(U \ V), the processes in U ∪ V have distinct states, implying that every
execution in Ξ(C ↑ V) ∩ Ξ(C ↑ U) is an execution in Ξ(C ↑ U) where no
process in U ∪ V takes a step:

Ξ(C ↑ V) ∩ Ξ(C ↑ U) ⊆ (Ξ ↓ U ∪ V)(C ↑ {U ∪ V }).

For inclusion in the other direction, Lemma 10.2.8 also states that in (C ↑
U) ↑ (V \ U) and (C ↑ V) ↑ (U \ V), the processes not in U ∪ V have the
same states, as does the memory, implying that every execution starting
from C ↑ (U ∪ V) in which the processes in U ∪ V take no steps is also an
execution starting from C ↑ U , or from C ↑ V :

(Ξ ↓ U ∪ V)(C ↑ {U ∪ V }) ⊆ Ξ(C ↑ V) ∩ Ξ(C ↑ U).

10.2.4 Application

For each configuration C, the reachable complexes Ξ(C ↑ U) cover Ξ(C), as
U ranges over the non-empty subsets of Π, define a nerve graph G(Ξ(C ↑
U)|∅ (U ⊆ Π). The vertices of this complex are the reachable complexes
Ξ(C ↑ U), and the edges are pairs {Ξ(C ↑ U),Ξ(C ↑ V)}, where

Ξ(C ↑ U) ∩ Ξ(C ↑ V) 6= ∅.

We know from Proposition 10.2.9 that

Ξ(C ↑ U) ∩ Ξ(C ↑ V) = (Ξ ↓W)(C ↑ U ∪ V)

which is non-empty if and only if we do not halt every process: W 6= Π.

Lemma 10.2.10. The nerve graph G(Ξ(C ↑ U)|∅ (U ⊆ Π) is path-
connected.

Proof. We claim there is an edge from every nerve graph vertex to the vertex
Ξ(C ↑ Π). By Proposition 10.2.9,

Ξ(C ↑ Π) ∪ Ξ(C ↑ U) = (Ξ ↓ U)(C ↑ Π)

10.3. K-SET AGREEMENT AND (K − 1)-CONNECTIVITY 277

Because U ⊂ Π, this intersection is non-empty, implying that the nerve
graph has an edge from every vertex to Ξ(C ↑ Π). It follows that the nerve
graph is path-connected.

Theorem 10.2.11. For every wait-free layered immediate snapshot protocol,
and every input simplex σ, the subcomplex Ξ(σ) is path-connected.

Proof. We argue by induction on n. For the base case, when n = 0, the
complex Ξ(σ) is a single vertex, which is trivially path-connected.

For the induction step, assume the claim for n processes. Consider Ξ(σ),
where dimσ = n. Being path-connected is an eventual property, so it has
a critical configuration C, such that Ξ(C) is not path-connected, but Ξ(C ′)
is path-connected for every configuration C ′ reachable from C. In particular,
for each set of process names U ⊆ Π, each Ξ(C ↑ U) is path-connected.

Moreover, the subcomplexes Ξ(C ↑ U) cover the simplicial complex
Ξ(C), and Lemma 10.2.10 states that the nerve graph of this covering is
path-connected. Finally, Lemma 10.2.6 states that these conditions ensure
that Ξ(C) is itself path-connected, contradicting the hypothesis that C is
a critical state for path-connectivity.

Theorem 10.2.11 provides an alternate, more general proof that consen-
sus is impossible in asynchronous read-write memory.

10.3 k-Set Agreement and (k − 1)-Connectivity

We consider the k-set agreement task (I,O,∆) with arbitrary inputs, mean-
ing we allow I to consist of an arbitrary collection of initial configurations.
An input complex is said to be degenerate for k-set agreement if, in ev-
ery input configuration, at most k distinct values are assigned to processes.
Clearly, k-set agreement has a trivial solution if the input complex is de-
generate. We will see that if a protocol’s carrier map satisfies a topological
property called (k − 1)-connectivity, then that protocol cannot solve k-set
agreement for any non-degenerate input complex.

Theorem 10.3.1. Let I be a non-degenerate input complex for k-set agree-
ment. If (I,O,∆) is an (n+ 1)-process k-set agreement task, and (I,P,Ξ)
is a protocol such that Ξ(σ) is (k − 1)-connected for all simplices σ in I,
then (I,P,Ξ) cannot solve the k-set agreement task (I,O,∆).

Proof. Because I is not degenerate, it contains a k-simplex σ labeled with
k+1 distinct values. Let ∆k denote the k-simplex whose vertices are labeled

278 CHAPTER 10. CONNECTIVITY

with the input values from σ, and let ∂∆k be its (k − 1)-skeleton. Let
c : Ξ(σ) → ∂∆k denote the simplicial map that takes every vertex v ∈ Ξ(σ)
to its value in ∂∆k. Since each vertex of Ξ(σ) is labeled with a value from
a vertex of σ, and since the protocol (I,P,Ξ) solves k-set agreement, the
simplicial map c is well-defined.

Since the subcomplexes Ξ(τ) are n-connected for all simplices τ ⊆ σ,
Theorem 3.7.5(2) tells us that the carrier map Ξ|σ has a simplicial approx-
imation. In other words, there exists a subdivision Div of σ, together with
a simplicial map ϕ : Div σ → Ξ(σ), such that for every simplex τ ⊆ σ, we
have ϕ(Div τ) ⊆ Ξ(τ).

The composition simplicial map

c ◦ ϕ : Div σ → ∂∆k

can be viewed as a coloring of the vertices of Div σ by the vertex values in
∂∆k. Clearly, for every τ ⊆ σ, the set of values in c(ϕ(Div τ)) is contained
in the set of input values of τ , satisfying the conditions of Sperner’s Lemma.
It follows that there exists a k-simplex ρ in Div σ colored with all k + 1
colors. This is a contradiction, because ρ is mapped to all of ∆k, which is
not contained in the domain complex ∂∆k.

10.4 Immediate Snapshot Model and k-Connecti-
vity

In this section we show that if (I,Ξ,P) is a layered immediate snapshot
protocol, then Ξ(σ) is n-connected for every simplex σ ∈ I

10.4.1 The Nerve Lemma

To compute the connectivity of a complex, we would like to break it down
into simpler components, compute the connectivity of each of the compo-
nents, and then “glue” those components back together in a way that permits
us to to deduce the connectivity of the original complex from the connec-
tivity of the components.

Definition 10.4.1. Assume K is a simplicial complex and (Ki)i∈I is a family
of non-empty subcomplexes covering K, i.e., K = ∪i∈IKi. The cover’s nerve
complex N (Ki|i ∈ I) is the abstract simplicial complex whose vertices are
the components Ki, and whose simplices are sets of components {Kj |j ∈ J}
which the intersection ∩j∈JKj is non-empty.

10.4. IMMEDIATE SNAPSHOT MODEL AND K-CONNECTIVITY 279

Informally, the nerve of a cover describes how the elements of the cover
“fit together” to form the original complex. Like the nerve graph, the nerve
complex is determined by the cover, not the complex. The next lemma is a
generalization of Lemma 10.2.6.

Lemma 10.4.2 (Nerve Lemma). Let {Ki|i ∈ I} be a cover for a simplicial
complex K, and let k be some fixed integer. For any index set J ⊆ I, define
KJ = ∩j∈JKj . Assume that KJ is either (k − |J | + 1)-connected or empty,
for all J ⊆ I. Then K is k-connected if and only if the nerve complex
N (Ki|i ∈ I) is k-connected.

The following special case of the Nerve Lemma is often useful

Corollary 10.4.3. If K and L are k-connected simplicial complexes, such
that K ∩ L is (k − 1)-connected, then the simplicial complex K ∪ L is also
k-connected.

10.4.2 Reachable Complexes and Critical Configurations

To compute higher-dimensional connectivity, we need to generalize Propo-
sition 10.2.9 to multiple sets.

Lemma 10.4.4. Let U0, . . . , Um be sets of process names indexed so that
|Ui| ≥ |Ui+1|.

m⋂
i=0

Ξ(C ↑ Ui) = (Ξ ↓W)(C ↑ ∪mi=0Ui)

where W , the set of processes that take no further steps, satisfies

W =

{
∪mi=1Ui if ∪mi=1 Ui ⊆ U0

∪mi=0Ui otherwise.

Proof. We argue by induction on m. For the base case, when m is 1, the
claim follows from Proposition 10.2.9.

For the induction step, assume the claim for m sets. Because the Ui
are indexed so that |Ui| ≥ |Ui+1|, | ∪m−1

i=0 Ui| ≥ |Um|, so we can apply the
induction hypothesis,

m⋂
i=0

Ξ(C ↑ Ui) =

m−1⋂
i=0

Ξ(C ↑ Ui) ∩ Ξ(C ↑ Um)

= (Ξ ↓W)(C ↑ ∪m−1
i=0 Ui) ∩ Ξ(C ↑ Um).

280 CHAPTER 10. CONNECTIVITY

where

W =

{
∪m−1
i=1 Ui if ∪mi=1 Ui ⊆ U0

∪m−1
i=0 Ui otherwise.

Since no process in W takes a step in the intersection,

m⋂
i=0

Ξ(C ↑ Ui) = (Ξ ↓W)(C ↑ ∪m−1
i=0 Ui) ∩ Ξ(C ↑ Um)

= (Ξ ↓W)(C ↑ ∪m−1
i=0 Ui) ∩ (Ξ ↓W)(C ↑ Um).

Applying Proposition 10.2.9 and Equation 10.2.1 yields

m⋂
i=0

Ξ(C ↑ Ui) = (Ξ ↓W)(C ↑ ∪m−1
i=0 Ui) ∩ (Ξ ↓W)(C ↑ Um)

= ((Ξ ↓W) ↓ X)(C ↑ ∪mi=0Ui)

= (Ξ ↓ (W ∪X)(C ↑ ∪mi=0Ui),

where

X =

{
Um if Um ⊆ ∪m−1

i=0 Ui

∪mi=0Ui otherwise.

We now compute W ∪ X, the combined set of processes to halt. First,
suppose that ∪mi=1Ui ⊆ U0. It follows that W = ∪m−1

i=1 Ui, and X = Um, so
W ∪X = ∪mi=1Ui.

Suppose instead that ∪mi=1Ui 6⊆ U0. If ∪mi=1Ui 6⊆ U0, then W = ∪m−1
i=0 Ui,

and W ∪ X = ∪mi=0Ui. If ∪mi=1Ui ⊆ U0, then Um 6⊆ ∪m−1
i=0 Ui = U0, so

X = ∪mi=0Ui, and W ∪X = ∪mi=0Ui. Substituting Y = W ∪X yields

m⋂
i=0

Ξ(C ↑ Ui) = (Ξ ↓ Y)(C ↑ X)

where W , the set of processes that take no further steps, satisfies

Y =

{
∪mi=1Ui if ∪mi=1 Ui ⊆ U0

∪mi=0Ui otherwise.

For each configuration C, the reachable complexes Ξ(C ↑ U) cover Ξ(C).
They define a nerve complex N (Ξ(C ↑ U)|U ⊆ Π). The vertices of this

10.4. IMMEDIATE SNAPSHOT MODEL AND K-CONNECTIVITY 281

complex are the reachable complexes Ξ(C ↑ U), and the m-simplices are the
sets {Ξ(C ↑ Ui)|i ∈ [0 : m]} such that⋂

i∈I
Ξ(C ↑ Ui) 6= ∅.

We know from Lemma 10.4.4 that⋂
i∈I

Ξ(C ↑ Ui) = (Ξ ↓W)(C ↑ ∪i∈IUi),

where W , the set of processes that halt, depends on U and V . This complex
is non-empty if and only if W 6= Π.

Lemma 10.4.5. If ∪mi=0Ui = Π but each Ui 6= Π, then ∩mi=0Ξ(C ↑ Ui) = ∅.

Proof. By hypothesis, ∪mi=1Ui 6⊆ U0, so by Lemma 10.4.4,

m⋂
i=0

Ξ(C ↑ Ui) = (Ξ ↓ ∪mi=0Ui)(C ↑ ∪mi=0Ui)

= (Ξ ↓ Π)(C ↑ ∪mi=0Ui)

which is empty because every process halts.

Lemma 10.4.6. The nerve complex N (Ξ(C ↑ U)|∅ (U ⊆ Π) is n-connected.

Proof. We show that the nerve complex is a cone with an apex Ξ(C ↑ Π),
in other words, if ν is an non-empty simplex in the nerve complex, so is
{Ξ(C ↑ Π)} ∪ ν. Let ν = {Ξ(C ↑ Ui|i ∈ [0 : m]}.

If Π = Ui for some i in [0 : m], there is nothing to prove. Otherwise,
assume Ui 6= Π, for i ∈ [0 : m]. The simplex {Ξ(C ↑ Π)} ∪ ν is non-empty if

Ξ(C ↑ Π) ∩

(
m⋂
i=0

Ξ(C ↑ Ui)

)
6= ∅.

Applying Lemma 10.4.4,

Ξ(C ↑ Π) ∩

(
m⋂
i=0

Ξ(C ↑ Ui)

)
= (Ξ ↓ ∪mi=0Ui)(C ↑ Π)

Because each Ui 6= Π, and ν is non-empty, Lemma 10.4.5 implies that
∪mi=0Ui 6= Π, so the simplex {Ξ(C ↑ Π)} ∪ ν is non-empty.

It follows that every facet of the nerve complex contains the vertex
Ξ(C ↑ Π), so the nerve complex is a cone, which is n-connected because
it is contractible (see Section 3.5.3).

282 CHAPTER 10. CONNECTIVITY

Theorem 10.4.7. For every wait-free layered immediate snapshot protocol,
and every input simplex σ, the complex Ξ(σ) is n-connected.

Proof. We argue by induction on n. For the base case, when n = 0, the
complex Ξ(σ) is a single vertex, which is trivially n-connected.

For the induction step, assume the claim for n processes. Consider Ξ(σ),
where dimσ = n. Being n-connected is an eventual property, so it has a
critical configuration C such that Ξ(C) is not n-connected, but Ξ(C ′) is n-
connected for every configuration reachable from C. In particular, for each
set of process names U ⊆ Π, each Ξ(C ↑ U) is n-connected. Moreover, the
Ξ(C ↑ U) cover Ξ(C).

Lemma 10.4.4 states that⋂
i∈I

Ξ(C ↑ Ui) = (Ξ ↓W)(C ↑ X),

for |W | > 0, W ⊆ X ⊆ ∪i∈IUi. Because |W | > 0, this complex is the
wait-free protocol complex for n− |W |+ 1 processes, which is either empty,
or n-connected by the induction hypothesis.

Lemma 10.4.6 states the nerve complex is n-connected, hence (n − 1)-
connected.

It follows from the Nerve Lemma that Ξ(C) was already n-connected,
contradicting the assumption that C was a critical configuration for n-
connectivity.

10.5 Chapter Notes

Michael Fischer, Nancy Lynch, and Michael Paterson [56] were the first
to prove that consensus is impossible in a message-passing system where a
single thread can halt. They introduced the critical configuration style of
impossibility argument. M. Loui and H. Abu-Amara [112] and Herlihy [80]
extended this result to shared memory. Biran, Moran, and Zaks [18] were
the first to draw the connection between path-connectivity and consensus.

Chaudhuri [37] was the first to study the k-set agreement task. The
connection between connectivity and k-set agreement appears in Chaudhuri,
Herlihy, Lynch and Tuttle [39], Saks and Zaharoglou [137], Borowsky and
Gafni [23], and Herlihy and Shavit [93].

The critical configuration style of argument to show that a protocol
complex is highly connected was used by Herlihy and Shavit [93] in the read-
write wait-free model. This style of argument is useful to prove connectivity

10.5. CHAPTER NOTES 283

in models where other communication objects are available in addition to
read-write objects, as in Herlihy [80] for path connectivity or Herlihy and
Rajsbaum [81] for k-connectivity. The layered style of argument was used
in Chapter 9, to prove connectivity invariants on the sets of configurations
after some number of steps of a protocol. It will be further explored in
Chapter 13. Yet another approach to prove connectivity is in Chapter 7,
based on distributed simulations.

As we have seen in this chapter, (k−1)-connectivity is sufficient to prove
the k-set agreement impossibility result. However, it is not a necessary
property. In Chapter 9 we saw that the weaker property of being a manifold
protocol is also sufficient. Theorem 5.1 in Herlihy and Rajsbaum [84] is a
model-independent condition that implies set agreement impossibility, in the
style of Theorem 10.3.1. The condition is based on homology groups, instead
of homotopy groups (as is k-connectivity), and is more combinatorial. In
fact, from the manifold protocol property it is quite straightforward to derive
the homology condition, as explained by Attiya and Rajsbaum [16].

One of the main ideas in this book is that the power of a distributed
computing model is closely related to the connectivity of protocol com-
plexes in the model. For instance, given Theorem 10.3.1, the problem of
telling whether set agreement is solvable in a particular model is reduced to
the problem of showing that protocol complexes in that model are highly
connected. A number of tools exist to show that a space is highly con-
nected, such as subdivisions, homology, the nerve theorem, and others. Ma-
tousek [115] describes some of them, and discusses their relationship. We
refer the interested reader to Kozlov [102, Section 15.4] for further informa-
tion on the Nerve lemma, in particular see [102, Theorem 15.24].

Mostefaoui, Rajsbaum, and Raynal [124] introduced the study of the
“condition-based approach,” with the aim of characterizing the input com-
plexes for which it is possible to solve consensus in an asynchronous sys-
tem despite the occurrence of up to t process crashes, and further devel-
oped it, e.g., for synchronous systems in Mostefaoui, Rajsbaum, Raynal and
Travers [125] and set agreement in [123].

Obstructions to wait-free solvability of arbitrary tasks based on homol-
ogy theory were studied by Havlicek [78]. This result is further discussed
in Havlicek [77], where it is proved that the wait-free full-information pro-
tocol complex (using atomic snapshot memory) is homotopy equivalent to
the underlying input complex. The derivation of the homotopy equivalence
is based on Theorem 10.4.7 (proved originally in [93]).

284 CHAPTER 10. CONNECTIVITY

10.6 Exercises

Exercise 10.1. Prove the following stronger version of Lemma 10.2.6: If each
Ki is path-connected, thenK is path-connected if and only if the nerve graph
G(Ki|i ∈ I) is path-connected.

Exercise 10.2. Defend or refute the claim that “without loss of generality”,
it is enough to prove that k-set agreement is impossible when inputs are
taken only from a set of size k + 1.

Exercise 10.3. Use the Nerve lemma to prove that if A and B are n-
connected, and A ∩ B is (n− 1)-connected, then A ∪ B is n-connected.

Exercise 10.4. Revise the proof of Theorem 10.2.11 to a model in which
asynchronous processes share an array of single-writer, multi-reader regis-
ters. The basic outline should be the same, except the critical configuration
case analysis must consider individual reads and writes instead of layers.

Exercise 10.5. Let the simplicial map ϕ : A → B be a simplicial approx-
imation to the continuous map f : |A| → |B|. Show that the continuous
map |ϕ| : |A| → |B| is homotopic to f .

Exercise 10.6. We have defined a simplicial map ϕ : A → B be a simplicial
approximation to the continuous map f : |A| → |B| if, for every simplex
α ∈ A,

f(|α|) ⊆
⋂
a∈α

Stϕ(a)

An alternative definition is to require that for every vertex a ∈ A,

f(|St a|) ⊆ Stϕ(a).

Show that these definitions are equivalent.

Exercise 10.7. Let C be a configuration, and define

Z(C) =
⋂
P∈Π

Ξ(C ↑ P)

the complex of final configurations reachable by executions in which exactly
one process participates in the next layer after C.

Clearly, Z(C) ⊆ Ξ(C). Show that Ξ(C) 6⊂ Z(C).
Show that the nerve complex N (Ξ(C ↑ P)|P ∈ Π) is isomorphic to ∂∆n,

the (n− 1)-skeleton of ∆n = [n] = {0, . . . n}.

Chapter 11

Wait-Free Computability for
General Tasks

Non Print Material 11. Abstract: Although many tasks of interest are col-
orless, there are “inherently colored” tasks that cannot be defined without
taking process names into account. Some have wait-free read-write proto-
cols, and some do not. This chapter gives a characterization of wait-free
read-write solvability for general tasks. We will see that general tasks are
harder to analyze than colorless tasks. Allowing tasks to depend on process
names seems like a minor change, but it will have sweeping consequences.

Key words: Cauchy sequence, Lebesgue number, chromatic subdivi-
sion, deformation retraction, hourglass task, hyperplane, link-connected,
mesh, open cover, safe agreement.

Although many tasks of interest are colorless, there are “inherently colored”
tasks that have no corresponding colorless task. Some are wait-free solvable,
but not by any colorless protocol, while others are not wait-free solvable. In
this chapter we give a characterization of wait-free solvability of general
tasks. We will see that general tasks are harder to analyze than colorless
tasks. Allowing tasks to depend on process names seems like a minor change,
but it will have sweeping consequences.

11.1 Inherently Colored Tasks

Not all tasks can be expressed as colorless tasks. For example, the weak
symmetry-breaking task discussed in Chapter 9 cannot be expressed as a col-

285

286 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

orless task, since one process cannot adopt the output value of another.

11.1.1 Hourglass task

Theorem 4.3.1 states that a colorless task (I,O,∆) has an (n + 1)-process
wait-free layered snapshot protocol if and only if there is a continuous map
f : | skeln I| → |O| carried by ∆. Can we generalize this theorem to colorless
tasks? A simple example shows that a straightforward generalization will
not work.

Consider the following Hourglass task, whose input and output com-
plexes are shown in Figure 11.1. There are three processes: P0, P1, and
P2, dented by black, white, and gray, and only one input simplex. The
carrier map defining this task is shown in tabular form in Figure 11.2, and
in schematic form in Figure 11.3. Informally, this task is constructed by
taking the standard chromatic subdivision and “pinching” it at the waist to
identify (that is, “glue together”) P0’s vertices on the edges representing its
two-process executions.

Note that the Hourglass task satisfies the conditions of Theorem 4.3.1:
there is a continuous map |I| → |O| carried by ∆, shown schematically in
Figure 11.4.1

Nevertheless, even though this task satisfies the conditions of Theo-
rem 4.3.1, it does not have a wait-free layered immediate-snapshot protocol.
Perhaps the simplest demonstration is just to observe that we can solve
2-set agreement by composing a layered immediate snapshot protocol with
a protocol for the Hourglass task. It follows that if we had a layered im-
mediate snapshot hourglass protocol, then their composition would yield a
layered immediate snapshot protocol for 2-set agreement, which we know to
be impossible.

The composite protocol is shown in Figure 11.5. The processes share an
array announce[], with one entry for each process, initially null. Process Pi
first writes its input value to announce[i], and then calls the layered snapshot
Hourglass protocol. If that call returns 0, Pi may be running by itself, so
it decides its own input. Otherwise, the processes behave differently. If the
Hourglass protocol returns 1 to P0, then P0 is running concurrently with
either P1, or P2, or both, so it decides announce[1] if it is not null, else
it decides announce[2]. If the Hourglass protocol returns 1 to P0 or P1, it
decides announce[0]. If the Hourglass protocol returns 2, the process decides

1This map is a deformation retraction, a continuous deformation of the input com-
plex’s polyhedron into the output complex’s polyhedron that leaves the output complex
unchanged.

11.1. INHERENTLY COLORED TASKS 287

0

1 1

1

2 00 2

I O

Figure 11.1: Input and Output Complexes for the Hourglass Task. If a
vertex v is labeled with Pi, then a process that chooses output vertex v in
the Hourglass task chooses Pi’s input value for the 2-set agreement task.
Note that each triangle is labeled with at most two process names.

σ ∆(σ)

{P0} {(P0, 0)}
{P1} {(P1, 0)}
{P2} {(P2, 0)}
{P0, P1} {(P0, 0), (P1, 1)} , {(P0, 1), (P1, 1)} , {(P0, 1), (P1, 0)}
{P0, P2} {(P0, 0), (P2, 1)} , {(P0, 1), (P2, 1)} , {(P0, 1), (P2, 0)}
{P1, P2} {(P1, 0), (P2, 2)} , {(P1, 2), (P2, 2)} , {(P1, 2), (P2, 0)}
{P0, P1, P2} {(P0, 0), (P1, 1), (P2, 1)} , {(P0, 1), (P1, 1), (P2, 1)} , {(P0, 1), (P1, 0), (P2, 2)} ,

{(P0, 1), (P1, 2), (P2, 2)} , {(P0, 1), (P1, 2), (P2, 0)}

Figure 11.2: The Hourglass Task: tabular specification.

288 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

0

∆

00

00

1

∆

1

00

00

1

∆

1

00

∆

2 00 2

Figure 11.3: Carrier Map for the Hourglass Task: single-process executions
are at the top, executions for P0 and P1 on the middle left, for P0 and P2

on the middle right, and executions for P1 and P2 on the bottom.

its own input. Figure 11.6 labels each output vertex with its corresponding
decision value. It is easy to check that in each execution, the processes
decide at most two distinct values.

11.1. INHERENTLY COLORED TASKS 289

Figure 11.4: Continuous Map Between Input and Output Complexes.

Since there is no wait-free snapshot protocol for k-set agreement, there
cannot be a wait-free snapshot protocol for the Hourglass task. Why does
Theorem 4.3.1 fail to hold for colored tasks? One direction still works:
given a protocol (I,P,Ξ) solving the task (I,O,∆), it is easy to extend the
proof of Theorem 4.3.1 to exploit the connectivity of the snapshot protocol
complex to construct a continuous map |I| → |P|. Composing this map
with the decision map yields a continuous map |I| → |O| carried by ∆.

The other direction fails. Given a continuous map f : |I| → |O| carried
by ∆, it is possible to construct a simplicial approximation φ : ChN I → O
carried by ∆, but that simplicial approximation may not be color-preserving.
In other words, one process may be assigned another’s output value. Such
flexibility is not an issue with colorless tasks, where by definition a process’s
inputs and outputs do not depend on its identity. By contrast, for tasks such
as weak symmetry-breaking or Hourglass, an output legal for one process
may not be legal for another.

290 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

shared announce: array [0.2] of value
shared hourglass : Hourglass

decide(input : Value): Value
announce[0] := input
select (hourglass . decide(0))
case 0:
return announce[0]

case 1:
if announce[1] != null then
return announce[1]

else
return announce[2]

decide(Value input): Value
announce[1] := input
select (hourglass . decide(1))
case 0:
return announce[1]

case 1:
return announce[0]

case 2:
return announce[1]

decide(Value input): Value
announce[2] := input
select (hourglass . decide(2))
case 0:
return announce[2]

case 1:
return announce[0]

case 2:
return announce[2]

Figure 11.5: How to use an Hourglass protocol to solve 2-set agreement:
pseudo-code for P0, P1, and P2.

11.2 Solvability for Colored Tasks

Recall that a simplex σ = {s0, . . . , sn} is chromatic if each vertex is labeled
with a distinct color, and a chromatic subdivision Div σ is a subdivision of σ
where

(1) each simplex of the subdivision is chromatic,

(2) for each τ ⊂ σ, each vertex in Div τ is labeled with a color from τ .

We are now ready to state our main theorem.

11.2. SOLVABILITY FOR COLORED TASKS 291

P0

P0 P0

P1 or P2

P2P1P2 P1

Figure 11.6: Hourglass vertices to k-set agreement values.

Theorem 11.2.1. A task (I,O,∆) has a wait-free layered immediate snapshot
protocol if and only if I has a chromatic subdivision Div I and a color-
preserving simplicial map

µ : Div I → O

carried by ∆.

Theorem 11.2.1 is depicted schematically in Figure 11.7. The figure’s top
half shows how a task is specified by a carrier map ∆ that takes each simplex
σ of the input complex I to a subcomplex ∆(σ) of the output complex O.
The bottom half shows how the simplicial map µ maps each simplex of a
chromatic subdivision Div I to a simplex in the output complex such that
every τ ∈ Div σ is carried to a simplex in ∆(σ).

It is impossible to build such a color-preserving simplicial map for the
Hourglass task because the “pinch” in the middle makes it impossible for
any simplicial map to be color-preserving.

292 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

σσ

∆(σ)

I
O

∆(σ)

Carrier map ∆
O

IDiv I O
Simplicial map μ

Figure 11.7: Fundamental Theorem for Colored Tasks.

In Chapter 10 we saw that the (colorless) consensus task has no wait-free
layered immediate snapshot protocol. We can illustrate how Theorem 11.2.1
works by relaxing the consensus task’s requirements as follows.

Quasi-Consensus Each of P0 and P1 is given a binary input. If both have
input v, then both must decide v. If they have mixed inputs, then
either they agree, or P1 may decide 0 and P0 may decide 1 (but not
vice-versa).

Figure 11.8 shows the input and output complexes for the quasi-consensus
task. Note that quasi-consensus is not a colorless task. Does it have a
wait-free read-write protocol?

It is easy to see that there is no color-preserving simplicial map carried
by ∆ from the input complex to the output complex. The vertices of input
simplex {(P0, 0), (P1, 1)} map to (P0, 0) and (P1, 1), but there is no single
output simplex containing both vertices. Nevertheless, there is a map sat-
isfying the conditions of the theorem from a subdivision Div I of the input

11.3. ALGORITHM IMPLIES MAP 293

complex. If input simplex {(P0, 0), (P1, 1)} is subdivided as shown in Fig-
ure 11.9, then it can be “folded” around the output complex, allowing input
vertices (P0, 0) and (P1, 1) to be mapped to their counterparts in the output
complex.

Figure 11.10 shows a simple protocol for quasi-consensus. If P0 has input
0 and P1 has input 1, then this protocol admits three distinct executions:
one in which both decide 0, one in which both decide 1, and one in which
P1 decides 0 and P0 decides 1. These three executions correspond to the
three simplices in the subdivision of {(P0, 0), (P1, 1)}, which are carried to
the edges {(P0, 0), (P1, 0)}, {(P0, 1), (P1, 1)}, and {(P0, 1), (P1, 0)}.

11.3 Algorithm Implies Map

One direction of Theorem 11.2.1 is straightforward. If (I,P,Ξ) solves
(I,O,∆), then the protocol’s simplicial decision map

δ : P → O,

is color-preserving and carried by ∆. On the other hand, any wait-free
layered immediate snapshot protocol complex P is a chromatic subdivision
of the input complex I.

11.4 Map Implies Algorithm

Assume we are given a task (I,O,∆), a chromatic subdivision Div I of the
input complex, and a color-preserving simplicial map µ : Div I → O carried
by ∆. We will show that this task has a wait-free read-write protocol.

Our strategy is to show there exists a color-preserving simplicial map

φ : ChN I → Div I,

for some N > 0, such that for all σ ∈ I, φ(ChN σ) ⊆ Div σ. These maps
compose as follows:

ChN I φ→ Div I µ→ O.

Here is how to turn these maps into a protocol. From an input simplex σ,
each process performs the following three steps:

step 1. execute an N -layer immediate snapshot protocol, halt on a vertex x
of the simplicial complex ChN σ,

294 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

step 2. compute y = φ(x), yielding a vertex in Div σ,

step 3. compute z = µ(y), yielding an output vertex.

It is easy to check that all processes halt on the vertices of a single simplex
in ∆(σ). Moreover, because all maps are color-preserving, each process halts
on an output vertex of matching color.

Because the identity map |ChN I| → |Div I| is continuous, it has a sim-
plicial approximation ψ : ChN I → Div I carried by ∆ (Theorem 3.7.5).
Unfortunately, there is no guarantee that this map is color-preserving. To
provide such a guarantee, we will prove the following generalization of the
Simplicial Approximation Theorem:

Theorem 11.4.1. If I is a chromatic complex, and Div I a chromatic subdi-
vision of I, then there exists a color-preserving simplicial map

φ : ChN I → Div I

such that for all σ ∈ I, φ(ChN σ) ⊆ Div σ.

Both Div I and ChN I are abstract complexes, defined in purely com-
binatorial terms. Nevertheless, we do not know how to prove the existence
of this map in a combinatorial way. Instead, we will work with geomet-
ric complexes, embedded in high-dimensional Euclidean space where we can
exploit tools provided by point-set topology. Henceforth, all simplices and
complexes will be geometric, unless explicitly stated otherwise, so we will
not always distinguish between a simplex or complex and its polyhedron.
The exact meaning should be clear from context.

11.4.1 Basic Concepts from Point-Set Topology

Recall that geometric simplices “live” in a a Euclidean space of high but
finite dimension. Any such space is a metric space, where the distance
between points x and y is denoted |x− y|. The open ε-ball B(x, ε) around a
point x is the set of points y such that |x− y| < ε, for some ε > 0. An ε-ball
is an open set.

A Cauchy sequence is an infinite sequence of points x0, x1, . . . with the
property that the distance between successive points |xi − xi+1| limits to
zero.

Fact 11.4.2. In Euclidean space, every Cauchy sequence x0, x1, . . . converges
to a point x∗, meaning that for any ε > 0, there is an integer N > 0 such
that |x∗ − xi| < ε for all i > N .

11.4. MAP IMPLIES ALGORITHM 295

The set of points that can be expressed as affine combinations of points
x0, x1, . . . , xm,

y =

m∑
i=0

ci · xi

where
∑

i ci = 1, is called the hyperplane defined by those points. If a
hyperplane is generated by m + 1 affinely-independent points, then it has
dimension m. A set of points need not be affinely independent to define
a hyperplane, so a hyperplane generated by m + 1 arbitrary points has
dimension at most m.

As long as a set of hyperplanes does not fill up the entire space, any
point has arbitrarily small neighborhoods that include points not on any
hyperplane:

Fact 11.4.3. If x is a point, and H a finite set of hyperplanes, each of dimen-
sion less than n, then there is an ε > 0 such that for every ε < ε, B(x, ε)
contains a point not on any hyperplane in H.

Moreover, any point not on any hyperplane has arbitrarily small neighbor-
hoods that do not intersect the hyperplane:

Fact 11.4.4. If x is a point, and H a finite set of hyperplanes, each of di-
mension less than n, none of which contains v, then there is an ε > 0 such
that B(x, ε) does not intersect any hyperplane in H.

Definition 11.4.5. An open cover U for a simplicial complex K is a finite
collection of open sets U0, . . . , Uk such that K ⊆ ∪ki=0Ui.

The following fact is the basis for the Simplicial Approximation Theorem
used in earlier chapters.

Fact 11.4.6. If U0, . . . , Uk an open cover for a finite simplicial complex K,
there exists a real number λ > 0, called the Lebesgue number, such that any
set of diameter less than λ lies in a single Ui.

11.4.2 Geometric Complexes

In Chapter 9, we defined the standard chromatic subdivision Chσ in a purely
combinatorial way, as an abstract simplicial complex. Now we give an equiv-
alent definition of Chσ as a geometric complex.

Definition 11.4.7. Recall that Chσ, as an abstract complex, is defined as fol-
lows. First, each vertex is a pair (Pi, σi), where σi ⊆ σ, and Pi ∈ names(σi).
Second, if (Pi, σi) and (Pj , σj) are vertices of Chσ, then σi ⊆ σj or vice-
versa. Finally, if Pi ∈ names(σj), then σi ⊆ σj .

296 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

We need to assign a point within |σ| to each (Pi, σi). Recall that b =∑n
i=0

si
n+1 is the barycenter of σ. Let δ be any real value such that 0 < δ <

1
n+1 . For each Pi and simplex τ , define

|(Pi, τ)| = (1 + δ)b− δ|si|

See Figure 11.11.
For any sufficiently small value of δ, it can be shown that this definition

gives a geometric construction for the chromatic subdivision. We will use
this construction for the remainder of this section. Since all simplices and
complexes in this section are geometric, we will not distinguish between
an abstract vertex v and the point |v|, or an abstract simplex σ and its
polyhedron |σ|.

Recall (Definition 3.6.7) that the mesh of a complex is the maximum
diameter of any simplex.

Fact 11.4.8. For an n-simplex σ, mesh(Bary σ) ≤ n
n+1 diam(σ).

By taking sufficiently large N , mesh(ChN I) can be made arbitrarily
small.

11.4.3 Colors and Covers

Fact 11.4.9. A set of vertices {v0, . . . , vq} of a complex K forms a simplex if
and only if the intersection of their open stars is non-empty:

q⋂
i=0

St◦(vi,K) 6= ∅.

To construct a color-preserving simplicial map from ChN I to Div I,
we will need the vertex colors to “align” nicely. More specifically, the
open stars of the vertices in a Div I form an open cover for I. This
open-star cover has a natural coloring inherited from the coloring of I:
name(St◦(v, I)) = name(v). The open-star cover of Div I is chromatic on
ChN I if every simplex of ChN I is covered by open stars of vertices of
a simplex in Div I of matching color:

for all σ ∈ ChN I, σ ⊆
⋃
t∈τ

St◦(t,Div I),

for some τ ∈ Div I where names(σ) ⊆ names(τ).
We will show that without loss of generality, the geometric realization of

Div I can be chosen so that its open-star cover is chromatic on any iterated
standard chromatic subdivision of I.

11.4. MAP IMPLIES ALGORITHM 297

Lemma 11.4.10. The geometric realization of Div I can be chosen so that
its open-star cover is chromatic on each of the subdivisions

I,Ch I,Ch2 I,Ch3 I,

Figure 11.4.3 shows how an open-star covering can fail to be chromatic.
Simplices of Div I are shown with dotted lines and square vertices, while
simplices of Chn I are shown with solid lines and round vertices. The gray
vertex marked v lies on the boundary between two gray open stars, so it is
not covered by an open star of the same color.

Note, however, that if we perturb some of the square vertices by an
arbitrarily small amount, then v moves off the boundary and into the open
star of a vertex of matching color. This observation suggests a strategy:
we will pick an arbitrary geometric realization of Div I, and if its open-star
cover fails to be chromatic, then we will “perturb” vertex positions by very
small amounts until the open-star cover becomes chromatic.

Readers willing to accept Lemma 11.4.10 can skip directly to Sec-
tion 11.4.4.

We can recast some familiar concepts in terms of convex combinations.
Every point x in the polyhedron of a complex I can be expressed uniquely
as the convex combination of the vertices of a simplex σ of I. The open
star St◦(v, I) is just the set of points that can be expressed as the convex
combination of the vertices of a simplex that includes v.

In this definition and in the subsequent lemmas, Div I and Chn I may
be replaced by arbitrary chromatic subdivisions. Two simplices conflict if
they share no colors.

Definition 11.4.11. A conflict point for Div I and ChN I is a point that
can be expressed as the convex combination of vertices of two conflicting
simplices, σ = {s0, . . . , sp} ∈ Div I, and τ = {t0, . . . , tq} ∈ ChN I, were
names(σ) ∩ names(τ) = ∅:

x =

p∑
i=0

ai · ti =

q∑
j=0

bj · tj ,

for 0 < ai, bj , and 1 =
∑

i ai =
∑

j bj .

Lemma 11.4.12. The open-star cover of Div I is chromatic for ChN I if and
only if there are no conflict points.

Proof. As noted, every point x in I has a unique expression as the convex
combination of the vertices of a σ ∈ Div I, and similarly for a τ ∈ ChN I.

298 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

If x is a conflict point, then it lies in the interior of τ , but not in
St◦(v,Div I) for any vertex v where name(v) ∈ names(τ). The open stars
of Div I with colors from names(τ) therefore fail to cover τ .

If the open-star cover is chromatic, then every x lies in the open star
of some vertex v of Div I and u of ChN I such that name(v) = name(u),
implying that x is not a conflict point.

The following corollary follows because the definition of conflict point is
symmetric in terms of the two subdivisions.

Corollary 11.4.13. If the open-star cover of Div I is chromatic on ChN I,
then the open-star cover of ChN I is chromatic on Div I.

We say that Div I has an ε-perturbation at vertex v, for some ε > 0. if
there is a point v′, |v− v′| < ε, such that replacing v with v′ in each simplex
of Div I yields a subdivision Div′ I isomorphic to Div I. (This isomorphism
means that both complexes are geometric realizations of the same abstract
complex.) See Fig. 11.4.3. For brevity, we write such a perturbation as:

(v,Div I) 7→ε (v′,Div′ I).

If Div′ I is the result of applying ε-perturbations at multiple vertices, we
write:

Div I 7→ε Div′ I.

We will see that there is always an ε > 0 such that any vertex of a Div I
can be perturbed to any position within ε within its carrier.

Lemma 11.4.14. If v is a vertex in Div I whose carrier is an n-simplex σ,
then there is an ε-perturbation

(v,Div I) 7→ε (v′,Div′ I)

for any v′ ∈ B(v, ε).

Proof. We must check that any choice of v′ ∈ B(v, ε) yields a subdivision.
We can pick ε small enough that v′ lies in the open star of v. We must check
that v′ can be made affinely independent of each simplex υ = {u0, . . . , up}
in Lk(v,Div σ). Each such υ defines a hyperplane H(υ) of dimension p <
n. Because each {v} ∪ υ is a simplex of Div σ, v, u0, . . . , up are affinely
independent, hence v is not in any H(υ). By Fact 11.4.4, there is an ε > 0
so that for any v′ ∈ B(v, ε), v′ 6∈ H(υ), and thus is affinely independent of
the vertices of υ.

11.4. MAP IMPLIES ALGORITHM 299

Lemma 11.4.15. If v is a vertex of Div I whose carrier is an n-simplex σ, then
there is a perturbation (v,Div I) 7→ε (v′,Div′ I) such that St(v′,Div′ I)
contains no conflict points with ChN I.

Proof. Let H be the set of hyperplanes defined by all pairs of conflicting
simplices, one from Lk(v,Div σ) and one from ChN σ. By Fact 11.4.3, there
is an ε > 0 so that some point v′ within ε of v does not intersect any of these
hyperplanes. By Lemma 11.4.14, this choice of v′ defines a perturbation
(v,Div I) 7→ε (v′,Div′ I).

We claim that St◦(v′,Div′ I) and ChN I have no conflict points. Oth-
erwise, if x is a conflict point, then there are conflicting simplices ρ =
{r0, . . . , rp} in Lk(v,Div σ) and τ = {t0, . . . , tq} in ChN σ such that

x = (

p∑
i=0

ai · ri) + ap+1 · v =

q∑
j=0

bjtj

where 1 =
∑

i ai =
∑

j bj , and 0 < ai, bj . And yet, this equation implies that
x lies on the hyperplane defined by the vertices of ρ ∪ τ , which contradicts
the choice of v′.

Lemma 11.4.16. If v is a vertex of Div σ whose carrier is an n-simplex σ, then
there is a perturbation (v,Div I) 7→ε (v∗,Div∗ I) such that St◦(v∗,Div∗ I)
has no conflict points with any of the subdivisions

σ,Chσ,Ch2 σ,Ch3 σ,

Proof. By Lemma 11.4.14, there is a ε > 0 such that
(v,Div I) 7→ε (v′,Div′ I) is a perturbation for any v′ ∈ B(v, ε).

We inductively construct a sequence of subdivisions

(v(i−1),Div(i−1) σ) 7→εi (v(i),Div(i) σ)

such that St◦(v(i),Div(i) σ) has no conflict points with Chi σ.
For the base case, the open-star cover of Ch0 σ = σ is already a chromatic

cover for Div σ, so let v(0) = v and Div(0) σ = σ.
For the induction step, Lemma 11.4.15 states that there is a perturbation

(v(i−1),Div(i−1) σ) 7→εi (v(i),Div(i) σ)

such that St◦(v(i),Div(i) σ) has no conflict points with Chi σ.
If we pick each

εi ≤
ε

2i
,

300 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

then v(0), v(1), . . . is a Cauchy sequence that converges to v∗, where

|v − v∗| ≤ |v(0) − v(1)|+ |v(1) − v(2)|+ · · ·

≤ ε

2
+
ε

4
+ · · ·

≤ ε.

As a result, we have constructed a perturbation

(v,Div σ) 7→ε (v∗,Div∗ σ),

where St◦(v∗,Div∗ σ) and Chi σ have no conflict points, for all i ≥ 0.

Lemma 11.4.17. Every chromatic subdivision Div I has a perturbation

Div I 7→ε Div∗ I

such that Div∗ I has no conflict points with any of the subdivisions

I,Ch I,Ch2 I,Ch3 I,

Proof. By induction on n. In the base case, when n = 0, the claim is trivial
because both complexes are discrete sets of vertices.

Inductively assume that the open-star cover of Div skeln−1 I is chromatic
for each of

skeln−1 I,Ch skeln−1 I,Ch2 skeln−1 I,Ch3 skeln−1 I,

For each vertex v in Div I whose carrier has dimension n, Lemma 11.4.16
states that we can construct a perturbation that eliminates all conflict points
from its open star. Successively applying this construction to each such
vertex yields a perturbation

Div I 7→ε Div∗ I

that has no conflict points with any iterated standard chromatic subdivision
Chi I.

Because Div I and its perturbation Div∗ I are just different geometric
realizations of the same abstract complex, we have completed the proof of
Lemma 11.4.10.

11.4. MAP IMPLIES ALGORITHM 301

11.4.4 Construction

We are now ready to prove Theorem 11.4.1, showing there exists a color-
preserving simplicial map

φ : ChN I → Div I

such that for all σ ∈ I, φ(ChN σ) ⊆ Div σ.

We will construct a sequence of chromatic subdivisions, ChKi I, for i =
0, . . . , n+ 2, where Kn+2 > Kn+1 > · · · > K0 = 0, along with a sequence of
simplicial maps

φi : (ChKi I) \ Ki → Div I,

defined on ChKi I, except for a subcomplex Ki ⊆ ChKi I of dimension at
most n− i.

At the end of the sequence, Kn+2 is empty, so

φn+2 : ChKn+2 I → Div I

is the desired map.

This sequence of subdivisions induces a parent map,

ChKn+2 I π→ ChKn+1 I π→ · · · π→ ChK0 I,

carrying each vertex of ChKi I to the unique vertex of matching color in its
carrier in ChKi−1 I. The ancestors of a vertex v ∈ ChKi I are the vertices
v, π(v), π2(v), . . . , πi(v).

Subdividing ChKi I induces subdivisions on its subcomplexes. Given a
subcomplex Ki ⊆ ChKi I, define Kii+1 to be the maximal subcomplex of

ChKi+1 I satisfying π(Kii+1) = Ki. Similarly, for ` > i, define Ki` to be the

maximal subcomplex of ChK` I satisfying π`−i(Ki`) = Ki.

Definition 11.4.18. The extended star St*(τ,K) of a simplex τ in a complex
K is the union of the stars of its vertices:

St*(τ,K) =
⋃
v∈τ

St(v,K).

Like the star of a vertex, the extended star of a simplex is a subcomplex of
K, and its polyhedron is a closed set. Moreover,

diam(St*(τ,K)) ≤ 3 ·mesh(K).

302 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

For the base case of our construction, let K0 = 0, K0 = I, and φ0 is
everywhere undefined.

For the inductive step, assume we are given Ki and φi for all `, 0 ≤ ` < i.

Lemma 11.4.10 states that we may assume, without loss of generality,
that the open-star cover of Div I is chromatic for ChKi I, including Ki ⊆
ChKi I, the subcomplex where φi is undefined. Let λi be the Lebesgue
number of this cover of Ki. Pick Ki+1 large enough that for every facet κ of
Kii+1 ⊆ ChKi+1 I,

diam St*(κ,Kii+1) < λi. (11.4.1)

We will use this inequality later.

We define φi+1 as follows. Each vertex v in ChKi+1 not in Kii+1 “inherits”
the map from its parent: φi+1(v) = φi(π(v)). Otherwise, for each vertex in
Kii+1, if there exits a vertex u ∈ Div I such that

St(v,Kii+1) ⊂ St◦(u,Div I), (11.4.2)

and name(u) = name(v), then φi+1(v) = u.

The remaining vertices of Kii+1 define Ki+1, the subcomplex of ChKi+1 I
where φi+1 is not defined. Note that this definition implies that for 0 ≤ j ≤ i,

π(Kji+1) ⊆ Kji . (11.4.3)

Lemma 11.4.19. Let vi be a vertex in (ChKi I) \ Ki, and vi, vi−1, . . . , v0 its
sequence of ancestors, Let j be the least index (earliest ancestor) for which
φj(vj) is defined. We claim that

| St(vi,Kji)| ⊆ St◦(φi(vi),Div I).

Proof. We argue by induction on i − j. For the base case, when i = j, the
claim follows because φi(v) is defined for the first time by Equation 11.4.2.

Assume the result for 0 < i− j < `. By the induction hypothesis,

|St(π(v),Kji−1)| ⊆ St◦(φi−1(π(v)),Div I),

where j is the least index for which φj is defined for an ancestor of v. Note

that Kki is a subdivision of Kji−1, and π(v) is a vertex in the carrier of v for
this subdivision, so

|St(v,Kji)| ⊆ | St(π(v),Kji−1)|.

11.4. MAP IMPLIES ALGORITHM 303

Putting these containments together,

| St(v,Kji)| ⊆ |St(π(v),Kji−1)|
⊆ St◦(φi−1(π(v)),Div I)

⊆ St◦(φi(v),Div I)

Lemma 11.4.20. Each φi is a color-preserving simplicial map.

Proof. The color-preserving property is immediate from Equation 11.4.2.
To show that φ is simplicial, we argue by induction on i. When i = 0, the
claim holds vacuously. Let κ = {k0, . . . , km} be a simplex of ChKi I \ Ki.
We must show that {φi(k0), . . . , φi(km)} is a simplex of Div I.

By Lemma 11.4.19, for each `, 0 ≤ ` ≤ m, there is a j` such that for
each vertex k`,

| St(k`,Kj`i)| ∈ St◦(φi(k`),Div I).

Assume without loss of generality that j0 ≤ j1 ≤ · · · ≤ jm, so

Kjmi ⊆ K
jm−1

i ⊆ · · · Kj0i .

In particular, vk is a vertex of them all.

vk ∈ |St(k`,Kj`i)| ⊆ St◦(φi(k`),Div I)

for 0 ≤ ` ≤ m, so
k⋂
`=0

St◦(φi(k`),Div I) 6= ∅.

It follows from Fact 11.4.9 that {φi(k0), . . . , φi(km)} is a simplex of Div I,
completing the proof that φi is a simplicial map.

Lemma 11.4.21. For 0 ≤ i ≤ n+ 2, dimKi+1 < dimKk.

Proof. Recall that the open-star cover of Div I is chromatic on Ki. More-
over, by equation 11.4.1, the number Ki+1 is large enough to ensure that
the diameter of the extended star of every facet κ of Ki+1 is less than the
cover’s Lebesgue number:

|St*(κ,Kii+1)| ∈ St◦(u,Div I),

304 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

for a vertex u ∈ Div I. Because the cover is chromatic, there is a vertex
v ∈ κ of matching color: name(v) = name(u). Because |St(v,Kii+1)| ⊂
| St*(κ,Kii+1)|,

| St(v,Kii+1)| ⊂ St◦(u,Div I),

so by Equation 11.4.2, φi+1(v) is defined, and v is not a vertex of Ki+1. In
this way, φi+1 is defined on at least one vertex of every facet of Kii+1, so the
dimension of Ki+1 drops by at least one.

Lemma 11.4.20 states that the vertex map

φn+2 : (ChKn+2 I) \ Kn+2 → Div I

is color-preserving and simplicial, while Lemma 11.4.21 states that Kn+2 is
empty. Together these imply that

φn+2 : ChKn+2 I → Div I

is a color-preserving simplicial map.

This completes the proof of the “map implies algorithm” direction of
Theorem 11.2.1.

It is useful to observe that the “property implies protocol” part of the
proof assumes only that the model of computation in which the protocol is
constructed is strong enough to solve the immediate snapshot task.

Corollary 11.4.22. A task (I,O,∆) has a protocol in any model of computa-
tion that solves immediate snapshot if I has a chromatic subdivision Div(I)
and a color-preserving simplicial map µ : Div I → O carried by ∆.

Of course, the converse of this corollary does not hold in general.

11.5 A Sufficient Topological Condition

We now give a simple topological condition that ensures that a colored task
(I,O,∆) has a wait-free read-write protocol. We will use the following
topological property.

Definition 11.5.1. A pure simplicial complex O of dimension n is called link-
connected if for each simplex τ ∈ O, Lk(τ,O) is (n− 2− dim τ)-connected.

The output complex for the Hourglass task shown in Figure 11.1 is not
link-connected, since the vertex at the hourglass’s “waist” is disconnected,
that is, not 0-connected.

11.5. A SUFFICIENT TOPOLOGICAL CONDITION 305

Theorem 11.5.2. The colored task (I,O,∆) has a wait-free layered imme-
diate snapshot protocol if for each σ ∈ I, ∆(σ) is (dim(σ) − 1)-connected,
and O is link-connected.

This theorem establishes the existence of a protocol in terms of the
topological properties of complexes and carrier maps.

By Theorem 11.2.1, it is enough to prove the following lemma.

Lemma 11.5.3. If for each σ ∈ I, ∆(σ) is (dim(σ) − 1)-connected, and O
is link-connected, then there exists a chromatic subdivision Div I and a
color-preserving simplicial map

µ : Div I → O

carried by ∆.

We need the following lemma about link connectivity.

Lemma 11.5.4. If O is a pure link-connected simplicial complex, then so is
Lk(κ,O) for any simplex κ ∈ O.

Proof. Assume dimO = n. Note that Lk(κ,O) is a pure (n − dimκ − 1)-
complex, and for any λ in Lk(κ,O), dimλ∪ κ = dimλ+ dimκ+ 1. We will
show that for any λ in Lk(κ,O), Lk(λ,Lk(κ,O)) is (n− dimκ− dimλ− 3)-
connected.

We claim that

Lk(λ,Lk(κ,O)) = Lk(λ ∪ κ,O),

If γ ∈ Lk(λ,Lk(κ,O)), then γ ∪ λ ∪ κ ∈ O, and therefore γ ∈ Lk(λ ∪ κ,O),
so

Lk(λ,Lk(κ,O)) ⊆ Lk(λ ∪ κ,O).

Moreover, if γ ∈ Lk(λ ∪ κ,O), then γ ∪ λ ∪ κ ∈ O, and therefore γ ∈
Lk(λ,Lk(κ,O)), so

Lk(λ,Lk(κ,O)) ⊇ Lk(λ ∪ κ,O).

Because λ and κ are disjoint, dimλ ∪ κ = dimλ+ dimκ+ 1. The complex
Lk(λ∪ κ,O) is link-connected by hypothesis, so Lk(λ∪ κ,O), and therefore
Lk(λ,Lk(κ,O)), is (n− dimλ− dimκ− 3)-connected.

We make use of the following fact, discussed in the chapter notes.

306 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

Fact 11.5.5. Let A, B, and C be complexes such that B ⊂ A, and f : A → C
a continuous map such that the vertex map induced by f restricted to B is
simplicial. There exists a subdivision Div of A such that DivB = B, and a
simplicial map φ : DivA → C that agrees with f on vertices of B.

Lemma 11.5.6. Let I and O be n-complexes such that there is a continuous
map

f : I → O

such that the restriction of f to skeln−1 I is a rigid simplicial map. There ex-
ists a subdivision Div I that Div skeln−1 I = skeln−1 I, and a rigid simplicial
map φ : Div I → O that agrees with f on vertices of skeln−1 I.

Proof. We argue by induction on n. For the base case, when n = 1, I is
a graph, and skel0 I is a set of discrete points. By way of contradiction,
assume every subdivision Div I and every simplicial map

φ : Div I → O

that agrees with f on skel0 I collapses an edge of Div I.

Pick Div and φ to collapse a minimal number of edges. There is an edge
σ = {u, v} in Div I such that φ(u) = φ(v) = x, where x is a vertex in O
(See Fig. 11.14). Because O is link-connected, Lk(x,O) is non-empty, and
so contains a vertex y. Define a new subdivision Div′ I by taking the stellar
subdivision of I with center w. Define φ′ : Div′ I → O to agree with φ,
except that φ′(w) = y. It is easy to check that φ′ agrees with f on skeln−1 I,
but collapses one fewer simplex then φ, contradicting our assumption that
φ collapses a minimum number of simplices.

For the induction step, assume the claim for complexes of dimension
less than n. Let I be an n-complex, and f : I → O a continuous map
that is simplicial and rigid on skeln−1 I. Fact 11.5.5 implies there exists a
subdivision Div I such that Div skeln−1 I = skeln−1 I, and a simplicial map
φ : Div I → O that agrees with f on skeln−1 I.

Suppose, by way of contradiction, that for every such Div and φ, φ
collapses a simplex of Div I. Pick Div and φ to minimize the number of
collapsed simplices. We will show how to adjust Div and φ to collapse one
fewer simplex, a contradiction.

Pick σ in Div I such that φ collapses σ to a single vertex x ∈ O, but does
not collapse any simplex strictly containing σ. Because φ does not collapse
any simplices in skeln−1 I, σ ∈ Div τ , for some n-simplex τ ∈ I. Because τ
is an n-simplex, Lk(σ,Div I) = Lk(σ,Div τ).

11.5. A SUFFICIENT TOPOLOGICAL CONDITION 307

As before, pick a point w in the interior of σ, and take the stellar sub-
division stel Div I with center w. Because Div τ is a manifold, Lk(σ,Div τ)
is an (n − m − 1)-sphere, and {w} · Lk(σ,Div τ) is an (n − m)-disk with
boundary Lk(σ,Div τ).

The subcomplex Lk(v,O) is (n− 1)-connected by hypothesis, and link-
connected by Lemma 11.5.4. Because φ does not collapse any simplices
strictly containing σ,

φ(Lk(σ,Div I)) ⊆ Lk(v,O).

Because dim({w} · Lk(σ, I)) = (n − m) < n, we apply the induction hy-
pothesis as follows: because Lk(x,O) is connected and link-connected, there
exists a subdivision Div′ and simplicial map

φ′ : Div′ {t} · Lk(σ,Div I) → Lk(x,O)

such that Div′ Lk(σ,Div I) = Lk(σ,Div I), φ′ agrees with φ on Lk(σ,Div I),
and φ′ does not collapse any simplices of Div′ {t} · Lk(σ,Div I) (see
Fig. 11.15).

Because Div′ does not subdivide any simplices of Lk(σ,Div I), it extends
to a subdivision Div′ I of all of I. Define

ψ(u) =

{
φ′(u) if u ∈ Div′(σ · Lk(σ,Div I))

φ(u) otherwise.

Note that ψ agrees with φ on every vertex not in Div′(σ · Lk(σ,Div I), and
on every vertex of Lk(σ,Div I), so ψ cannot collapse more of these simplices
than φ. Moreover, ψ cannot collapse any simplices of Div′ {w} · Lk(σ, I),
because it is rigid by the induction hypothesis. It follows that ψ collapses
one fewer simplex then φ, contradicting our assumption that φ collapses a
minimum number of simplices.

Lemma 11.5.7. Let σ be a chromatic n-simplex, Div σ a chromatic subdivi-
sion, and φ : Div σ → L is a rigid simplicial map. If φ is color-preserving on
Div ∂ σ, then φ is color-preserving on Div σ.

Proof. Div σ is a manifold with boundary, so for any n-simplex τ , there is
a sequence of n-simplices τ0, . . . , τp, where τ0 has an (n − 1)-face on the
boundary, τi and τi+1 share an (n− 1)-face, and τ` = τ .

We argue by induction on `. When ` = 0, the claim is trivial. Otherwise,
assume that φ is color-preserving on τ`−1. The map φ is color-preserving on
the (n − 1) face shared by τ`−1 and τ`. Because φ is rigid, it cannot send

308 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

the remaining vertex of τ` to any of the other n colors in the shared face, so
it must send it to a vertex of the same color.

We are now ready to complete the proof of Lemma 11.5.3 (and hence
Theorem 11.5.2). For 0 ≤ d ≤ n, we inductively construct a sequence of
chromatic subdivisions Divd and a color-preserving simplicial map

φd : |Divd skeld I| → |O|

carried by ∆.
For the base case, let f0 send any vertex a of I to any vertex of ∆(a). This

construction is well-defined because ∆(a) is (−1)-connected (non-empty) by
hypothesis. This map is trivially color-preserving.

For the induction hypothesis, assume we have constructed a chromatic
subdivision and color-preserving simplicial map

φd−1 : Divd−1 skeld−1 I → O.

This simplicial map induces a continuous map that sends the boundary
of each d-simplex σ in skeld I to ∆(σ). By hypothesis, ∆(σ) is (d − 1)-
connected, so this map of the (d− 1)-sphere ∂ σ can be extended to a con-
tinuous map of the d-disk σ:

fd : |σ| → ∆(σ).

These extensions agree on skeld−1 I, so together they define a continuous
map,

fd : skeld I → O,

where for each σ ∈ skeld I, fd(σ) ⊆ ∆(σ).
Note that the restriction of fd on the (d−1) skeleton is just φd−1, a color-

preserving simplicial map, so by Lemma 11.5.6, there is a subdivision Divd
of skeld I such that Divd Divd−1 skeld−1 I = Divd−1 skeld−1 I, and a rigid
simplicial map φd : Divd skeld I → O extending φd−1. By Lemma 11.5.7,
φd is also color-preserving. These extensions agree on the (d − 1)-skeleton,
so together they define a color-preserving simplicial map:

φd : Divd skeld I → O

carried by ∆.
When n = dim I, φn is a color-preserving simplicial map carried by ∆,

completing the proof.
By analogy with Corollary 11.4.22, the proof of Theorem 11.5.2 requires

only that the protocol model support immediate snapshot.

11.6. CHAPTER NOTES 309

Corollary 11.5.8. Assume that for any input complex I and anyN > 0, there
is a protocol that solves the chromatic agreement task (I,ChN I,ChN).
Then a task (I,O,∆) has a protocol if, for each σ ∈ I, ∆(σ) is (dim(σ)−1)-
connected, and O is link-connected.

One interesting and useful fact that emerges from this discussion is that
if two different read-write models with different adversaries have the same
minimal core size, then they solve the same set of colorless tasks. In this
sense, an adversary’s minimum core size completely determines its compu-
tational power for colorless tasks.

11.6 Chapter Notes

The results in this chapter originally appeared in Herlihy and Shavit [93].
Herlihy, Rajsbaum and Raynal [89] present an implementation of the

safe agreement task in a layered model. See Exercise 11.1.
Mostefaoui, Rajsbaum, and Raynal [124], and Mostefaoui, Rajsbaum,

Raynal and Travers [123] study “condition-based” variations of tasks such
as consensus, in which the input complexes are restricted to permit t-resilient
layered snapshot protocols. Such tasks provide simple, natural examples of
colored tasks, where processes can adopt one another’s output values, but
not their input values.

Imbs, Rajsbaum and Raynal [97] study generalized symmetry breaking
tasks (GSB), that include election, renaming and other tasks that are not
colorless. These are fixed-input, in the sense that the only input to a process
is its name.

Fact 11.5.5 is Theorem IV.2 of Glaser [73].

11.7 Exercises

Exercise 11.1. In Exercise 7.6 we asked you to describe an implementation
of safe agreement using two layers of wait-free immediate snapshots. Show
that there is no one-layer implementation.

Exercise 11.2. Consider the following fixed-input colored task: n + 1 pro-
cesses choose distinct values in the range 0, . . . , n+1. Prove that the output
complex for this task is a manifold. (This task is a special case of the
renaming task considered in the next chapter.)

Exercise 11.3. As a special case of Exercise 11.2, draw the output complex
for the fixed-input colored task where three processes choose distinct values
in the range 0, 1, 2, 3. What is this surface called?

310 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

Exercise 11.4. Let f : |A| → |B| be a continuous map, and U be the open-
star cover of |B|.

• Show that V =
{
f−1(U)|U ∈ U

}
is an open cover of A.

• Suppose V has Lebesgue number λ, and every edge of A has length
1. For what value of N can we guarantee that for every vertex v in
BaryN A, diam St(v,BaryN A) < λ?

• For each v in BaryN A, define φ(v) = u, where u is any vertex such
that St(v,BaryN A) ⊂ f−1(St◦(v,B)). Prove that φ is a simplicial
approximation for f .

Exercise 11.5. For an n-simplex σ, what is the Lebesgue number of the
open-star cover of Bary σ? Of BaryN σ?

Exercise 11.6. Prove Fact 11.4.3: if x is a point in n-dimensional Euclidean
space, and H a finite set of hyperplanes, each of dimension less than n, then
there is an ε > 0 such that for every ε < ε, B(x, ε) contains a point not on
any hyperplane in H.

Exercise 11.7. Prove Fact 11.4.4: if x is a point in n-dimensional Euclidean
space, and H a finite set of hyperplanes, each of dimension less than n,
none of which contains v, then there is an ε > 0 such that B(x, ε) does not
intersect any hyperplane in H.

Exercise 11.8. Prove Fact 11.4.9: a set of vertices {v0, . . . , vq} of a complex
K forms a simplex if and only if the intersection of their open stars is non-
empty.

Exercise 11.9. Let K be a geometric complex. Define the distance between
two simplices σ0, σ1 of K to be min(d(x, y)|x ∈ |σ0|, y ∈ |σ1|). Show that the
Lebesgue number of the open-star cover of K is min dist(σ0, σ1), taken over
all pairs of simplices σ0, σ1 in K such that σ0 ∩ σ1 = ∅.

11.7. EXERCISES 311

∆11 11∆

00 00

I O

Figure 11.8: Input and output complexes for 2-process quasi-consensus.

11 11

00 00

Div I O

Figure 11.9: Subdivided input and output complexes for 2-process quasi-
consensus.

312 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

decide(input : Value): Value
announce[0] := input
if input = 1 then
return 1

else if announce[1] != 1 then
return 0

else
return 1

decide(input : Value): Value
announce[1] := input
if input == 0 then
return 0

else if announce[0] != 0 then
return 1

else
return 0

Figure 11.10: Quasi-consensus protocols for P0 (left) and P1 (right).

d1d1 d1

d2

d1

dd1

Figure 11.11: Geometric representation for Chσ.

11.7. EXERCISES 313

open‐star cover of Div I not chromatic herep

v

Div I

ChN IChN I

Figure 11.12: How an open-star covering can fail to be chromatic. Simplices
of Div I are shown with dotted lines and square vertices, while simplices
of Chn I are shown with solid lines and round vertices. The gray vertex
marked v lies on the boundary between two gray open stars, so this open-
star covering fails to be chromatic.

314 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

²

Figure 11.13: An ε-perturbation.

11.7. EXERCISES 315

φφ

x
vu

Oσ ∈ I

φ’

w vu
xy

Oσ ∈ I

Figure 11.14: Eliminating collapse: base case.

316 CHAPTER 11. GENERAL WAIT-FREE COMPUTABILITY

φ
σ

x

Lk(σ,A)

ODiv I

φ’φ’

x
w

ODiv I

φ’φ’

x
w

ODiv I

Figure 11.15: Eliminating collapse: induction step.

Part IV

Advanced Topics

317

Chapter 12

Renaming and Oriented
Manifolds

Non Print Material 12. Abstract:
In the M -renaming task, each of n+1 processes is issued a distinct name

taken from a large name space, and after coordinating with one another, each
chooses a distinct output name taken from a (much smaller) name space of
size M . We will be interested in adaptive protocols, where the range of
names chosen depends on the number of participating processes. As usual,
processes are asynchronous and potentially faulty. Using layered snapshot
protocols, for which values of M can we devise a protocol that ensures that
all non-faulty processes choose distinct output names?

Key words: adaptive renaming, index lemma, orientated manifold, par-
ticipating set, properly colored, rank-symmetric, renaming, weak symmetry-
breaking.

Consider the following air traffic control problem. There are n+ 1 airplanes
flying across the Atlantic in all directions. To avoid collisions, we must assign
a distinct altitude to each plane, where an altitude is measured in thousands
of feet. This task is easy for a centralized air traffic control system: simply
sort the planes by flight number, and assign the ith plane to the ith altitude.

Suppose, instead, that we want to design a protocol so the planes them-
selves can coordinate to assign altitudes. We call this problem the renaming
task: each plane starts out with a unique name taken from a large name
space (its flight number) and halts with a unique name taken from a smaller
name space (its altitude). We are interested in asynchronous protocols,

319

320 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

because we do not know in advance which planes are participating, and
interference may cause communications to be lost or delayed. In real life,
of course, planes would communicate by message-passing, but for ease of
presentation we will assume they communicate through some kind of shared
read-write memory.

How many altitudes are needed to solve renaming? Consider the follow-
ing simple layered-execution protocol for two planes, P0 and P1. The planes
share an array, initially all ⊥. In each layer, each plane takes an immediate
snapshot: it writes its flight number to memory, and then takes a snapshot
of the memory.

• If a plane sees only its own flight number, it chooses altitude 1000 feet.

• If a plane sees both flight numbers, then it compares them.

– If its own number is less than the other’s, it chooses altitude 2000.

– Otherwise, it chooses altitude 3000.

Informally, here is why we need three altitudes for two planes. Suppose Pi’s
flight number is less than Pj ’s. If Pi sees Pj ’s flight number, then Pj may or
may not have seen Pi’s flight number. If Pj did not see Pi’s number, then it
will choose 1000 feet, and if it did, it will choose 3000 feet, so the only safe
choice for Pi is to choose 2000 feet.

Is it possible for two planes to choose between two altitudes? The an-
swer is no, because if they could, then they could solve two-process consen-
sus, which we know to be impossible using layered immediate snapshot or
message-passing protocols. For two planes, three altitudes are both neces-
sary and sufficient.sergio: Actually the up-

per bounds are adaptive,
but not the lower bounds.
Need to emphasize that
lower bounds for adaptive
are much easier, and equiv-
alent to set agreement. In
fact, the adaptive lower
bound holds for all n, while
not so for the non-adaptive

In the M -renaming task, each of n+1 processes is issued a distinct name
taken from a large name space, and after coordinating with one another, each
chooses a distinct output name taken from a (much smaller) name space of
size M . We will be interested in adaptive protocols, where the range of
names chosen depends on the number of participating processes. As usual,
processes are asynchronous and potentially faulty. Using layered snapshot
protocols, for which values of M can we devise a protocol that ensures that
all non-faulty processes choose distinct output names?

To rule out trivial solutions, such as having Pi choose output name i, the
renaming task is index independent, meaning that each Pi knows its name,
but not its index. In any execution, a process’s output name can depend
only on its input name and how its protocol steps are interleaved with the
others’, but not on its index.sergio: Add: Recall that in

our formal model of Chap-
ter 8, indeed the local state
of a process includes its
name, not its index

12.1. AN UPPER BOUND: RENAMING WITH 2N + 1 NAMES 321

1 020
e ee ee0 e1e01 e10

Figure 12.1: The two-process subdivision Rename(σ1). Vertex color indi-
cates process name, and vertex number indicates choice of output name.

12.1 An Upper Bound: Renaming with 2n + 1
Names

We now present an (n + 1)-process renaming protocol where p ≤ n + 1
participating processes choose output names in the range [0, . . . , 2p]. As
noted, processes can compare their names for order and equality, but process
name indexes are not known to protocols. (That is, Pi “knows” that its name
is Pi, but not that its index is i.)

12.1.1 An Existence Proof

We start by restating this task as a combinatorial problem. Let σn de-
note the n-simplex {P0, P1, . . . , Pn}, and let ∆N denote the N -simplex
{0, 1, . . . , N}. We will construct a subdivision and a rigid simplicial map,

ρ : Rename(σn)→ ∆2n.

This construction is inductive. For two processes, σ1 = {P0, P1}.
Rename(σ1) is the 1-dimensional chromatic subdivision, consisting of the
four vertices

e0 = (P0, {P0}) e1 = (P1, {P1})
e10 = (P0, {P0, P1}) e01 = (P1, {P0, P1})

and three edges

{e0, e01} , {e01, e10} , {e10, e1}

322 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

0e 0e2

22e20 e21

11e02 e12

1 020
e0 e01 e10 e1

00

22

11

1 020

00

22

4
11

3
1

3
2

1 020

Figure 12.2: Construction of the 3-process renaming subdivision. Apply the
two-process subdivision to each edge of a triangle boundary (top). Add a
central triangle, as in the standard chromatic subdivision (middle). Finally,
assign name 2n − 2 to the central vertex with the largest name, apply the
two-process subdivision to the opposite face, and recursively assign names
from 1 to 3 to the remaining face (bottom).

The map ρ is defined as follows:

ρ((P, {P})) = 0

ρ((P, {P,Q})) =

{
1 if P < Q

2 otherwise

It easy to check that ρ is rigid, and that ρ depends on the order of process
names, not their indexes. These definitions are illustrated in Figure 12.1.

Inductively, suppose we have constructed a subdivision and a rigid map

ρ : Rename(σn−1)→ ∆2n−2

as illustrated for two processes in Figure 12.1. Next, we use the Rename
operator to subdivide each (n−1)-face of skeln−1 σn. We extend ρ as follows.

12.1. AN UPPER BOUND: RENAMING WITH 2N + 1 NAMES 323

Let η : Facei(σ
n) → σn−1 be the unique bijection that preserves order: for

vertices v0, v1 of Facei(σ
n), if v0 < v1, then η(v0) < η(v1). Define ρ on

Rename(Facei(σ
n)) by ρ(v) = ρ(η(v)). This subdivision is illustrated in the sergio: it should be

Figure 12.2. Somehow
the ref is correct to fig-
ure:ch12:renaming2 but is
still says 12.1. Same below
in the next references to
12.1, they should be to
Fig 12.2

top of Figure 12.1.

sergio: It might help to
say that first Div is defined
and then Rename

We extend this subdivision of the boundary to a subdivision Div σn by
introducing a “central” n-simplex κ = {k0, . . . kn}, just as in the standard
chromatic subdivision. The facets of Div σn are defined as follows. For each
simplex τ in Rename(skeln−1 σn), let τ ′ be the face of κ labeled with com-
plementary process names. The facets of Div σn are κ itself, along with all
simplices of the form τ ∪τ ′. See the illustration in the middle of Figure 12.1.

Finally, let km be the vertex of κ labeled with the highest process name.
Define Rename(σn) to be the relative subdivision of Div σn constructed by
replacing Facem κ with Rename(Facem κ). Define ρ(km) = 2n, and for each
v ∈ Rename(Facem κ), assign output names starting from 2n−1 and moving
“down”,

ρ(v) = 2n− 1− ρ(η(v)),

where η : Rename(Facem κ)→ Rename(σn−1) is the order-preserving bijec-
tion.

Lemma 12.1.1. Every facet of Rename(σn) is assigned n+ 1 distinct names
in the range 0, . . . , 2n.

Proof. We argue by induction on n. The claim for n = 1 holds by inspection.

Assume the claim holds for Rename(σn−1). By the induction hypothesis,
for ` < n, ρ assigns each `-simplex in Rename(σ`) ` + 1 distinct names in
the range 0, . . . , 2`.

By construction, ρ assigns n distinct names in the range 1, . . . , 2n− 1 to
each simplex in Facem κ, and it assigns 2n to km, so it assigns n+ 1 distinct
names in the range 1, . . . , 2n to each simplex in Rename(κ).

Let τ be an `-simplex in Rename(skeln−1 σn), and τ ′ be an (n − ` −
1)-face of Rename(κ) labeled with the complementary process names. By
construction, τ ∪ τ ′ is a facet of Rename(σn), and every facet other than κ
can be expressed in this way. By the induction hypothesis, ρ assigns to the
vertices of τ distinct names in the range 0, . . . , 2`. The greatest name that
can be assigned to τ ′ is 2n, and the least is

2n− 2(n− `+ 1) = 2`− 1.

Since the ranges assigned to τ and τ ′ do not overlap, the facet τ ∪ τ ′ is
assigned n+ 1 distinct names in the range 0, . . . , 2n− 1.

324 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

1 shared tps: array [0.. n] of tagged participating set objects
2 // initial call : rename(〈∠, 0, true, 0)
3 rename(tag: sequence of set of names,
4 first : int , dir : Boolean, r : int): int
5 peers : set of name := tps[r]. participants (tag)
6 if direction then
7 first := first + 2 ∗ |peers |
8 else
9 first := first − 2 ∗ |peers |

10 if Pi = max(peers) then
11 return first
12 else
13 return rename(append(tag, peers), first , not dir , r+1)

Figure 12.3: Renaming protocol.

sergio: this theorem is
proved in before, not laterTheorem 11.2.1, which is proved later in the book, implies that there is

a color-preserving simplicial map

µ : ChN σn → Rename(σn),

for some N , which translates directly into an N -round protocol. In the next
section, we give an explicit construction for this protocol.

12.1.2 An Explicit Protocol

We will use as a building block the participating set task, where each process
Pi has its own name as its only possible input, and has a set of process names
Si as output, where

• Pi ∈ Si,

• for all i, j, either Si ⊆ Sj , or vice-versa, and

• for all i, j, if Pj ∈ Si, then Sj ⊆ Si.

We leave it as an exercise (12.1) to show how to construct a single-layer
immediate snapshot participating set protocol. We will use a slight variation
of this task, called tagged participating set: each process has a tag value
as input, and the sets returned include the names of the processes with
matching tags only.

12.1. AN UPPER BOUND: RENAMING WITH 2N + 1 NAMES 325

Lemma 12.1.2. Let T0 ⊂ · · · ⊂ T` be the distinct sets returned by a partici-
pating set protocol, and let Si denote the set returned to Pi. We claim that
Pj observes the first participating set in which it appears: if j ∈ Ti+1 \ Ti,
then Sj = Ti+1.

Proof. Left as Exercise 12.3.

Figure 12.1.2 shows the protocol that corresponds to the previous sec-
tion’s subdivision construction. Output names are allocated either top-down
or bottom-up, depending on whether we assign the next output name from
the high or low end of the range of unassigned output names. Each recur-
sive call to the tagged participating set protocol takes the history of prior
participating sets, so processes observe only other processes with the same
history.

As before, T0 ⊂ · · · ⊂ T` denote distinct participating sets, and Si the
set observed by Pi. If Pm, the process with the highest name, observes the
largest participating set, that is if Sm = T`, then Pm chooses output name
2n and halts. Every other Pi such that Si = T` proceeds as if Pm had chosen
2n, and joins a recursively-called protocol to choose names bottom-up from
the range 0, . . . , 2n− 1. sergio: Other cases are

missing in the analysisThe processes that observe T`−1, the second-largest participating set, act
as if they are the only participants. If the process with the largest name in
T`−1 observes T`−1, then it chooses 2|T`−1| and halts. The others proceed as
if that processes had chosen the output name 2|T`−1|, and recursively call a
protocol to choose names bottom-up in the range 0, . . . , 2|T`−1| − 1. In this
way, the range of names is recursively broken up.

Theorem 12.1.3. The protocol of Figure 12.1.2 is wait-free.

Proof. In each round, the active process with the highest name chooses a
name and halts, so every process finishes in n+ 1 rounds.

Theorem 12.1.4. The protocol of Figure 12.1.2 assigns distinct output names
in the range 0, . . . , 2n to each of n+ 1 participants.

Proof. We argue by induction on n. When n = 1, the claim is clear from
inspection.

For the induction hypothesis, assume that the protocol assigns top-down
distinct names in the range 0, . . . , 2m−2, for allm < n+1. By Lemma 12.1.2,
the processes that observe T`, the largest set, are exactly the processes in
T` \ T`−1. There are two cases to consider. First, if all processes observe
T`, then the process with the highest name drops out with 2n, and the

326 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

remaining n processes choose names bottom-up, starting at 2n− 1. By the
induction hypothesis, they choose distinct names in the range 1, . . . , 2n− 1.

Otherwise, if some processes observe T`−1 ⊂ T`, then at most |T`| −
|T`−1| ≤ n processes choose names bottom-up starting at 2n − 1. By the
induction hypothesis, if they were choosing top-down, they would choose
names in the range 0, . . . , 2(|T`|− |T`−1|)−2. But because they are choosing
bottom-up starting at 2|T`| − 1, the least name they can choose is

2|T`| − (2(|T`| − |T`−1|)− 1) = 2|T`−1|+ 1.

The largest name that can be chosen by the processes not in T` is 2|T`−1|,
so these ranges do not overlap.

We will now show that for some values of n+ 1, this (2n+ 1)-renaming
protocol is the best one can do using asynchronous read-write memory.

12.2 Weak Symmetry-Breaking

Recall from Chapter 9 that in the weak symmetry-breaking (WSB) task,
processes have fixed input values and binary output values. In every exe-
cution in which all n+ 1 processes participate, at least one process decides
0 and at least one process decides 1. Like renaming, any protocol thatsergio: Fixed inputs vs

index-independent is con-
fusing. Fixed inputs im-
plies only input names can
be used

implements WSB must be index-independent. We now show that weak
symmetry-breaking is equivalent to 2n-renaming: any protocol for one can
be transformed to a protocol for the other. Suppose we are give a “black
box” index-independent protocol that solves 2n-renaming. The processes
run a 2n-renaming protocol, and each process decides the parity (value mod
2) of its output name. If all n + 1 processes participate, at least one must
decide 0 and at least one must decide 1, because the range 0, . . . , 2n−1 does
not contain n+ 1 even or n+ 1 odd values.

Here is how to transform a “black box” solution to weak symmetry-
breaking into a protocol for 2n-renaming. First, each process executes the
weak symmetry-breaking protocol, and uses its binary output to choose
between two instances of the (2n + 1)-renaming protocol of Figure 12.1.2.
The first instance assigns output names moving up from 0, and the second
assigns output names moving down from 2n−1. The q processes that decide
value 0 join the first renaming protocol, and each is assigned a name in the
range 0, ..., 2q−2. The other n−q+1 processes join the second protocol, and
each is assigned an output name in the range 0, . . . , 2n − 2q. Each process
in the second group subtracts this name from 2n − 1, yielding an output

12.3. THE INDEX LEMMA 327

name in the range 2q−1, . . . , 2n−1. The range of names chosen by the two
groups do not overlap.

It follows that instead of deriving a lower bound for 2n-renaming, it is
enough to derive a lower bound for weak symmetry-breaking. Here is our
strategy. If there is a wait-free layered immediate snapshot protocol for weak
symmetry-breaking, then we know from the proof of Theorem 11.2.1, there
is a layered read-write protocol, and a color-preserving simplicial map

δ : ChN σ → O

carried by ∆, the input-output relation defining weak symmetry-breaking.
The map δ, however, just maps each vertex to a binary value, so we can think
if it simply as a binary coloring δ : ChN σ → {0, 1}, with no monochromatic
n-simplices (that is, n-simplices in which all vertices are mapped to the same
value). Moreover, the protocol is index-independent, implying the coloring
is symmetric on the boundary of σ.

To show a lower bound, we need an analog to Sperner’s lemma for binary
colorings. Under what circumstances is it impossible to construct a symmet-
ric binary coloring for a subdivided n-simplex that admits no monochromatic
n-simplices?

12.3 The Index Lemma

We now prove a combinatorial lemma that will help us understand weak
symmetry-breaking. An (n + 1)-coloring c of a complex K is a map from
the vertices of K to ∆n:

c : V (K)→ ∆n.

A simplex σ ∈ K is properly colored by c if c is rigid: it maps each vertex of
σ to a distinct vertex of ∆n. A complex K is chromatic if it has a coloring

name : V (K)→ ∆n

that properly colors every simplex of K.

An orientation of a simplex σ = {s0, . . . , sn} is given by a sequence of
its vertices, up to the action of even permutations of that sequence1 For
example, we use the notation < s0, s1, s2 > to denote the orientation given
by the sequence s0, s1, s2 and its even permutations, such as s2, s0, s1.

1 An even permutation is one that can be constructed by exchanging the positions of
adjacent elements an even number of times.

328 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

ττ
σ

τ

σ

Figure 12.4: Oriented simplices and their boundaries.

Mathematical Note 12.3.1. Formally, the group of all even permutations
acts on the set of all ordered sequences of vertices, there are two orbits, and
an orientation is a choice of an orbit.

Any simplex has two possible orientations. An orientation of an n-
simplex σ induces an orientation on its (n − 1)-faces: if σn is oriented
〈s0, . . . , sn〉 then Facei σ has the induced orientation 〈s0, . . . , ŝi, . . . , sn〉 if
i is even, where circumflex (̂) denotes omission, and the opposite orien-
tation if i is odd. As illustrated in Figure 12.3, it is natural to think of
an oriented edge as an arrow, and an oriented triangle as being oriented
clockwise or counterclockwise.

A oriented manifold M is an n-manifold with boundary together with an
orientation for each n-simplex with the property that every two n-simplices
that share an (n − 1)-face induce opposite orientations on their common
face. Not all manifolds are orientable, but we here we will be concerned with

12.3. THE INDEX LEMMA 329

+ -
+

+

+

-+
+

-

Figure 12.5: Oriented manifold with boundary.

subdivided simplices, which are orientable (see Figure 12.3). Henceforth,M
will be an oriented chromatic manifold with boundary.

We say that an n-simplex σ ∈ M is positively oriented if the sequence
name(s0), . . . ,name(sn) is an even permutation of the sequence 0, . . . , n, and
negatively oriented otherwise. Positive orientation is denoted by sgnσ = +1,
and negative orientation by sgnσ = −1. The positive and the negative
orientations alternate as we pass through each internal (n− 1)-simplex. For
each (n− 1)-simplex τ on the boundary ofM, there is a unique σ such that
τ = Facei σ. Define sgn τ = (−1)i sgnσ.

We will use the following facts about subdivisions.

Fact 12.3.2. If Div σ is a chromatic subdivision of σ, then Div σ is an ori-
entable manifold, as is Div σ′, for any σ′ ⊂ σ. An orientation of Div σ
induces an orientation of Div σ′.

Now considerM together with a coloring c : V (M)→ ∆n, not necessar-
ily proper. In other words, the complexM now has two colorings: the proper

330 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

+11 +1+1
-1

11
+1

-1-1

κκ
+1+1 -1-1

κκ

+1+1 -11

Figure 12.6: Standard orientation for Chσ. Here, there are three processes,
so n = 2, and one round of execution, so N = 1. The orientation of the
central simplex marked κ is therefore (−1)n·N = 2 = +1.

coloring name : V (M) → ∆n, and an arbitrary coloring c : V (M) → ∆n.
Henceforth, when we say a simplex of M is properly colored, we mean
properly colored by c. A properly-colored simplex σ = {s0, . . . , sn} in M is
counted by orientation as follows. Index the vertices of σ in the order of their
colors: 〈s0, . . . , sn〉 such that c(si) < c(si+1). If 〈s0, . . . , sn〉 belongs to the
orientation induced by M, then C(σ, c) = +1, and otherwise C(σ, c) = −1.
If σ is not properly colored, then C(σ, c) = 0.

Definition 12.3.3. The content of c in M, denoted C(M, c), is the number
of simplices properly colored by c, counted by orientation.

C(M, c) =
∑
σ∈M

dimσ=n

C(σ, c).

For each i ∈ ∆n, consider the set of boundary (n− 1)-simplices colored

12.3. THE INDEX LEMMA 331

properly with values from Facei(∆
n). These simplices, too, can be counted

by orientation, with the definition of the corresponding quantity Ii(τ, c)
repeating verbatim that of C(σ, c). Index the vertices of τ in the order of
their colors: 〈t0, . . . , tn−1〉 such that c(ti) < c(ti+1). If 〈t0, . . . , tn−1〉 belongs
to the orientation induced by M, then define Ii(τ, c) = +1, and otherwise
define Ii(τ, c) = −1. If τ is not properly colored with values from Facei(∆

n),
then Ii(τ, c) = 0.

Definition 12.3.4. For each i ∈ [n], the ith index ofM, denoted by Ii(M, c),
is the number of (n − 1)-simplices of its boundary complex ∂M, properly
colored with values from Facei(∆

n), counted by orientation.

Ii(M, c) =
∑
τ∈∂M

dim τ=n−1

Ii(τ, c).

Content and index are related as follows.

Lemma 12.3.5 (Index Lemma). If M is an oriented manifold colored by c,
then for each i ∈ [n] we have the identity

C(M, c) = (−1)iIi(M, c).

Proof. Fix i ∈ [n]. SupposeM consists of a single simplex σ (and its faces).
If σ is properly colored, then C(σ, c) = sgnσ. For each i ∈ ∆n, Facei σ
is properly colored with values from Facei(∆

n), with induced orientation
(−1)i sgnσ, so Ii(σ, c) = (−1)i sgnσ, and C(σ, c) = (−1)iIi(σ, c).

Suppose instead that σ is not properly colored, so C = 0. Clearly
Ii(σ, c) = 0 if σ has no properly-colored (n− 1)-faces. Suppose instead that
at least one (n−1)-face of σ is properly colored with values from Facei(∆

n).
Because i does not appear in the coloring, another value j must appear twice,
so there are exactly two (n−1)-faces of σ properly colored with values from
Facei(∆

n). Index the vertices of σ such that c(s0) = c(s1) = j. Face0 σ and
Face1 σ have the same coloring, but opposite induced orientations, so their
contributions to Ii(σ, c) cancel, yielding C(σ, c) = (−1)iIi(σ, c) = 0.

Now consider an arbitrary manifold with boundary M. Consider the
following sum:

Si :=
∑
σ∈M

dimσ=n

Ii(σ, c) =
∑
σ∈M

dimσ=n

∑
τ∈∂ σ

dim τ=n−1

Ii(τ, c). (12.3.1)

Each internal (n−1)-simplex τ is counted twice in (12.3.1), and it is counted
with opposite orientations, so these contributions cancel out. On the other

332 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

hand, each boundary (n− 1)-simplex is counted once, so we have

Si =
∑
τ∈∂M

dim τ=n−1

Ii(τ, c) = Ii(M, c). (12.3.2)

We have seen that C(σ, c) = (−1)iIi(σ, c), so

Si =
∑
σ∈M

dimσ=n

Ii(σ, c) = (−1)i
∑
σ∈M

dimσ=n

C(σ, c) = (−1)iC(M, c). (12.3.3)

It follows from (12.3.2) and (12.3.3) that C(M, c) = (−1)iIi(M, c).

Because a manifold’s content is determined by its boundary, two color-
ings that agree on the boundary have the same content.

Corollary 12.3.6. If c and d are colorings ofM such that c(v) = d(v) for all
v ∈ ∂M, then C(M, c) = C(M, d).

Consider the special case where M is a subdivided simplex. Corol-
lary 12.3.6 implies that when counting properly-colored simplices by orien-
tation, we can “recolor” the interior vertices to any convenient color.

12.4 Binary Colorings

Although the Index Lemma 12.3.5 and Corollary 12.3.6 are concerned with
colorings that take on n + 1 values, we can extend these results to reason
about binary colorings as well.

Let M be a manifold with boundary with a proper coloring name :
V (M)→ ∆n and a binary labeling b : V (M)→ ∆[1]. Define a new coloring
c : V (M)→ ∆n by setting

c(v) = name(v) + b(v) (mod n+ 1),

for all v ∈ V (M). The following is immediate:

Lemma 12.4.1. An n-simplex ofM is monochromatic under b if and only if
it is properly colored under c.

Because of Lemma 12.4.1, we can use the content C(Div σ, c) to count
by orientation monochromatic n-simplices under b. Here we note that if σ
is m-monochromatic under b, for some m ∈ {0, 1}, then it is counted as
(−1)m·n sgn(σ) by orientation. The Index Lemma 12.3.5 implies the next
statement.

12.4. BINARY COLORINGS 333

σ2

Ch σ2

Ch2 σ2

τ0 τ1 τ2

+1 -1 +1

Ch τ0 Ch τ1 Ch τ2

+1 -1 +1

+1

+1 -1 +1 +1 -1 +1

Figure 12.7: Orientation for a one-dimensional subdivision.

Corollary 12.4.2. If b : V (Div σ)→ ∆[1] and b′ : V (Div σ)→ ∆[1] are binary
colorings that agree on ∂Div σ, then the number of monochromatic simplices
of Div σ counted by orientation is the same in both.

We can therefore assume, without loss of generality, that b(v) = 0 for
every v not on the boundary of Div σ. We now show that the content of the
n-simplices containing these internal all-0 vertices is (−1)n.

We will use 0(·) to denote the coloring that assigns 0 to every vertex,
and similarly for 1(·).

Let κ, the central simplex, be the simplex of ChN σ that represents the
execution in which all processes execute in lock-step (together) for N rounds.
We take (−1)n·N as the orientation of κ, and induce uniquely an orientation
on the entire ChN σ. We take that orientation as standard, see Figure 12.6.

Lemma 12.4.3. Assume σ is an n-simplex and ChN σ is the N -fold stan-
dard chromatic subdivision of σ. Then we have C(ChN σ, 0(·)) = 1, and
C(ChN σ, 1(·)) = (−1)n.

334 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

Proof. We first calculate that C(ChN σ, 0(·)) = 1. For n = 1, we note that
ChN σ is a subdivision of a 1-simplex into an odd number of simplices. These
simplices are oriented alternating, and the leftmost simplex is positively ori-
ented. Hence there is one more simplex oriented positively than negatively,
and hence the total sum is 1; see Figure 12.7.

Having verified the base, we can now use induction on n. For the in-
duction step, assume C(ChN τ, 0(·)) = 1 when dim τ < n. By the Index
Lemma 12.3.5, we have

C(ChN σ, 0(·)) = I0(ChN σ, 0(·)) = C(ChN Face0 σ, 0(·)) = 1.

To see that C(ChN σ, 1(·)) = (−1)n note that the all-1 coloring “rotates”
the process names, sending i to (i + 1) mod n. This permutation is even if
and only if n is even, so orientations are multiplied by (−1)n.

An internal simplex of ChN σ is one that contains no boundary vertices.

Lemma 12.4.4. If all internal vertices are colored 0, then the content of the
internal simplices is (−1)n.

Proof. Let b̂ : V (ChN σ) → ∆[1] be the binary coloring that assigns 1 to
every vertex on the boundary, and 0 to every internal vertex. By construc-
tion, C(ChN σ, b̂) is just the content of the internal simplices, since all the
other n-simplices are not monochromatic. Because b̂ agrees with 1(·) on the
boundary, C(ChN σ, b̂) = C(ChN σ, 1(·)) = (−1)n.

sergio: By corollary...

12.5 A Lower Bound for 2n-Renaming

We now show that if n+ 1 is a prime power, weak symmetry-breaking, and
hence 2n-renaming, is impossible. We argue by contradiction. Assume we
have an index-independent wait-free protocol for weak symmetry-breaking.

Assume σ is an n-simplex. For all I, J ⊆ [n], let αI,J : I → J denote the
rank-preserving bijection, and let ϕI,J : σI → σJ denote the affine isomor-
phism of the corresponding boundary simplices σI and σJ of σ induced by
the map αI,J .

Definition 12.5.1. A binary coloring b : ChN σ → {0, 1} is called rank-
symmetric if for any choice of I and J as above, the map ϕI,J induces an
isomorphism of the subdivisions ϕI,J : ChN σI → ChN σJ , and, in addition,
b is invariant with respect to ϕI,J . Formally, the last condition says that for
every v ∈ V (ChN σI), we have b(v) = b(ϕI,J(v)).

12.5. A LOWER BOUND FOR 2N -RENAMING 335

The following is a useful lemma about rank-symmetric subdivisions.sergio: I don’t under-
stand the statement of this
lemma. Are the two sets
of simplexes well defined?
Can you add an intuitive
explanation?

Lemma 12.5.2. Let τ be a simplex in the subdivided boundary ChN σI .
For any set J ⊆ [n], such that |I| = |J |, there is an orientation-preserving
bijection between the following two sets of n-simplices of ChN σ:{

γ | γ ∩ ChN ∂ σ = τ
}

and
{
γ | γ ∩ ChN ∂ σ = ϕI,J(τ)

}
.

Proof. Let κ be, as above, the central simplex of ChN σ. Define a flip to
be the operation of moving from one n-simplex to another by replacing a
single vertex. For example, a flip might go from ρ0 = {r0, . . . , ri, . . . , rn} to
ρ1 = {r0, . . . , r

′
i, . . . , rn}, where name(ri) = name(r′i). If we can get from

ρ0 to ρ1 in a single flip, then ρ0 and ρ1 have opposite orientations. We
can characterize a sequence of flips by the names of the vertices replaced:
a sequence of flips i0, . . . , i`−1 replaces the vertex whose id is ij at step j.
Two n-simplices have the same orientation if and only if we can get from
one to the other through an even sequence of flips.

Assume τ is a face of an n-simplex τ ′. We can get from τ ′ to κ by a
sequence of ` flips: i0, . . . , i`−1. Because ChN σ is symmetric, we can use
a reversed, symmetric sequence of ` flips π(i`−1), . . . , π(i0) to get from κ
to an n-simplex, which we call ϕI,J(τ ′). It takes a total of 2` flips to get
from τ ′ to ϕI,J(τ ′), so they have the same orientation in ChN σ. Clearly,
ϕI,J(τ ′) is an n-simplex such that ϕI,J(τ ′) ∩ ChN ∂ σ = ϕI,J(τ), and the
above procedure yields a bijection.

Recall that the Index Lemma 12.3.5 ensures that we can assume without
loss of generality that δ(v) = 0 for any vertex v not in ∂ ChN σ. Since every
n-simplex in ChN σ contains at least one such vertex, ChN σ has no 1-
monochromatic simplices, so we can compute the number by orientation of
monochromatic n-simplices in ChN σ simply by computing the number by
orientation of 0-monochromatic simplices.

Lemma 12.5.3. The number of monochromatic n-simplices in ChN σ,
counted by orientation, is

(−1)n +
n−1∑
q=0

(
n+ 1

q + 1

)
kq

for integers k0, . . . , kn−1.

Proof. Take now 0 ≤ q ≤ n − 1. By Lemma 12.4.4, the internal simplices
contribute (−1)n to the content. Let σq ⊂ σ, and suppose ChN σq has kq

336 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

0-monochromatic q-simplices counted by orientation. There are
(
n+1
q+1

)
such

faces, and by Lemma 12.5.2, they have the same contributing kq ·
(
n+1
q+1

)
to

the count of 0-monochromatic n-simplices of ChN σ.

Now we make use of the following fact from number theory.

Fact 12.5.4. The integers in the set{(
n+ 1

1

)
, . . . ,

(
n+ 1

n

)}
have a common factor if and only if n+ 1 is a prime power.

Theorem 12.5.5. If n+1 is a prime power then there is no index-independent
wait-free read-write protocol for 2n-renaming.

Proof. If there is a protocol for weak symmetry-breaking, then there is an
iterated standard chromatic subdivision ChN σ that has a binary coloring
with no monochromatic n-simplices. There is therefore a binary coloring for
ChN σ with no 0-monochromatic n-simplices. Because Chn σ is symmetric,
however, the number of 0-monochromatic n-simplices it contains is

1 +
n−1∑
q=0

(
n+ 1

q + 1

)
kq. (12.5.1)

By Fact 12.5.4, if (n+ 1) is a prime power, then these binomial coefficients
share a common factor, and this number cannot be zero.

12.6 Chapter Notes

The renaming algorithm presented here is due to Borowsky and Gafni [24].
The recursive formulation of Figure 12.1.2 is due to Gafni and Rajs-
baum [69]. And earlier and less efficient algorithm is due to Attiya et al.
[9]. The connection between renaming and weak symmetry-breaking is due
to Gafni, Herlihy and Rajsbaum [70]. The renaming lower bound is due
to Castañeda and Rajsbaum [31, 32]. Attiya and Paz [15] prove the weak
symmetry-breaking impossibility applying the Index Lemma directly on ex-
ecutions. There is an overview of renaming in shared memory systems by
Castañeda, Rajsbaum and Raynal [34].

The version of the Index Lemma we used is a restatement of Corollary
2 by Fan [55] using our notation. For a simple description of this lemma in
dimension 2 see Henle [79, pp. 46-47].

12.7. EXERCISES 337

1 // pseudo−code for P
2 int last = ⊥ // initially
3 goRight: Boolean = false // initially
4 visit (box: MA−Box): Status
5 box. last := P
6 if (box.goRight) then
7 return RIGHT
8 box.goRight = true
9 if last = P then

10 return STOP
11 else
12 return DOWN

Figure 12.8: Code for MA-Box.

It turns out that if n + 1 is not a prime power, then there is an index-
independent wait-free read-write protocol for 2n-renaming, as shown by
Castañeda and Rajsbaum [31, 33]. An algebraic topology proof is given
by Castañeda, Herlihy and Rajsbaum [127], and a more direct upper bound
construction by Attiya et al. [11].

Exercise 12.6 and 12.7 are inspired by work of Moir and Anderson [119].

12.7 Exercises

Exercise 12.1. Give a single-round immediate snapshot protocol for the
tagged participating set task defined in Section 12.1.2.

Exercise 12.2. Prove Fact 12.5.4.

Exercise 12.3. Prove Lemma 12.1.2.

Exercise 12.4. Show that if a manifold with boundaryM has an orientation,
then there are exactly two possible orientations.

Exercise 12.5. Recall that the testAndSet() operation atomically swaps true
with the contents of a memory location. Devise a wait-free M -renaming
protocol using testAndSet() objects. How small can you make M?

Exercise 12.6. An MA-box is named after its inventors, Mark Moir and
James Anderson. It provides a single method, visit (), which returns one
of three values: STOP, DOWN, or RIGHT. Figure 12.8 shows the code for
visit (). The MA-Box object has two fields, last , initially ⊥, and goRight,

338 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

0 1 3

2

5

4

9

8

7

6

Figure 12.9: Array layout for MA-Box objects.

initially false. These fields can be read and written by multiple processes.
When a process calls visit (), it stores its own name in the last field. If
goRight field is true, it returns RIGHT. Otherwise, it re-reads last , and if
its name is still present, it returns STOP, and otherwise it reruns DOWN.

Prove that if n threads call visit (),

• at most one thread gets the value STOP.,

• at most n− 1 threads get the value DOWN, and

• at most n− 1 threads get the value RIGHT.

Note that the last two proofs are not symmetric.

Exercise 12.7. Arrange MA-box objects in a triangular matrix, where each
MA-Box is given an integer name as shown in Figure 12.9. Each thread
starts by visiting MA-Box zero. If it gets STOP, it stops. If it gets RIGHT,
it visits 1, and if it gets DOWN, it visits 2. In general, if a thread gets STOP,

12.7. EXERCISES 339

it stops. If it gets RIGHT, it visits the next MA-Box on that row, and if it
gets DOWN, it visits the next MA-Box in that column. Each thread takes
the name of the MA-Box object where it stops.

Prove that MA-boxes can be used to solve (2n+ 1)-renaming.

• Prove that each thread eventually stops at some MA-Box object.

• How many MA-Box objects do you need in the array if you know in
advance a bound n+ 1 on the number of threads?

340 CHAPTER 12. RENAMING AND ORIENTED MANIFOLDS

Chapter 13

Shellability and Task
Solvability

Non Print Material 13. Abstract:
The principal technical idea introduced in this chapter is a proof that if

the single-layer complex is shellable, a combinatorial property defined later,
then multi-layer compositions preserve connectivity under certain easily-
checkable conditions. These are theorems of combinatorial topology, inde-
pendent of any model of computation.

We then show that for several models of computation, each single-layer
complex is indeed shellable, so it becomes a straightforward exercise to derive
tight (or nearly tight) bounds on when and if one can solve k-set agreement.

Key words: asynchronous message-passing model, asynchronous snap-
shot memory model, core, face ordering, layered computation, nerve lemma,
pseudosphere, semi-synchronous message-passing model, shellability, signa-
ture, survivor set, synchronous message-passing model.

We have seen that one way to analyze complex models of computation is to
break protocol executions into layers. In this chapter, we show how to ex-
ploit layering to compute inductively the connectivity of protocol complexes
in various models of computation. The advantage of layering is that we can
treat connectivity as an invariant, established in the first layer, and pre-
served in later layers. Understanding the computational power of a model
splits into two tasks: we use model-specific reasoning to analyze connectiv-
ity for a single-layer complex, and model-independent reasoning to analyze
how individual layers compose.

341

342 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

The principal technical idea introduced in this chapter is a proof that if
the single-layer complex is shellable, a combinatorial property defined later,
then multi-layer compositions preserve connectivity under certain easily-
checkable conditions. These are theorems of combinatorial topology, inde-
pendent of any model of computation.

We then show that for several models of computation, each single-layer
complex is indeed shellable, so it becomes a straightforward exercise to derive
tight (or nearly tight) bounds on when and if one can solve k-set agreement.

13.1 Shellability

Roughly speaking, a pure n-dimensional abstract simplicial complex is
shellable if it can be decomposed into components whose unions and intersec-
tions have a nice regular structure amenable to the use of the Nerve Lemma.
Not all complexes have such a nice structure, but the complexes that arise
in several important models of concurrent computation do. Specifically, ex-
ploiting shellability allows us to break computations of arbitrary length into
simpler, well-structured layers, and to argue that each layer preserves con-
nectivity. For some (asynchronous) models, the protocol complexes remain
connected forever, yielding impossibility results. For other (synchronous
and semi-synchronous) models, the protocol complexes remain connected
for only a bounded number of layers, yielding communication complexity
lower bounds.

13.1.1 Basic Definitions and Facts

Recall that a facet of a complex is a maximal simplex. A simplicial complex
C is shellable if its facets can be arranged in a linear order φ0, . . . , φt, called
a shelling order, in such a way that the subcomplex (∪k−1

i=0 φi) ∩ φk is the
union of (dimφk − 1)-faces of φk, for 0 < k ≤ t. All the shellable complexes
considered here are pure: their facets have the same dimension.

Figure 13.1 shows the construction of an octahedron, a simple shellable
2-complex that represents all the possible ways to assign binary values to
three processes. The construction starts with a single 2-simplex (triangle)
in the upper left, and adjoins new 2-simplices along either one, two, or (at
lower right) three edges. Figure 13.2 shows a simple complex that is not
shellable: it consists of two 2-simplices that are joined at a single vertex.

13.1. SHELLABILITY 343

Figure 13.1: Constructing a shellable complex.

Figure 13.2: Example of a non-shellable complex.

344 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

Mathematical Note 13.1.1. A facet (maximal simplex) that is added by at-
taching all of its proper faces is called a spanning simplex. It can be shown
that any shellable complex is topologically equivalent (more precisely, ho-
motopy equivalent) to a set of spheres attached at a single point (called
a wedge of spheres). Each such sphere corresponds to a spanning simplex
in the shellable complex, and that sphere has the same dimension as the
corresponding spanning simplex.

Fact 13.1.2. If C is a pure, shellable k-complex, then C is (k− 1)-connected.

The following alternative formulation for shellability, while less concise,
is easier to use in proofs.

Fact 13.1.3. Let K be a simplicial complex with facets φ0, . . . , φt. This
sequence is a shelling order if and only if, for every i, j such that 0 ≤ i <
j ≤ t, there exists φk satisfying

1. 0 ≤ k < j,

2. φi ∩ φj ⊆ φk ∩ φj , and

3. |φj \ φk| = 1.

Informally, these conditions capture what happens as we glue each suc-
cessive facet φj onto the complex. The first condition simply says we are
considering how a newly-appended facet, φj , intersects an earlier facet, φk.
The second condition says that we can ignore “small” intersections between
φj and any preceding φi, because any such intersection is contained within
a larger intersection with φk. The third condition says φj is glued onto φk
along an (n−1)-face. To prove that a complex K is shellable, we will display
a total order on its facets satisfying these conditions.

13.2 Examples

Let σ = {s0, . . . , sn} be an n-simplex, together with a total ordering on its
vertices, indicated here by index order. The face ordering <f on faces of σ
is defined as follows.

Definition 13.2.1. Each face τ of σ has an associated signature, denoted τ [·],
an (n+1)-element Boolean string whose ith value, denoted τ [i], is ⊥ if si ∈ τ ,
and > otherwise. (Note that ⊥ denotes presence, and > denotes absence!)
Faces are ordered by their signatures: τ0 <f τ1 if τ0[·] is lexicographically
less than τ1[·], where ⊥ < >.

13.2. EXAMPLES 345

Figure 13.3: Illustration for Lemma 13.2.2: shelling orders for the 1 and
2-skeletons of a tetrahedron ∆2.

For this ordering and for others, we use the obvious notational exten-
sions: τ0 ≤f τ1 if τ0 <f τ1 or τ0 = τ1, and τ1 >f τ0 if τ0 <f τ1.

The simplex whose signature bits are all ⊥ is equal to σ, and is ordered
before any of its proper faces. The simplex whose signature bits are all > is
equal to ∅, and is ordered after any of the faces.

The following lemma, illustrated by Figure 13.3, shows the techniques
which we will later use to prove more complex results.

Lemma 13.2.2. For all d, 0 ≤ d ≤ n, the simplicial complex skeld(σ) is
shellable.

Proof. Let Facesd(σ) be the set of d-faces of σ, which is also the set of facets
of the complex skeld σ. We claim that the ordering <f is a shelling order for
Facesd(σ). Let φi <f φj be two d-faces in Facesd(σ).

Consider their signatures. Let ` be the least index such that φi[`] 6= φj [`].
Because φi <f φj , φi[`] < φj [`], meaning that φi[`] = ⊥ and φj [`] = >.

346 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

Equivalently, s` ∈ φi but s` 6∈ φj .
Because φi and φj both have dimension d, each contains exactly d + 1

vertices, implying there is an index m, ` < m ≤ n + 1, such that sm ∈ φj
but sm 6∈ φi, implying that φj [m] < φj [m].

Construct φk by replacing sm in φj with s`:

φk = (φj \ {sm}) ∪ {s`} .

This simplex has the signature

φk[q] =

φj [q] if q 6∈ {`,m}
⊥ if q = `

> if q = m.

We must check the three conditions of Fact 13.1.3.
By construction, ` is the first index at which the signatures of φk and φj

differ. Because φk[`] = ⊥ and φj [`] = >, it follows that φk <f φj , satisfying
the first condition.

Also by construction, φj ∩ φk = φj \ {sm}. Because sm 6∈ φi, φi ∩ φj ⊆
φk ∩ φj , satisfying the second condition.

Finally, sm is the only vertex in φj not in φk, so |φj \ φk| = | {sm} | = 1,
satisfying the third condition.

13.3 Pseudospheres

Consider the input complexes for the 2 and 3-process binary consensus task,
in which each process starts with a binary value, and all must agree on some
process’s input. Each process in the set {P,Q} or {P,Q,R} is independently
assigned a value from {0, 1}. As shown in Figure 13.4, the resulting complex
for two processes is a rectangle, and for three processes is an octahedron.
Each process is assigned 0 in the upper face, and 1 in the lower face. The
processes are assigned mixed values in the simplices joining these faces.
These complexes are homeomorphic to the 1 and 2-spheres, and we leave
it as an exercise to show that the complex constructed by independently
assigning binary values to a set of n + 1 processes is homeomorphic to a
combinatorial n-sphere.

What if we independently assign values from a larger set? Figure 13.5
shows a schematic picture of the complex constructed by independently as-
signing each process a value from {0, 1, 2}. It consists of three octahedrons,
one for each pair of values, where the octahedron generated by {0, 1} is

13.3. PSEUDOSPHERES 347

00

0 00 0

1

0 0

1

0 0

1

1

111

1

Figure 13.4: The pseudosphere complex Ψ({P,Q} , {0, 1}) (left) is a rectan-
gle, and Ψ({P,Q,R} , {0, 1}) (right) is an octahedron.

0 01

0 0 0 01 1

1

1

1 2

2

22

2

2

1 2 0 1

10 210 2

21 0 121 0 1

Figure 13.5: An exploded view of the pseudosphere complex
Ψ({P,Q,R} , {0, 1, 2}). Colors indicate process names, and vertices with
the same color and value are the same. The simplices labeled with one or
two values form three octahedrons, shown at the top. They are linked by
six triangles labeled with three values, shown at the bottom.

348 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

“glued” to the octahedron generated by {0, 2} at the simplex in which all
processes are assigned 0, and similarly for the other values. These octahe-
drons are further linked by six triangles labeled with all three values. When
we move from assigning two values to three, the resulting complex is no
longer homeomorphic to a sphere, but it shares many of the combinatorial
properties of spheres. For this reason, we call such a complex a pseudosphere.
We are now ready to define pseudospheres formally.

Definition 13.3.1. Let I be a finite index set. For each i ∈ I, let Pi be a
process name, indexed so that if i 6= j, then Pi 6= Pj , and let Vi be a set.
The pseudosphere complex Ψ(Pi, Vi|i ∈ I) is defined as follows:

• Every pair (Pi, v) is a vertex, where v ∈ Vi.

• For any index set J ⊆ I, the set {(Pj , vj)|j ∈ J, vj ∈ Vj} is a simplex
if the Pj are distinct.

Note that this definition ensures that each facet of Ψ(Pi, Vi|i ∈ I) is
properly colored with all process names, so a pseudosphere is pure. For the
index set [n], we sometimes use the notation Ψ(P0, V0; . . . ;Pn, Vn). Often,
but not always, the Vi are the same, so we write Ψ(U, V) as shorthand for
Ψ(Pi, V |Pi ∈ U).

The following simple properties follow directly from the definitions, and
are left as exercises. (Recall that we do not always distinguish between a
simplex, and the power set complex of all its faces.)

Fact 13.3.2. If each Vi is a singleton set {vi}, then the pseudosphere is
isomorphic to a single simplex:

Ψ(Pi, Vi|i ∈ I) ∼= {vi|i ∈ I} .

Fact 13.3.3. If there is a j ∈ I such that Vj = ∅, then

Ψ(Pi, Vi|i ∈ I) ∼= Ψ(Pi, Vi|i ∈ I \ {j}).

Pseudospheres are closed under intersection.

Fact 13.3.4.

Ψ(Pi, Ui|i ∈ I) ∩Ψ(Pi, Vi|i ∈ I) = Ψ(Pi, Ui ∩ Vi|i ∈ I).

Next, we show that pseudospheres are shellable. Assume we have a total
order on each Vi. Define the pseudosphere ordering <p on facets as follows.

13.4. CARRIER MAPS AND SHELLABLE COMPLEXES 349

Definition 13.3.5. Consider facets φ, φ′ of Ψ(Pi, Vi|i ∈ I), where

φ = {(P0, u0), . . . , (Pn, un)}
φ′ = {(P0, v0), . . . , (Pn, vn)} .

We order facets lexicographically by value: define φ <p φ
′ if there is an `,

0 ≤ ` ≤ n, such that ui = vi for 0 ≤ i < `, and u` < v`.

Theorem 13.3.6. The order <p is a shelling order for Ψ(Pi, Vi|i ∈ I).

Proof. Let φ0, . . . , φt be the facets of the pseudosphere indexed according to
the pseudosphere ordering. Consider φi and φj , where i < j.

φi = {(P0, u0), . . . , (Pn, un)}
φj = {(P0, v0), . . . , (Pn, vn)} .

Let ` be the least index such that u` < v`. Replacing (P`, v`) in φj with
(P`, u`) yields a facet φk. We must check the three conditions of Fact 13.1.3.
By construction, φk <p φj , so k < j, φj ∩φi ⊆ φj ∩φk, and |φj \φk| = 1.

Corollary 13.3.7. If the Vi are non-empty, then Ψ(Pi, Vi|i ∈ I) is (|I| − 2)-
connected.

For n+1 processes, |I| = n+1, then Ψ(Pi, Vi|i ∈ I) is (n−1)-connected.

13.4 Carrier Maps and Shellable Complexes

Recall from Chapter 3 that for simplicial complexes C and D, a carrier map
Φ : C → 2D takes each simplex of C to a subcomplex of D. A carrier map
is rigid if Φ(σ) is pure of dimension dimσ, for all σ ∈ C, and we say that Φ
preserves intersections if Φ(σ∩τ) = Φ(σ)∩Φ(τ); such a carrier map is called
strict. We also use the short-hand notation Φ(K) to denote ∪σ∈KΦ(σ).

We decompose computations into a sequence of layers. Each layer is
defined by a carrier map that carries the complex representing the possi-
ble configurations before the layer to the complex representing the possible
configurations after the layer. In synchronous models, we can think of lay-
ers as happening one at a time: first, layer one executes, then layer two,
and so on. In asynchronous models, however, like the layered asynchronous
snapshot model used in earlier chapters, the layered structure represents in-
formation flow, not temporal order. Steps of different layers can take place
concurrently, but information flows only from earlier layers to later ones.

350 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

We use the following invariance argument to analyze when k-set agree-
ment is impossible in such a model. The input complex, where each process
independently chooses an input value, is shellable, and therefore (k − 1)-
connected. It is enough to show that each layer’s carrier map preserves
(k− 1)-connectivity. When we define these carrier maps, we do not need to
consider all executions permitted by the model, only the “worst-case” ones
that preserve connectivity. For impossibility results, if a protocol cannot
solve a task on a subset of executions of a model, it can certainly not solve
it on all executions.

We will make use of the Nerve Lemma (Lemma 10.4.2), repeated here:

Let {Ki|i ∈ I} be a cover for a complex K. For any index set
J ⊂ I, define KJ = ∩j∈JKj . If each KJ is either (k − |J | + 1)-
connected or empty, then K is k-connected if and only if the
nerve complex N (Ki|i ∈ I) is also k-connected.

We will also use the following special case of the Nerve Lemma
(Lemma 10.4.3).

If K and L are complexes such that K and L are k-connected,
and K ∩ L is (k − 1)-connected, then K ∪ L is also k-connected.

Recall that the codimension of an m-simplex in a pure n-complex C,
written codimσ, is n−m. We distinguish yet another class of carrier maps.

Definition 13.4.1. Assume K and L are simplicial complexes, such that K
is pure. A q-connected carrier map Φ : K → 2L is a rigid strict carrier map
such that for each σ ∈ K, the simplicial complex Φ(σ) is (q − codimσ)-
connected.

For a n-complex K, these conditions can be restated as follows: for n-
simplices σ the subcomplexes Φ(σ) are q-connected, for (n− 1)-simplices σ
the subcomplexes Φ(σ) are (q − 1)-connected, . . . , for (n − q)-simplices σ
the subcomplexes Φ(σ) are 0-connected (that is, path-connected), and for
(n− q − 1)-simplices σ the subcomplexes Φ(σ) are (−1)-connected (that is,
non-empty). These conditions place no restrictions on simplices of dimension
n− q − 2 and lower.

Let us now state the following obvious property: if K is an n-dimensional
pure simplicial complex, K̃ is an m-dimensional pure simplicial subcomplex
of K, and Φ : K → 2L, is a q-connected carrier map, then the restriction of
Φ to K̃ is a (q − n+m)-connected carrier map.

The next two lemmas illustrate why shellability is such a powerful notion.
Informally, if a carrier map, operating on a shellable complex, preserves

13.4. CARRIER MAPS AND SHELLABLE COMPLEXES 351

shellability locally, then it preserves connectivity globally, giving us a tool
for local reasoning about connectivity.

Lemma 13.4.2. If K is a pure shellable simplicial complex, and Φ : K → 2L

a q-connected carrier map, then the simplicial complex Φ(K) is q-connected.

Proof. Let K =
⋃t
i=0 φi, where the φi are the facets of K indexed in a shelling

order. We argue by induction on t.

For the base case, K = φ0. Because φ0 is a facet of K of codimension 0,
Φ(φ0) is q-connected by hypothesis.

For the induction hypothesis, assume

L =

t−1⋃
i=0

Φ(φi) = Φ

(
t−1⋃
i=0

φi

)

is q-connected. Because φt is a facet of K, M = Φ(φt) is q-connected by
hypothesis. If we show that L ∩ M is (q − 1)-connected, then the claim
follows from Lemma 10.4.3, the special case of the Nerve Lemma. Now,
since Φ is strict, we have

L ∩M = Φ

(
t−1⋃
i=0

φi

)
∩ Φ(φt) = Φ

(
φt ∩

t−1⋃
i=0

φi

)
.

We know that the simplicial complex φt ∩
⋃t−1
i=0 φi is pure of dimen-

sion n − 1. It is shellable (see Exercise 13.1), and Φ restricted to it is
(q − 1)-connected. By induction on the dimension of K we know that

Φ
(
φt ∩

⋃t−1
i=0 φi

)
is (q − 1)-connected; which is exactly what we need.

Definition 13.4.3. A shellable carrier map Φ : K → 2L is a rigid strict carrier
map such that for each σ ∈ K, the simplicial complex Φ(σ) is shellable.

Assume the simplicial complex K is pure of dimension n. A shellable
carrier map Φ : K → 2L is an (n − 1)-connected carrier map, but not
necessarily vice-versa.

Lemma 13.4.4. Consider a sequence of pure complexes and carrier maps

K0
Φ0−−−−→ K1

Φ1−−−−→ K2,

where Φ0 is a shellable carrier map, and Φ1 is a q-connected carrier map.
Then the composition Φ1 ◦ Φ0 is a q-connected carrier map.

352 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

Proof. Note that Φ1 ◦Φ0 is a rigid strict carrier map because it is a compo-
sition of two rigid strict carrier maps. It remains to check that (Φ1 ◦Φ0)(σ)
is (q − codimσ)-connected for all σ.

For each σ ∈ K0, apply Lemma 13.4.2, substituting Φ0(σ) for K, q −
codimσ for q, K2 for L, and Φ1 for Φ. Because Φ0 is a shellable carrier map,
Φ0(σ) is pure and shellable of dimension dimσ. Because Φ1 is a q-connected
carrier map, its restriction to the simplicial complex Φ0(σ) is (q− codimσ)-
connected. It follows from Lemma 13.4.2 that Φ1(Φ0(σ)) = (Φ1 ◦ Φ0)(σ) is
(q − codimσ)-connected.

Lemma 13.4.5. Consider a sequence of pure complexes and carrier maps

K0
Φ0−−−−→ K1

Φ1−−−−→ · · · Φ`−−−−→ K`+1,

such that the carrier maps Φ0, . . . ,Φ`−1 are shellable, and the carrier map
Φ` is q-connected. Then the composition Φ` ◦ · · · ◦Φ1 ◦Φ0 is a q-connected
carrier map.

Proof. By induction on `. The claim is immediate when ` = 0, and the
induction step follows directly from Lemma 13.4.4.

Theorem 13.4.6. Let (I,P,Ξ) be an (n + 1)-process protocol, such that I
is shellable. If the rigid strict carrier map Ξ can be decomposed into a
sequence of layers, Φ0, . . . ,ΦN , where each Φi is a shellable carrier map,
then the protocol complex P is (n− 1)-connected.

Proof. The dimension of I is n, hence all the protocol complexes between the
layers are pure of dimension n. In particular, the source simplicial complex
of ΦN is pure of dimension n, so it follows that ΦN is an (n− 1)-connected
carrier map. Lemma 13.4.5 implies that the composition ΦN ◦ · · · ◦ Φ1 ◦
Φ0 is an (n − 1)-connected carrier map. Furthermore, since I is shellable,
Lemma 13.4.2 implies that the protocol complex Ξ(I) = (ΦN◦· · ·◦Φ1◦Φ0)(I)
is (n− 1)-connected.

By Theorem 10.3.1,

Corollary 13.4.7. If (I,P,Ξ) satisfies the conditions of Theorem 13.4.6, then
it cannot solve n-set agreement.

13.5. APPLICATIONS 353

13.5 Applications

In this section, we show how to apply shellability to several layered models
of computation, along with Corollary 13.4.7. For each model, we consider
an adversary A with minimal core size c. We use two strategies for applying
layered decompositions. For asynchronous models, we construct per-layer
carrier maps that are shellable and that do not fail any processes, implying
that no protocol can solve k-set agreement in a finite number of layers. For
synchronous and semi-synchronous models, we construct per-layer carrier
maps that are shellable and that fail a certain number of processes in each
layer, implying a lower bound on the number of layers needed to solve k-set
agreement.

For generality, we will use the adversary model introduced in Section 5.4.
Recall that an adversary is defined by its cores, where a core is a minimal set
of processes that will not all fail in any execution. An alternative definition
is in terms of its survivor sets, where a survivor set is a minimal set of
processes that intersects every core.

We will need the following lemma about adversaries.

Lemma 13.5.1. Assume we have n + 1 processes and an adversary A with
faulty set complex F . Let c be A’s minimal core size, and let s be A’s
maximal survivor set size. Then we have n+ 2 ≥ c+ s.

Proof. Since c is the minimal core size, for all σ ⊆ [n], such that |σ| ≤ c− 1,
we have σ ∈ F . Hence all the facets of F have size at least c− 1, implying
that s ≤ n+ 1− (c− 1), which is the same as to say n+ 2 ≥ c+ s.

13.5.1 Asynchronous Message-Passing

In this model, a set of n + 1 asynchronous, crash-prone processes commu-
nicate by sending messages. As illustrated in Fig. 13.6, in each layer, each
process sends its state to every process, including itself, and waits until it
receives a message, for that layer, from every process in a survivor set. This
model generalizes the message-passing model considered in Section 5.5 to
encompass adversaries

Because the model is asynchronous, a message sent from one process to
another in a particular layer might not be delivered in that layer. Suppose
P sends a message to Q in layer `. If Q receives that message in an earlier
layer, then Q buffers the message and delivers it in layer `, while if Q receives
that message in a later layer, it discards it.

354 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

// N is number of layers , n+ 1 the number of processes
AsynchronousMP(vi: Value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do
send(P , view, `) to all
do // collect values from a survivor set
upon receive(Q, u, `) do

view : = view ∪{(Q, u)}
until view contains a survivor set

return δ(view) // apply decision map to final view

Figure 13.6: Asynchronous message-passing: N -layer full-information pro-
tocol.

By the model-independent Theorem 13.4.6, it is enough to focus on the
single-layer carrier map for this model:

Φa(σ) = Ψ(σ, {τ ⊆ σ|τ contains a survivor set for A}),

where Ψ(·) is the pseudosphere operator. Here is how to interpret this map.
The input simplex σ is a set of non-faulty processes, together with their local
states. This set includes a survivor set, although it may be larger. Each
participating process in σ broadcasts its vertex, and waits until it receives
a message, for that layer, from every process in a survivor set, discarding
any messages arriving late from earlier layers. Each message received is a
vertex of σ, and the set of messages received in that layer form a face τ of
σ, where τ contains a survivor set. Because each process can be assigned
any such face independently, the resulting complex is a pseudosphere. This
pseudosphere is constructed over σ itself because no process in σ fails in
this execution. The pseudosphere is generated by considering all possible
ways in which messages can be delayed. Later, we will consider single-layer
carrier maps in which processes do fail.

Note that if σ does not contain a survivor set, then we define Φa(σ) to
be empty. If the codimension of σ is less than c, the minimum core size,
then σ contains a survivor set, so Φa(σ) is non-empty.

Lemma 13.5.2. The single-layer carrier map Φa is a shellable carrier map.

Proof. The complex Φa(σ) is non-empty only when codimσ < c, in which
case the complex is a non-empty pseudosphere, which is pure and shellable
by Theorem 13.3.6.

13.5. APPLICATIONS 355

// N is number of layers , n+ 1 the number of processes
SynchronousMP(vi: Value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do
send(P , view, `) to all
do // collect values from a survivor set
upon receive(Q, u, `) do

view : = view ∪{(Q, u)}
until all messages for layer ` received

return δ(view) // apply decision map to final view

Figure 13.7: Synchronous message-passing: N -layer full-information proto-
col.

From Theorem 13.4.6,

Theorem 13.5.3. If (I,P,Ξ) is an asynchronous message-passing protocol
against an adversary with minimum core size c, then for all σ ∈ I, Ξ(σ) is
(c−2−codimσ)-connected, and the protocol complex P is (c−2)-connected.

From Theorem 10.3.1,

Corollary 13.5.4. There is no asynchronous message-passing protocol for
(c− 1)-set agreement against an adversary with minimum core size c.

This bound is tight. Here is an asynchronous message-passing protocol
for c-set agreement. Pick a core C of size c, and have each member broadcast
its input value. Each process waits until it hears a value from a process in C,
and decides that value. The protocol must terminate because the processes
in C cannot all fail, and no more than c distinct values may be chosen.

13.5.2 Synchronous Message-Passing

In the synchronous message-passing model with crash failures, there are
n+ 1 processes, where each process’s initial state consists of its input value.
Computation proceeds in a sequence of layers. In each layer, each process
sends its state to all the other processes, and receives states from the others.
The process’s new state is the set of messages it received in that layer. A
process can fail by crashing during a layer, in which case it may send its
state to an arbitrary subset of the processes in that layer. In later layers, the
crashed process never sends another message. Fig. 13.7 shows pseudo-code
for a protocol in this model.

356 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

We wish to derive a lower bound on the number of layers needed to
solve k-set agreement against an adversary A in this model. We will show
that there is no N -layer protocol for k-set agreement if n ≥ (N + 1)k and
Nk < c. By Theorem 13.4.6, the lower bound question can be rephrased:
for how many layers can A maintain a shellable carrier map?

Because we are proving a lower bound, we can restrict our attention to
any subset of the executions permitted by A. In particular, we consider
the executions in which exactly k processes fail in each layer. We can now
motivate our constraints on n, k, and N . The constraint n ≥ (N + 1)k
ensures that at least k+1 non-faulty processes survive to the end of N layers,
which is necessary because otherwise k-set agreement would be possible in
these restricted executions. (The matching lower bound shows that this
assumption does not sacrifice generality.) The constraint Nk < c ensures
that the cumulative number of failures does not exceed c, ensuring that all
such executions are permitted by A.

Unlike the asynchronous model, where each layer uses the same carrier
map, we will define a distinct carrier map for each layer:

K0
Φ0−−−−→ K1

Φ1−−−−→ · · · ΦN−1−−−−→ KN ,

where K0 is the input complex, each Ki is the image of Ki−1 under Φi−1,
and

Φi(σ) =
⋃

τ∈Facesn−(i+1)k σ

Ψ(τ, [τ, σ]). (13.5.1)

For each Ki, and each σ in Ki, τ ⊆ σ is the subset of processes that do
not fail. Each non-faulty process receives a message from all the non-faulty
processes in τ , and also from an arbitrary subset of the faulty processes in
σ \ τ , yielding a face φ of σ between τ and σ: τ ⊆ φ ⊆ σ. Recall that [τ, σ]
denotes the set of simplices between τ and σ. For a given τ , these faces
are assigned independently, hence the resulting complex is a pseudosphere.
Because the cumulative number of failures is i · k < c, each facet of Φi(σ)
corresponds to an execution of A.

Figure 13.8 shows the single-layer protocol complex for processes P0, P1,
and P2, where exactly one failure occurs in each execution, operating on a
single input complex. The complex is the union of three pseudospheres, one
for each possible failure. Each vertex is colored black, gray, or white for
P0, P1, or P2, and is labeled with the process names from which messages
were received (for example “01” means that messages were received from P0

and P1, but not P2).

13.5. APPLICATIONS 357

P1 failsP2 fails
0201

012

0201

012012

P0 fails

12 12

Figure 13.8: Synchronous message-passing protocol complex for three pro-
cesses and one failure. Each vertex is colored to indicate its process name,
and is labeled with indexes of processes from which messages were received.

We now construct a shelling order for Φi(σ). We assign each facet φ a
signature, which is a vector of faces of σ, whose ith entry, written φ[i], is
defined as follows:

φ[q] =

{
τ if (Pq, τ) ∈ φ,
> otherwise.

Each facet has a unique signature, and vice-versa. Facets are ordered lexico-
graphically by their signatures: faces of σ are compared by the face ordering,
so for any face τ ⊂ σ, σ < τ < >.

Lemma 13.5.5. For each facet σ of Ki−1, the signatures define a shelling
order on the facets of Φi(σ).

Proof. Let φ0, . . . , φt be the induced order on the facets of Φs(σ).
Let φi and φj be facets where i < j. We need to find φk, k < j, such

that φi ∩ φj ⊆ φk ∩ φj , and |φj \ φk| = 1. Let ` be the least index such that

358 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

φi[`] < φj [`]. Because > is maximal in this ordering, φi[`] 6= >, and because
σ is minimal, φi[`] 6= σ.

There are two cases. First, suppose φj [`] 6= >. Construct φk by replacing
P`’s label with σ.

φk[q] =

{
σ if q = `, and

φj [q] otherwise.

We now check the shellability conditions. Because φj and φk differ only at
element `, and φk[`] < φj [`], φk < φj and φk[`] < φj [`]. Finally, φj ∩ φi ⊆
φj ∩ φk because v` = φk \ φj is not in φi.

Second, suppose φj [`] = >. Because φi and φj have the same dimen-
sion, there must be an index m > ` such that φi[m] = > and φj [m] 6= >.
Construct φk from φj by replacing the entry ` with σ and entry m with >.

φk[q] =

σ if q = `

> if q = m, and

φj [q] otherwise.

The first element at which φj and φk disagree is `, and φk[`] < φj [`], so
φk < φj . Because m is the only entry in φj but not in φi, |φj \ φk| = 1.
Because that entry is also not in φi, φj ∩ φi ⊆ φj ∩ φk

Lemma 13.5.6. For 0 ≤ i ≤ N , Φi is a shellable carrier map.

Proof. By Lemma 13.5.5, for all σ ∈ Ki, Φi(σ) is pure and shellable.

From Theorem 13.4.6,

Theorem 13.5.7. Let n ≥ (N + 1)k and Nk < c. If (I,P,Ξ) is an N -layer
synchronous message-passing protocol against an adversary with minimum
core size c, then for all σ ∈ I, Ξ(σ) is (k − 1− codimσ)-connected, and the
protocol complex P is (k − 1)-connected.

From Theorem 10.3.1,

Corollary 13.5.8. There is no synchronous message-passing protocol for k-
set agreement that decides in

⌊
c−1
k

⌋
layers or less against an adversary with

minimum core size c.

This bound is tight. As discussed in the chapter notes, there is a t-
resilient k-set agreement protocol for this model in which each process re-
broadcasts the smallest value it has received. This protocol runs in

⌊
t
k

⌋
+ 1

layers when there are at most t failures. For our purposes, pick a core C
of minimal size c, and have the processes in C run a (c − 1)-resilient k-set

13.5. APPLICATIONS 359

// N is number of layers , n+ 1 the number of processes
AsynchronousRW(vi: Value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do

mem[`][i] := view
do // collect values from a survivor set

view := snapshot(mem[`][∗])
until view contains a survivor set

return δ(view) // apply decision map to final view

Figure 13.9: Asynchronous snapshot memory: N -layer full-information pro-
tocol for Pi.

agreement protocol. The remaining processes “eavesdrop” on the protocol’s
messages, and make the same final decisions as the participants. The result
is a k-set agreement protocol that runs in

⌊
c−1
k

⌋
+ 1 layers.

13.5.3 Asynchronous Snapshot Memory

We now turn our attention from message-passing to shared memory. This
model is similar to the one considered in Section 5.4, except that we will use
separate write and snapshot operations instead of immediate snapshots. As
shown in Figure 13.9, the processes share a two-dimensional array mem[·][·],
indexed by layer number and by process name. Each memory location is
initialized to ⊥. In layer `, each Pi writes its state to mem[`][i], and takes
repeated snapshots of row ` until the set of processes that have written at
that layer includes a survivor set.

Let σ be an n-simplex where each vertex is labeled with a distinct process
name.

Definition 13.5.9. A survivor chain for σ is a sequence of faces of σ:
σ0, . . . , σk such that names(σ0) contains a survivor set for A, and σ0 ⊂
· · · ⊂ σk = σ.

We denote the set of survivor chains for σ by Chains(σ).

Figure 13.10 shows an example of a 3-process survivor chain σ =
(σ0, σ1, σ2), where σ0 is a vertex labeled with process P (shown as black), σ1

is an edge labeled with P and Q (black and gray), and σ2 is a solid triangle
labeled with P , Q, and R (black, gray, and white). In this example, we
assume {P} is a survivor set.

360 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

σ0

σ

σ1

σ

σ2

σ

2

Figure 13.10: Example survivor chain σ = (σ0, σ1, σ2).

For a survivor chain σ = σ0 ⊂ · · · ⊂ σk, and Pi ∈ Π, let σi be the suffix
of σ of sets containing Pi. The single-layer carrier map is defined by:

Φm(σ) =
⋃

σ∈Chains(σ)

Ψ(σ;σ0, . . . , σdimσ).

Here is how to interpret this carrier map. Each process in σ writes its
vertex to the memory, waits until a survivor set has written, and then takes
a snapshot, yielding a face of σ. The order in which vertices are written
defines a sequence of faces of σ ordered by inclusion, starting with a single
vertex, and ending with σ itself. The suffix of this sequence consisting of
faces that contain a survivor set defines a survivor chain σ. The snapshot by
Pi returns a simplex from this chain. Because Pi must read its own vertex,
the simplex it chooses must be an element of σi. Except for that constraint,
however, each Pi independently chooses a simplex from σi, so the complex
is a pseudosphere.

13.5. APPLICATIONS 361

Following Definition 13.2.1, each facet of Φm(σ) has a signature, and
facets are ordered by their signatures.

Lemma 13.5.10. For any input simplex σ containing a survivor set, Φm is a
shellable carrier map.

Proof. Facets are ordered by their signatures. Index the facets φ0, . . . , φt in
signature order. As usual, if φi and φj are facets where i < j, we need to
find φk, k < j, such that φi ∩ φj ⊆ φk ∩ φj , and |φj \ φk| = 1. Let ` be
the least index such that φi[`] < φj [`] in the face ordering. Because σ is
minimal in the face ordering, φi is a proper face of σ. Construct φk to have
the following signature:

φk[q] =

{
σ if q = `,

φj [q] otherwise.

Note that (1) φk ∈ Φm(σ) because replacing any element of a survivor chain
with σ is still a survivor chain, (2) φk < φj because ` is the least index where
their signatures differ, and σ < φj [`], (3) |φj \ φk| = 1 because they differ
in only one vertex, and (4) φi ∩ φj ⊆ φk ∩ φj , because that vertex is not in
φi.

From Theorem 13.4.6,

Theorem 13.5.11. If (I,P,Ξ) is an asynchronous snapshot memory protocol
against an adversary with minimum core size c, then for all σ ∈ I, Ξ(σ) is
(c−2−codimσ)-connected, and the protocol complex P is (c−2)-connected.

From Theorem 10.3.1,

Corollary 13.5.12. There is no asynchronous snapshot memory protocol for
(c− 1)-set agreement against any adversary with minimum core size c.

This bound is tight. Here is a simple c-set agreement protocol against
this adversary. Pick a core C of size c. Each process in C writes its input
to a distinguished shared memory location, initialized to hold a null value.
Each process chooses the first non-null value it reads from a process in C.
This protocol must terminate because C is a core, and the adversary cannot
fail every process in C.

13.5.4 Semi-Synchronous Message-Passing

In this model, a set Π of n + 1 processes exchange messages, but the time
between two consecutive process steps is at least d0 and at most d1, and the

362 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

all F (τ,m+ 1)

i d F () d F (+ 1)mixed F (τ,m) and F (τ,m+ 1)

ll F ()

F(τ,m)
all F (τ,m)

Figure 13.11: The octahedron Φ(τ,m) represents the executions where the
faulty processes all fail at microlayer m. In the top face, the three non-faulty
processes observe the failures at microlayer m + 1, and in the bottom face
at microlayer m. In the other faces, the observations are mixed.

time to deliver a message is at most dm, where dm � d0. Because dm is much
larger than d0, we will assume dm is an exact multiple of d0 to avoid tedious
round-off calculations. The values d0, d1, and dm are known constants. Let
ds = d1/d0. Failures and timing are controlled by an adversary A with
minimal core size c. We will derive a lower bound on the time needed to
solve k-set agreement against A in this model.

We first use topological arguments to prove a lower bound for a wait-free
adversary. We then use an argument by reduction to extend the bound to
general adversaries.

A fast execution is defined as follows. Each layer takes exactly time dm.
Each process sends a message in each layer, and the messages sent during a
layer are delivered at the very end of that layer (at multiples of time dm).
All processes take steps in lock-step as quickly as possible (at multiples of

13.5. APPLICATIONS 363

F(τ,m− 1) F(τ,m) F(τ,m+ 1)F(,) F(,) F(, +)

Figure 13.12: An exploded view of Φ(τ). Vertices linked by dashed arrows
are the same: the octahedrons Φ(τ,m) and Φ(τ,m+ 1) intersect at the top
face of Φ(τ,m), which is also the bottom face of Φ(τ,m+ 1).

time d0). The interval between process steps is called a microlayer, and
there are µ = dm/d0 microlayers per layer. Within a layer, microlayers are
indexed from 0 to µ− 1, and each message is labeled with the index of the
microlayer in which it was sent. This model is illustrated in Figure 13.14.

A failure pattern is a sequence of n+ 1 integers, each between 0 and µ.
The ith element of the sequence is the microlayer in which Pi fails, or µ if
it does not fail. The view of a process Pi at the end of a layer is the failure
pattern it observed, identifying each Pj to the first microlayer in which Pi
fails to receive a message from Pj , or to µ if no messages are missing. Note
that a process’s view may not be the same as the actual failure pattern,
because a process that fails in microlayer m may still send messages during
that microlayer.

Failure patterns are ordered lexicographically. If ` is the first index
where failure patterns F and G disagree, then F < G if and only if F (`) >

364 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

F(τ3)

F(τ)τ τ1
τ3

F(τ1)
τ0

τ2 1σ

F(τ0,μ)

F(τ0)F(τ2) F(τ0,μ-1)
…

F(τ0,μ)

Figure 13.13: A schematic view of Φ(σ). Each τi is an (n − k)-face of
σ. The chain of octahedron extending from each τi represents Φ(τi), the
executions in which the processes in τi are non-faulty. Each octahedron
represents Φ(τi,m), the executions in which the faulty processes all fail at
microlayer m. The chains come together in the k-skeleton of σ, representing
the executions where each non-faulty process observes the failure pattern F̃ ,
where no failures are detected.

G(`) (note the reversed comparison). The minimal failure pattern, denoted
F̃ , assigns µ to each process and corresponds to an execution in which no
failures were observed.

To ensure that all complexes are pure, we consider only a subset of the
possible executions. (Recall that any impossibility result that holds for a
restricted adversary also holds for a more powerful adversary.) First, we
consider executions in which exactly k processes fail in each layer, and all
faulty processes fail in the same microlayer. Let F (τ,m) be the failure
pattern in which all processes not in τ fail at microlayer m. Finally, we
require that if the faulty processes fail in microlayer m, then for every non-

13.5. APPLICATIONS 365

d0 d0 d0

sent dmsent sent d li dsent sent sent delivered

Figure 13.14: Each layer takes time exactly dm, and all messages sent during
a layer are delivered at the end of that layer. Processes run in lock-step at
maximum speed, taking a step at intervals of duration d0.

faulty process Pi ∈ names(τ) either Pi observes all failures to have occurred
in microlayer m (that is, failure pattern F (τ,m)), or it observes them in
microlayer m+ 1 (failure pattern F (τ,m+ 1)).

While these restrictions are not necessary to prove shellability, they sub-
stantially reduce the size of the complex, and simplify our analysis.

As in the synchronous case, these executions define a sequence of com-
plexes and carrier maps

K0
Φ0−−−−→ K1

Φ1−−−−→ · · · ΦN−1−−−−→ KN ,

where K0 is the input complex, and each Ki is the image of Ki−1 under Φi−1.
As in the synchronous case, we assume n > (N + 1)k and Nk < c. We now
construct Φi(·).

As illustrated in Figure 13.11, the protocol complex for the single-layer

366 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

execution under failure pattern F (τ,m) is just the pseudosphere

Φ(τ,m) = Ψ(τ, {F (τ,m), F (τ,m+ 1)}) ' Ψ(τ, {0, 1}).

(Topologically, this complex is a combinatorial sphere of the same dimension
as τ .) Moreover, it is a shellable complex, whose minimal facet in the
lexicographic order associates each vertex of τ with F (τ,m+ 1), and whose
maximal facet associates each vertex with F (τ,m).

The following complex encompasses all the executions where the pro-
cesses in τ do not fail:

Φ(τ) =

µ⋃
m=0

Φ(τ,m).

As illustrated in Figure 13.12, for a fixed τ , as m ranges from 0 to µ, the
complexes Φ(τ,m) are linked in a chain, where the maximal facet of each
Φ(τ,m) is identified with the minimal facet of Φ(τ,m+ 1).

Finally, in the full single-layer protocol complex, illustrated schemati-
cally in Figure 13.13, the components range over all (n− k)-faces of σ.

Φi(σ) =
⋃

τ∈Facesn−(i+1)·k(σ)

Φ(τ).

To show that this complex is shellable, the next lemma describes a way to
build shellable complexes by “concatenating” shellable components.

Lemma 13.5.13. Let K, L, andM be pure n-complexes and < a total order
on their facets. If

• L separates K and M, that is: K ∩M ⊆ L,

• < is a shelling order for both K ∪ L and L ∪M, and

• L ≤M: for every pair of facets φ of L and φ′ of M, φ ≤ φ′.

then < is a shelling order for K ∪ L ∪M.

Proof. We must show that any two facets φi and φj of K∪L∪M, for i < j,
satisfy the shelling conditions.

If φi, φj ∈ K∪L or φi, φj ∈ L∪M, the claim is immediate because < is
a shelling order for both K∪L and L∪M, so we need to check the shelling
conditions only for φi ∈ K and φj ∈ M. Because L separates K and M,
there is a facet φ ∈ L such that

φj ∩ φi ⊆ φ

13.5. APPLICATIONS 367

Because < is a shelling order for L∪M, and because φ < φi, there is a facet
φk ∈ L ∪M, where k < j, such that

φ ∩ φi ⊆ φk ∩ φi
|φj \ φk| = 1.

Putting these observations together,

φj ∩ φi ⊆ φ
φj ∩ φi ⊆ φ ∩ φi
φj ∩ φi ⊆ φk ∩ φi,

satisfying the shelling conditions.

We now use several steps to construct a shelling order for Φi(σ).

Lemma 13.5.14. The lexicographic order < is a shelling order for each Φ(τ).

Proof. We show the lexicographic order is a shelling order for each
∪`i=0Φ(τ, i). We argue by induction on `. For the base case, when ` = 0,
the lexicographic order is a shelling order for the pseudosphere Φ(τ, 0) by
Theorem 13.3.6.

Let K be ∪`−1
i=0Φ(τ, i), L the simplex {(P, F (τ, `))|P ∈ names(τ)} and its

faces, and M the pseudosphere Φ(τ, `). Note that

L ⊂ K,L ⊂M, and K ∩M = L,

so L separates the others. For the induction step, assume that the lexico-
graphic order is a shelling order for K, and hence for K∪L = K. Moreover,
the lexicographic order is a shelling order for L ∪M = M because M is
a pseudosphere. Because L is the minimal facet of M, L ≤ M. It fol-
lows from Lemma 13.5.13 that the lexicographic order is a shelling order for
K ∪ L ∪M = ∪`i=0Φ(τ, i).

Let σ = {s0, . . . , sn}. Earlier, we introduced the following lexicographi-
cal order on (n− k)-faces of σ. If τ0 and τ1 are (n− k)-faces of σ, and ` is
the least index at which their signatures disagree, then τ0 < τ1 if and only
if τ0[`] = ⊥ (that is, s` ∈ τ0) and τ1[`] = > (s` 6∈ τ1). Let < be the following
total order on facets of Φi(σ): Order every facet of Φ(τ0) before any facet
of Φ(τ1), and within each Φ(τ), order the facets lexicographically.

Lemma 13.5.15. The order < is a shelling order for Φi(σ).

368 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

Proof. Let τ0, . . . , τt be the (n − k)-faces of σ indexed in lexicographic or-
der. We argue by induction on ` that the order < is a shelling order for
∪`m=0Φ(τm).

For the base case, when ` = 0, the lexicographic order is a shelling order
for the complex Φ(τ0) by Lemma 13.5.14.

Let K be ∪`−1
m=0Φ(τm), L the simplex

{
(P, F̃)|P ∈ names(τ`)

}
and its

faces, and M the complex Φ(τ`). Note that the unique facet of L is the
lexicographically minimal facet of M = Φ(τ`).

For the induction step, assume that < is a shelling order for ∪`−1
m=0Φ(τm).

Let φi and φj be facets of ∪`m=0Φ(τ,m), where i < j. The shelling properties
are immediate if φi, φj ∈ K∪L or φi, φj ∈ L∪M, so consider the case where
φi ∈ K and φj ∈M.

Suppose φi ∈ Φ(τi,mi) ⊂ K, φj ∈ Φ(τj ,mj) ⊂ M, and φi ∩ φj 6= ∅.
Because τi and τ` are distinct n-simplices, and τi < τ` in the lexicographic
order, there is an index p such that τi[p] 6= > and τj [p] = >, and an index
q > p such that τi[q] = > and τj [q] 6= >. Because φi ∩ φj 6= ∅, there is an
index r such that φi[r] = φj [r] 6= ⊥.

We claim that K ∩ M ⊆ L. Every failure pattern labeling a vertex
in φi assigns microlayer µ + 1 to every process in names(τi), and the same
microlayermi to every other process. Similarly, every failure pattern labeling
a vertex in φj assigns microlayer µ+1 to every process in names(τj), and the
same microlayer mj to every other process. In the non-empty intersection,
φi[r](p) = µ + 1 = φj [r](p) = mj , and φj [r](q) = µ + 1 = φi[q] = mi. As
a result, every failure pattern in φj ∩ φi assigns microlayer µ + 1 to every
process, implying that K ∩M ⊆ L.

Next, we claim that < is a shelling order for both K∪L and L∪M. By
the induction hypothesis, < is a shelling order for K, so we need to check the
shelling conditions only for φi ∈ K and φj ∈ L. Define φk by the following
signature:

φk[m] =

F̃ If m = p

> If m = q

φj [m] otherwise.

It is easy to check the shelling conditions: φk < φj , φi ∩ φj ⊆ φk ∩ φj , and
|φj \φk| = 1. It follows that < is a shelling order for K∪L. Because L ⊂M,
and < is a shelling order forM, it follows that < is also a shelling order for
L ∪M.

Finally, we claim that L ≤M. L has a single facet, in which the vertices
of τ` are labeled with the minimal failure pattern F̃ , which is lexicographi-

13.5. APPLICATIONS 369

cally less than any other facet of Φ(τ`) =M.
By Lemma 13.5.13, < is a shelling order for K∪L∪M = ∪`m=0Φ(τm).

Lemma 13.5.16. For 0 ≤ i ≤ N , Φi is a shellable carrier map.

Proof. We note that Ki = Φi−1(Ki−1) is the union of pseudospheres, and is
therefore pure and shellable by Lemma 13.5.15.

From Theorem 13.4.6,

Theorem 13.5.17. Let N < n
k . If (I,P,Ξ) is an N -layer semi-synchronous

message-passing protocol against a wait-free adversary, then for all σ ∈ I,
Ξ(σ) is (k− 1− codimσ)-connected, and the protocol complex P is (k− 1)-
connected.

From Theorem 10.3.1,

Corollary 13.5.18. If N < n
k , then no N -layer protocol can solve k-set agree-

ment in time N · dm against a wait-free adversary.

This lower bound of Ndm is considered short. We now show how to add
a “stretched” layer at the end of length dsdm, which is much longer. Assume
for now that n+ 1 = (N + 1)k + 1. We will relax this assumption later.

Lemma 13.5.19. There is no semi-synchronous message-passing protocol for
k-set agreement against the wait-free adversary for (N + 1)k + 1 processes
that runs in time less than Ndm + dsdm.

Proof. Let ΦN+1
ε (I) denote the protocol complex at time (N + 1)dm− ε for

dm > ε > 0, at time ε before the start of layer N + 1. (See Fig. 13.15.) No
process can decide at this time, because no process has received a message
since time Ndm, so any decision it could make after waiting without a mes-
sage could have been made when it received its last message at time Ndm,
contradicting Corollary 13.5.18.

Let ΦN+1
∞ (I) denote the protocol complex corresponding to the following

executions: run a fast execution for N layers as before, but at the start of
layer N + 1, fail all processes but P , and run P as slowly as possible, taking
steps at multiples of time d1. At time Ndm + dsdm, P will time out, but
at time Ndm + dsdm − ε, this execution is indistinguishable to P from the
corresponding execution in ΦN+1

ε (I), and therefore ΦN+1
∞ (I) cannot solve

k-set agreement (See Fig. 13.16.)

So far, our analysis applies only to the wait-free adversary. To extend
this result to a general adversary A, pick a core C of minimal size c, and a
set S that intersects C in a single process, such that S∪C = Π, the complete
set of processes.

370 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

round N+1round N

No k-set
agreement

²

No new messages received,
still no k-set agreement

messages

time

Figure 13.15: After N fast layers, at time Ndm, no k-set agreement protocol
is possible. At time (N+1)dm−ε, the adversary can ensure that no messages
sent in layer N + 1 have been delivered, hence no k-set agreement protocol
is possible.

Theorem 13.5.20. There is no semi-synchronous message-passing protocol
for k-set agreement against an adversary with minimum core size c = (N +
1)k + 1 that runs in time less than Ndm + dsdm.

Proof. Assume, by way of contradiction, that such a protocol exists. We
will show that any such protocol can be transformed into a wait-free (c+1)-
process protocol that completes in that time, contradicting Lemma 13.5.19.

Pick a core C of minimal size c, and a set S that intersects C in a single
process P , such that S∪C = Π, the complete set of processes. Consider the
following restricted set of executions.

• The processes in S take steps simultaneously, including send and re-
ceive steps.

13.5. APPLICATIONS 371

slow N+1fast N

No k-set
agreement

Looks like fast execution,
still no k-set agreement

(N+1)dm-² Ndm+dsdm-²

time

Figure 13.16: Take the execution shown in Fig. 13.15 and “stretch” the last
layer, failing all processes but one. That process will time out after time
Nd+Cd, but at time ε it times out, the execution is indistinguishable from
the fast execution where that process is unable to decide.

• If any process in S crashes, they all crash simultaneously.

• When a message is delivered to one process in S, it is simultaneously
delivered to all processes in S.

• When a message is received from one process in S, it is simultaneously
received from all processes in S.

• Messages between processes in S are delivered quickly, at multiples of
dm/ds steps.

Because the processes in S start with the same inputs and receive the same
full-information messages at the same time, they send the same messages
each time, and if one can decide an output value, so can the rest.

372 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

Because the processes in S behave identically in these executions, they
can be simulated by a single process P in a wait-free (c+1)-process protocol.
When a process Q receives a message from P , it acts as if it had received
simultaneous messages from all processes in S. If the simulated (n + 1)-
process protocol against the adversary A can decide in time less than Ndm+
dsdm, so can the simulated (c + 1)-process protocol against the wait-free
adversary, contradicting Lemma 13.5.19.

13.6 Chapter Notes

Much of the material in this chapter is adapted from Herlihy and Rajs-
baum [88].

Fischer, Lynch, and Paterson [56] used operational arguments to show
that asynchronous consensus is impossible in message-passing systems sub-
ject to a single failure. Biran, Moran, and Zaks [19] later recast this ar-
gument in combinatorial terms, characterizing which tasks can be solved
in terms of graph connectivity. The later use of combinatorial topology to
analyze a broader class of problems [93] can be viewed as a generalization
of their approach.

Dolev and Strong [48] and Fischer and Lynch [58] derived a lower bound
of t + 1 layers to solve consensus in a synchronous message-passing system
subject to t failures, either crash failures or Byzantine failures. Junqueira
and Marzullo [100] give the first lower bound on consensus expressed in terms
of cores and survivor sets, and Wang and Song [146] give a simple (c−1)-layer
consensus protocol running against and adversary with minimum core size
c. The first lower bound for k-set agreement in the synchronous message-
passing model is due to Chaudhuri, Herlihy, Lynch, and Tuttle [39], who used
simplicial complexes and Sperner’s Lemma to show a tight lower bound of
f
k + 1 layers in systems subject to f failures.

Loui and Abu-Amara [112] were the first to show that consensus is im-
possible in asynchronous -write memory. Herlihy [80] defined the notion
of consensus number to characterize the synchronization power of other
shared-memory primitives. The first proof that k-set agreement is impossi-
ble in asynchronous read-write memory is due to three simultaneous papers
by Borowsky and Gafni [23], who used a graph-theoretic model, Saks and
Zaharoglou [137], who used a model based on point-set topology, and Herlihy
and Shavit [93].

Attiya, Dwork, Lynch, and Stockmeyer [13], as discussed earlier, derived
a lower bound of time (f−1)dm+dsdm for consensus, and an algorithm that

13.7. EXERCISES 373

takes time 2fdm + dsdm. Their result is tight, like ours, to within a factor
of 2. Their lower bound proof introduced the “stretching” construction that
we use here.

Michailidis [118] and Attiya et al. [10] improve this earlier result by giving

semi-synchronous protocols for k-set agreement that take time
⌊
f
k

⌋
dm +

2dsdm against the symmetric adversary.

The layered (or round-by-round) approach has been used before many
times, in particular to unify and simplify the analysis of different models
of computation [26, 122]. Herlihy, Rajsbaum, and Tuttle [90, 91] showed
that connectivity arguments for message-passing models could be cast into
a common framework. They introduced the notion of pseudospheres, and
later proposed the notion of an absorbing sequence, a notion similar to but
not identical with shellability.

Junqueira and Marzullo [101] introduced the core/survivor-set formalism
for characterizing general adversaries used here, and derived the first lower
bounds for synchronous consensus against such an adversary. Delporte-
Gallet et al. [45] were the first to prove several important lower bounds on
k-set agreement in asynchronous read-write memory against an adversary.
Herlihy and Rajsbaum [86] gave the first direct application of combinatorial
topology to the asynchronous read-write memory model against an adver-
sary.

The semi-synchronous consensus protocol used to prove that Theo-
rem 13.5.20 is tight is due to Attiya, Lynch, Dolev, and Stockmeyer [13].

13.7 Exercises

Exercise 13.1. Show that any n-dimensional pure simplicial complex with
n+ 2 vertices is shellable. List all shelling orders of its facets.

Exercise 13.2. In the n-dimensional crosspolytope, the vertices are all the
permutations of (±1, 0, 0, . . . , 0). and a set of vertices v0, . . . , vn defines a
simplex if, for 0 ≤ i ≤ n, at most one vertex has a non-zero ith coordi-
nate. Show that Ψ(Pi, {0, 1} |i ∈ [0 : n]) is isomorphic to the n-dimensional
crosspolytope.

Exercise 13.3. Prove Fact13.3.2: if each Vi is a singleton set {vi}, then the
pseudosphere is isomorphic to a single simplex:

Ψ(Pi, Vi|i ∈ I) ∼= {vi|i ∈ I} .

374 CHAPTER 13. SHELLABILITY AND TASK SOLVABILITY

Exercise 13.4. Prove Fact 13.3.3: if there is a j ∈ I such that Vj = ∅, then

Ψ(Pi, Vi|i ∈ I) ∼= Ψ(Pi, Vi|i ∈ I \ {j}).

Exercise 13.5. Prove Fact 13.3.4:

Ψ(Pi, Ui|i ∈ I) ∩Ψ(Pi, Vi|i ∈ I) = Ψ(Pi, Ui ∩ Vi|i ∈ I).

Exercise 13.6. Let K be a complex constructed by taking the union of pseu-
dospheres:

K =
⋃
i∈I

Ψ(U, Vi).

For k < n, use the Nerve Lemma show that K is k-connected if and only if
the nerve complex N (Vi|i ∈ I) is k-connected.

Exercise 13.7. Prove that each of the carrier maps defined in Section 13.5
is indeed a carrier map.

Chapter 14

Simulations and Reductions
for Colored Tasks

Non Print Material 14. Abstract: In this chapter, we study simulations
and reductions for colored tasks. Earlier, in Chapter 7, we studied sim-
ulations and reductions for colorless tasks, and showed how to construct
reductions from one failure model to another. Because the tasks under con-
sideration were colorless, we had considerable flexibility to move between
models that encompass different numbers of processes.

Key words: immediate snapshot model, layered immediate snapshot
model, layered snapshot model, read-write model, read-write model, reduc-
tion, shared-memory model, snapshot model, simulation.

We show how to use the results of Chapter 11 to study simulations and
reductions for colored tasks. Earlier, in Chapter 7, we defined the notion
of a simulation for colorless tasks, and showed how to construct reductions
from one failure model to another. Because the tasks under consideration
were colorless, we had considerable flexibility to move between models that
encompass different numbers of processes.

In the simulations considered in this chapter, we consider models with the
same processes, but different communication models. In particular, we will
(at last) prove that the shared-memory models we have used interchangeably
in this book really are equivalent.

To illustrate the duality of operational and combinatorial arguments,
some of our proofs will be operational (we construct an explicit simulation)

375

376 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

P ′ P
φ
- P ′ P

φ
- P ′

I
∆
-

Ξ
′

-

O

δ′

?
I

Ξ

6

Ξ
′

-

I

Ξ

6

∆
-

Ξ
′

-

O

δ′

?

solves simulates reduces

Figure 14.1: Carrier maps are shown as dashed arrows, simplicial maps as
solid arrows. On the left, P ′ via δ′ solves the colorless task (I,O,∆). In the
middle, P simulates P ′ via φ. On the right, P via the composition of φ and
δ′ solves (I,O,∆).

and some combinatorial (we use topological properties to show that a sim-
ulation exist, without constructing it).

14.1 Model

As usual, a model of computation is given by a set of process names, a
communication medium, such as shared memory or message-passing, a tim-
ing model, such as synchronous or asynchronous, and a failure model, given
by an adversary. In this chapter, we restrict our attention to asynchronous
shared-memory models with the wait-free adversary (any subset of processes
can fail).

Recall that a protocol (I,P,Ξ) solves a (colored) task (I,O,∆) if there
is a color-preserving simplicial map δ : P → O carried by ∆ : for every
simplex σ in I, δ(Ξ(σ)) ⊆ ∆(σ). Operationally, each process finishes the
protocol in a local state that is a vertex of P of matching color, and then
applies δ to choose an output value at a vertex of matching color in O.

As before, a reduction is defined in terms of two models of computation,
a model R (called the real model) and a model V (called the virtual model).
They have the same set of process names, the same colored input complex I,
but their protocol complexes may differ. For example, the real model might
be snapshot memory, while the simulated model might be layered immediate
snapshot memory.

The definitions of simulation and reduction are similar to those used for

14.2. SHARED-MEMORY MODELS 377

colorless tasks in Chapter 7, with the important distinction that all maps
must be color-preserving.

Definition 14.1.1. A (real) model R reduces to a (virtual) model V, if, for
any (colored) task, given a protocol for that task in V, one can construct a
protocol in R.

A systematic way to construct a reduction is to use simulation.

Definition 14.1.2. Let (I,P,Ξ) be a protocol in R and (I,P ′,Ξ′) a protocol
in V. A simulation is a color-preserving simplicial map

φ : P → P ′,

such that for each simplex σ in I, φ maps Ξ(σ) to Ξ′(σ).

Informally, each process executing the real protocol chooses a simulated
execution for itself in the virtual protocol, where each virtual process has
the same input as the real process that simulates it. Unlike for colorless
tasks, φ must be color-preserving (hence non-collapsing): each real process
may choose a simulated execution and output value for itself only.

The semi-commuting diagram of simulations and reductions shown in
Figure 14.1 is essentially the same as the earlier one in Chapter 7, with the
important distinction that we now require all complexes to be properly col-
ored by process names, and all maps and carrier maps to be color-preserving.

The proof of the following theorem is nearly identical to the proof of
Theorem 7.2.5, and is omitted.

Theorem 14.1.3. If every protocol in V can be simulated by a protocol in R,
then R reduces to V.

14.2 Shared-Memory Models

As an application for colored simulations, we prove that five natural models
of asynchronous shared memory are equivalent: if a task has a protocol in
one model, then it has a protocol in them all. This equivalence frees us to
use whichever model is most convenient for expressing particular algorithms
or impossibility results.

Perhaps the most natural model of shared memory is the read-write
model. The processes share a one-dimensional array of words, mem[·]. In
one atomic step, a process can read or write any individual word. Reading
or writing multiple words requires multiple steps, which may be interleaved
with steps of other processes. This model is natural in the sense that it

378 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

// N is number of layers , n+ 1 the number of processes
shared mem: array[0..n] of Value
ReadWriteProtocol(vi: value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do

mem[i] := view
for j := 0 to n do

view[j] := mem[j]
return δ(view) // apply decision map to final view

Figure 14.2: Full-information read-write protocol for Pi

// N is number of layers , n+ 1 the number of processes
shared mem: array[0..n] of Value
SnapshotProtocol(vi: value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do

mem[i] := view
view := snapshot(mem[∗])

return δ(view) // apply decision map to final view

Figure 14.3: Full-information snapshot protocol for Pi

is close to the memory model provided by most real computers Without
loss of generality (see the chapter notes), we may restrict our attention to
read-write protocols where Pi reads any word, but writes only mem[i].

Initially, each process’s view is its input value. For N layers, Pi writes

shared mem: array[0..N−1][0..n] of Value
LayeredSnapshotProtocol(vi: value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do

mem[`][i] := view
view := snapshot(mem[`][∗])

return δ(view) // apply decision map to final view

Figure 14.4: Full-information layered snapshot protocol for Pi

14.2. SHARED-MEMORY MODELS 379

shared mem: array[0..n] of Value
ImmediateSnapshotProtocol(vi: value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do
immediate

mem[i] := view
view := snapshot(mem[∗])

return δ(view) // apply decision map to final view

Figure 14.5: Full-information immediate snapshot protocol for Pi

shared mem: array[0..N−1][0..n] of Value
LayeredImmediateSnapshotProtocol(vi: value): Value

view: set of Value := {vi} // initial view is input value
for ` := 0 to N − 1 do
immediate

mem[`][i] := view
view := snapshot(mem[`][∗])

return δ(view) // apply decision map to final view

Figure 14.6: Full-information layered immediate snapshot protocol for Pi

its view to mem[i], and then copies the memory, one word at a time, into its
view. A process’s read and subsequent writes are distinct events, and can
be interleaved with reads and writes of other processes. After the last layer,
Pi returns an output value by applying a task-specific decision map δi to its
final view.

In the (simple) snapshot model (Figure 14.3), n + 1 processes share a
memory array mem[0..n], where Pi can write to mem[i] and take a snapshot
of the entire memory. Initially, each process’s view is its input. For N layers,
Pi writes its view to mem[i], and then takes a snapshot of the entire memory,
which becomes its new view. A process’s read and subsequent snapshot
are distinct events, and can be separated by reads and snapshots of other
processes. After the last layer, Pi returns an output value by applying a
task-specific decision map δi to its final view.

In the layered snapshot model (Figure 14.4), the processes share a two-
dimensional memory array mem[0..N − 1][0..n]. As usual, Pi’s initial view
is its input value. At layer `, Pi writes its state to mem[`][i], and takes a

380 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

snapshot of that layer’s row, mem[`][∗], which becomes its new view. After
N layers, Pi returns an output value by by applying a task-specific decision
map δi to its final view.

In the (simple) immediate snapshot model (Figure 14.5), n+ 1 processes
share a memory array mem[0..n], where Pi can write to mem[i] and take an
immediate snapshot of the entire memory. Initially, each process’s view is
its input. For N layers, Pi writes its view to mem[i], and in the very next
step, takes a snapshot of the entire memory, which becomes its new view.
Processes can write concurrently, and take snapshots concurrently, but each
snapshot happens immediately after its matching write. After the last layer,
Pi returns an output value by applying a task-specific decision map δi to its
final view.

In the layered immediate snapshot model (Figure 14.6), the processes
share a two-dimensional memory array mem[0..N − 1][0..n]. As usual, Pi’s
initial view is its input value. At layer `, Pi writes its state to mem[`][i],
and, in the very next step, takes a snapshot of that layer’s row, mem[`][∗],
which becomes its new view. Processes can write concurrently, and take
snapshots concurrently, but each process’s snapshot happens immediately
after its matching write. After N layers, Pi returns an output value by
by applying a task-specific decision map δi to its final view. Just as for
the snapshot models, this model differs from the simple immediate snapshot
model by using a clean memory for each layer, which might, for all we know,
sacrifice computational power.

14.3 Trivial Reductions

Some reductions between these models are trivial. If a task has a protocol
in the read-write model, then it has a protocol in all the other models (see
Exercise 14.1). The other direction is non-trivial: for all we know, the ability
to take a consistent memory snapshot may add computational power.

If a task has a protocol in either of the layered models, then it has a
protocol in the corresponding simple model (See Exercise 14.2). Each of the
layered models uses “clean” memory for each layer, which makes analysis
easier. In principle, however, there may be (immediate) snapshot protocols
that cannot be expressed as layered protocols.

Finally, if a task has a protocol in either of the snapshot models, then it
has a protocol in the corresponding immediate snapshot model (See Exer-
cise 14.3). For the other direction, it will require a non-trivial argument to
show that the ability to take an immediate snapshot is not more computa-

14.4. LAYERED SNAPSHOT FROM READ-WRITE 381

read-write

layered snapshot
?

14.4

6

-

�
14.7 snapshot

-

layered
immediate
snapshot

?
14.5

6

-

�
14.6

immediate
snapshot

?

14.5

6

Figure 14.7: Reductions between various shared-memory models. An arrow
from one model to another indicates that the existence of a protocol in
the first model implies the existence of a protocol in the second. Trivial
reductions are shown as solid arrows, and non-trivial reductions as dashed
arrows. Each dashed arrow is labeled with the section number where we
prove that implication.

tionally powerful than the ability to take a snapshot.
Figure 14.3 shows the five shared memory models. An arrow from one

model to another indicates a reduction: if a protocol exists in the target
model, then one exists in the source model. Solid arrows represent trivial
implications, while dashed arrows represent non-trivial implications. Each
dashed arrow is labeled with the section number where we prove that im-
plication.

14.4 Layered Snapshot from Read-Write

For our first non-trivial reduction, we will show how to simulate any layered
snapshot protocol by a read-write protocol. Since each layer of a layered
snapshot protocol uses a disjoint region of memory, it is enough to show
how to simulate a single layer’s snapshot.

The simulation is shown in Figure 14.8. It consists of two protocols:
a simulated write and a simulated snapshot. Each memory word has two
components: its version number, which is incremented each time the word
is written, and its data, which is the value of interest. The simulated write
(Lines 5-line:ch14:w1) reads the version number, increments it, and atomi-

382 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

1 mem: array[0..n][0.. n] of Value // initially ⊥
2

3 WriteImpl(vi : value)
4 int version := mem[i].version // read old version number
5 mem[i] := 〈version + 1, vi〉 //write new version number and data together
6

7 SnapshotImpl(): array [0.. n] of Value
8 collect0 : array [0.. n] of value
9 collect1 : array [0.. n] of value

10 repeat
11 for j := 0 to n do
12 collect0 [j] := mem[j]
13 for j := 0 to n do
14 collect1 [j] := mem[j]
15 if version numbers in collect0 and collect1 agree then
16 return collect0

Figure 14.8: Simulating snapshot with a read-write protocol

cally writes the new version number along with the data. Because each word
is written by only one process, there is no danger that concurrent writes will
interfere.

A collect is the non atomic act of copying the register values one-by-one
into an array. If we perform two collects one after the other and both collects
read the same version numbers for each word, then no process wrote to the
memory between the start of the first collect and the start of the second, so
the result is a snapshot of the memory during that interval. We call such a
pair of collects a clean double collect.

The simulated snapshot repeatedly executes pairs of collects (Lines 11
and 13), and returns after completing a clean double collect (Line 16).

Lemma 14.4.1. The protocol of Figure 14.8 is a wait-free simulation of a
single-round layered snapshot protocol.

Proof. As noted above, the result of a clean double collect is a snapshot.

The simulated write is clearly wait-free, because it consists of a single
read followed by a write. Assume, by way of contradiction, that there is an
execution in which the simulated snapshot runs forever without completing
a clean double collect. A pair of collects can disagree only if some process
writes between the first and second collect. But there are n + 1 processes,

14.5. IMMEDIATE SNAPSHOT FROM SNAPSHOT 383

and each writes only once in a layer, so a pair of collects can fail to be clean
at most n+ 1 times.

Given a layered snapshot protocol, we can substitute this simulation in each
layer to get a read-write protocol. If follows that each of the two models can
simulate the other, so the have equivalent computational power.

14.5 Immediate Snapshot from Snapshot

1 mem: array[0..n][0.. n] of Value // initially ⊥
2 ImmediateSnapshotImpl(vi: value): array [0.. n] of Value
3 for ` := 0 to n do
4 mem[`][i] := vi
5 view: array of Value := snapshot(mem[`][∗])
6 if view has at least n+ 1− ` values written then
7 return view

Figure 14.9: Simulating immediate snapshot with snapshots
sergio: This algorithm
does not really need snap-
shots, it works also if in-
stead of snap it uses col-
lect. If you agree, need to
say so. I added in Chapter
Notes

Next, we show how to implement an immediate snapshot using snap-
shots. As a result, the immediate snapshot model reduces to the snapshot
model: given a protocol in the immediate snapshot model, one can replace
each immediate snapshot with its snapshot implementation, yielding a snap-
shot protocol for the same task. Because our construction actually uses
layered snapshots, the layered immediate snapshot model reduces to the
layered snapshot model.

The protocol appears in Figure 14.9. Each process executes n+ 1 layers.
At layer `, each Pi writes its input to mem[`][i], and takes a snapshot of
mem[`][∗]. If it observes that at least n+ 1− ` processes have written values
in the row for layer `, then it returns that snapshot.

This protocol satisfies the following invariant: at most n+1−q processes
have written at layer q or higher. This property clearly holds at the start,
when no processes have written at any layers. We say that Pi at layer q
creates a pending write at Line 5 when it observes that fewer than n+ 1− q
processes have written at layer q. It completes the pending write in the next
loop iteration at Line 4 when it writes to mem[q + 1][i].

Consider a protocol state where at each layer q, for 0 ≤ q ≤ n, kq
processes have written at layer q, but no higher, and there would be `q
processes if all pending writes were to complete. Following a state change,

384 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

we denote the new values of these quantities by k′q and `′q. We will show
that the following property is invariant: if all pending writes are completed,
then there are n+ 1− q or fewer processes at round q or higher:

n∑
i=q

`i ≤ n+ 1− q.

If this property holds in a state, it cannot be violated by completing a
pending write, because the values of `i are unchanged. What if a process
at round p creates a new pending write? The only value of `′q that could
change is q = p+ 1. If a process that wrote at round p is about to write at
p+ 1, it must have observed that

n∑
i=p

ki < n+ 1− p.

Completing pending writes at round p and higher can add at most kp pro-
cesses to round p and higher:

n∑
i=p+1

`′i ≤
n∑
i=p

ki.

Combining these inequalities yields

p+1∑
i=0

`′i ≤ n− p,

satisfying the invariant.
Here is why the results satisfy the immediate snapshot properties. Each

process that halts at layer p returns the same n+ 1− p values, and the set
of values returned by a process at layer p contains the set of values returned
from level p+ 1.

Naturally, this protocol can be repeated to implement layered immediate
snapshots, showing that the layered immediate snapshot model reduces to
the layered snapshot model.

14.6 Immediate Snapshot from Layered Immedi-
ate Snapshot

We now present a combinatorial argument that the immediate snapshot
model can be simulated by the layered immediate snapshot model. Since

14.6. IMMEDIATE SNAPSHOT FROM LAYERED IMMEDIATE SNAPSHOT385

simulation in the other direction is trivial, this result implies that the two
models are equivalent.

Our strategy is simple: we will show that the protocol complex for every
layered immediate snapshot protocol is a manifold. It follows that the pro-
tocol complex is link-connected, so Corollary 11.5.8 implies that the imme-
diate snapshot protocol can be simulated by a layered immediate snapshot
protocol.

To describe layered immediate snapshot protocols, we require some ad-
ditional notation. An (n+ 1)-element layer vector ~R is a map from process
names to non-negative integers. The ith entry of the layer vector ~R indi-
cates that process Pi executes ~R[i] immediate-snapshot phases. For any set
of processes U ⊆ [n], define ~R \ U to be the layer vector where each active
process in U participates in one phase less:

(~R \ U)[i] =

{
max(0, ~R[i]− 1), if i ∈ U ;
~R[i], otherwise.

We use Ch
~R(σ) to denote the immediate snapshot protocol complex, starting

from σ, where each Pi runs for ~R[i] layers, independently of the information
it receives.

The decomposition of Ch
~R(σ) corresponding to various choices of U , is

illustrated in Figure 14.10 for three processes. In this figure, we use the
notation Chp,q,r(σ) for the complex where P0 executes p layers, P1 executes
q layers, and P2 executes r layers.

If ~R = 〈1, . . . , 1〉, the vector consisting of all 1’s, then Ch
~R(σ) = Ch(σ).

Note that if ~R = 〈r, . . . , r〉, the vector whose entries are all r > 1, then

Chr(σ) and Ch
~R(σ) are not isomorphic!

Recall from Section 10.2.3 that for any configuration C, and any U ⊆ [n],
we write C ↑ U to denote the configuration reached from C by running the
processes in U in the next layer. When the configuration C is an initial
configuration identified with input simplex σ, we use the notation σ ↑ U .
Also recall that for a protocol (I,P,Ξ), (Ξ ↓ U)(C) denotes the complex of
executions where, starting from C, the processes in U halt without taking

further steps, and the rest finish the protocol. For example, (Ch
~R ↓ V)(σ ↑

U) is the complex of multi-layer immediate snapshot executions in which,
starting from input simplex σ, the processes in U simultaneously write and
read, the processes in V then halt, and the remaining processes run to
completion. Proposition 10.2.9 states that

Ξ(C ↑ V) ∩ Ξ(C ↑ U) = (Ξ ↓W)(C ↑ U ∪ V)

386 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

Chp-1,q,r(σ) Chp-1,q-1,r (σ)Chp-1,q-1,r (σ)

Chp-1,q-1,r-1 (σ)

Chp,q-1,r(σ)Chp,q,r-1 (σ)

Ch (σ)

Ch (σ)Chp,q,r 1 (σ)

Chp,q-1,r-1 (σ)

Figure 14.10: How a three-process immediate snapshot complex is subdi-
vided into smaller complexes. Here, Chp,q,r(σ) is the complex where P0

executes p layers, P1 executes q layers, and P2 executes r layers. In each
“corner” subcomplex, one process executes one fewer layer, in each the “side”
complex, two processes execute one fewer layer, and in the “central” com-
plex, all three processes execute one fewer layer.

where W , the set of processes that take no further steps, satisfies

W =

V, if V ⊆ U ;

U, if U ⊆ V ;

U ∪ V, otherwise.

The next lemma states that the complex reached by executions where
the processes in U form the first layer is isomorphic to the complex reached
by executions where the process in U each execute one fewer layer.

Lemma 14.6.1. Assume as above that we are given a protocol (I,P,Ch
~R),

14.6. IMMEDIATE SNAPSHOT FROM LAYERED IMMEDIATE SNAPSHOT387

σ ∈ I, and U is a set of processes, then we have

Ch
~R\U (σ) ∼= Ch

~R(σ ↑ Ũ), (14.6.1)

where Ũ = {i ∈ U | ~R[i] ≥ 1}.

Proof. Let σU be the face of σ labeled with names in U . After the first
phase, each processes in U has state σU , the set of values it read, while the
others, who did not take a step, still have their original inputs. From that
point on, the execution is the same as if each process in U had had σU as
input, but executed one fewer layers.

Theorem 14.6.2. Assume we are given a protocol (I,P,Ch
~R), then for any

σ ∈ I, the simplicial complex Ch
~R(σ) is a manifold.

Proof. First, we argue by induction on n, the dimension of σ. For the base
case, when n = 0, the claim is immediate.

Assume that Ch
~Q(τ) is a manifold for dim(τ) < n, and ~Q any (dim τ+1)-

element layer vector.
We impose the following partial order on (n + 1)-element layer vectors:

~Q ≺ ~R if, for all i, ~Q[i] ≤ ~R[i], and for at least one i, the inequality is strict.
We argue by structural induction on this partial order. For the first part

of the base case, suppose that ~R[i] = 0, for some i ∈ [n]. Because Pi takes no

steps, its final state is the same as its initial state, so Ch
~R(σ) is a cone over

Ch
~R′(Facei(σ)), where ~R′ is the n-element layer vector constructed from ~R

by omitting the i-th entry. The complex Ch
~R′(Facei(σ)) is a manifold by

the induction hypothesis for n, so the claim follows because a cone over a
manifold is also a manifold (see Exercise 9.8). For the second part of the

base case, note that if ~R[i] = 1 for all i ∈ [n], then Ch
~R(σ) is a manifold by

Theorem 9.2.8.
For the induction step on ~R, suppose that Ch

~Q(σ) is a manifold for every
~Q ≺ ~R. Let ~R be a layer vector with all non-zero entries. We observe that
in every execution, some non-empty set of processes U participate in the
first layer.

Ch
~R(σ) =

U⊆Π⋃
U 6=∅

Ch
~R(σ ↑ U) ∼=

U⊆Π⋃
U 6=∅

ChR\U (σ)

Because ~R has no zero entries, ~R \ U ≺ ~R, so by the induction hypothesis
for layer vectors, each ChR\U (σ) is a manifold, so every (n − 1)-simplex in
each such subcomplex is a face of one or two n-simplices in that subcomplex.

388 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

We must check that no (n− 1)-simplex that lies in an intersection of these
subcomplexes is a face of more than two n-simplices.

By Proposition 10.2.9,

Ch
~R(σ ↑ U) ∩ Ch

~R(σ ↑ V) = (Ch
~R ↓W)(σ ↑ U ∪ V),

for a non-empty set of processes W . If |W |, the number of processes that
fail, exceeds one, then this complex has dimension less than n − 1, and
cannot contain any n− 1 simplices. In particular, any intersection of more
than two subcomplexes has too small a dimension to contain any (n − 1)-
simplices. It follows that there is an (n − 1) simplex τ on the boundary of

two subcomplexes Ch
~R(σ ↑ U) and Ch

~R(σ ↑ V) exactly when U = {Pi},
where Pi is the unique process name not in names(τ), and Pi ∈ V .

τ ∈ Ch
~R(σ ↑ {Pi}) ∩ Ch

~R(σ ↑ V) = (Ch
~R ↓ {Pi})(σ ↑ V).

First, we claim that τ is a face of exactly one n-simplex in Ch
~R(σ ↑ {Pi}).

Operationally, the argument states that τ is generated by an execution in
which Pi is the only process to execute in the first layer, but does not take
any more steps until all the remaining processes have halted at vertices of
τ . After that, Pi runs deterministically by itself until it halts.

More precisely, by Lemma 14.6.1,

Ch
~R(σ ↑ {Pi}) ∼= Ch

~R\{Pi}(σ).

If we restrict our attention to executions where Pi does not participate,

(Ch
~R ↓ {Pi} (σ ↑ {Pi}) ∼= Ch

~R\{Pi}(Facei σ).

Any (n− 1)-simplex τ ∈ (Ch
~R ↓ {Pi} (σ ↑ {Pi}) is isomorphic to an (n− 1)-

simplex τ ′ ∈ Ch
~R\{Pi}(Facei σ), where τ ′ is a face of a unique n-simplex

in Ch
~R\{Pi}(Facei σ). It follows that τ is a face of a unique n-simplex in

(Ch
~R ↓ {Pi} (σ ↑ {Pi}).
The same argument, with minor changes, shows that τ is a face of a

unique n-simplex of Ch
~R(σ ↑ V). It follows that τ is a face of exactly two

n-simplices in Ch
~R(σ), as desired.

Finally, we need to check that Ch
~R(σ) is strongly connected. It is enough

to show that we can link any simplex τ0 ∈ Ch
~R(σ ↑ U) to any τ1 ∈ Ch

~R(σ ↑
{Pi}), for any Pi ∈ U . Pick an (n − 1)-simplex τ τ0 ∈ Ch

~R(σ ↑ U) ∩ τ1 ∈

14.7. SNAPSHOT FROM LAYERED SNAPSHOT 389

Ch
~R(σ ↑ {Pi}). Because Ch

~R(σ ↑ U) is a manifold, it contains an n-simplex
τ01 such that τ ⊂ τ01, and a chain linking τ0 to τ01. In the same way,

Ch
~R(σ ↑ {Pi}) contains an n-simplex τ10 such that τ ⊂ τ10, and a chain

linking τ1 to τ10. Concatenating these chains gives a chain linking τ0 and τ1.

Given any τi ∈ Ch
~R(σ ↑ U) and τj ∈ Ch

~R(σ ↑ V), where Pi ∈ U
and Pj ∈ V , we can use the previous construction to link any simplex in

Ch
~R(σ ↑ U) to Ch

~R(σ ↑ {Pi}), to Ch
~R(σ ↑ {Pi, Pj}), to Ch

~R(σ ↑ {Pj}), to

any simplex in Ch
~R(σ ↑ V).

The protocol complex for an immediate snapshot protocol where each
process executes ` layers is just Ch` I, the `-fold subdivision of the input
complex. In Chapter 16 we show that for every σ ∈ I the simplicial complex
Ch`(σ) is a subdivision of σ, such that for every τ ⊆ σ the simplicial complex
Ch`(τ) is the corresponding subdivision of τ .

We know from Theorem 10.4.7 that Ch
~R(I) is n-connected, and from

Theorem 9.2.8 that it is a manifold. Because the complex is a manifold, each
link is a combinatorial sphere, so the complex is link-connected. It follows
from Corollary 11.5.8 that there is a simulation

φ : ChN I → Ch
~R I

for some N > 0.

14.7 Snapshot from Layered Snapshot

We now show how a layered snapshot protocol can simulate a snapshot pro-
tocol. Starting from input simplex σ, as the protocol unfolds, each process
incrementally constructs the simulated state of the snapshot protocol. For
clarity, we refer to writes and snapshots that occur in the simulated protocol
P(·) as simulated writes and simulated snapshots.

Without loss of generality, we will simulate a snapshot protocol where
every process runs for N > 0 layers. Protocols where different processes run
for different numbers of layers can be simulated simply by having processes
run for redundant layers. Each process repeatedly writes an approximation
of the snapshot memory it is simulating. While the protocol is in progress,
this simulated memory will be incomplete or inconsistent, but by the pro-
tocol’s end, the simulated memory will become complete and consistent.

Figure 14.11 shows the simulation protocol. A simulated memory is an
(n+ 1)-element array of memory values (Line 5), where each memory entry

390 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

1 protocol SimpleRWSim
2 // shared memory being simulated
3 mem: array [0..N][0..n] of Value
4

5 LayeredSnapshotSim($v i$: Value): array of Value
6 // my copy of the simulated memory, initially all ⊥
7 s : array[0..n] of Value := {⊥, . . . ,⊥}
8 // my vector clock , initially all 0
9 c: array [0..n] of int := {0, . . . , 0}

10

11 s[i] := vi // initial state is input
12 for ` := 0 to N do
13 mem[`][i] := s[i]
14 a := snapshot(mem[`][∗]) // snapshot layer ` memories
15 s := latest (a) // merge latest entries
16 c := vectorClock(s) // reconstruct vector clock
17 if (c[i] < N) then // more snapshots to simulate?
18 if |c | =N then // current simulated snapshot complete
19 s[i] := s // record simulated snapshot
20 return s[i]] // decide after last layer

Figure 14.11: Simulating a snapshot protocol with layered snapshots

can be either ⊥, a single input value, or an array of n + 1 memory values,
depending on the layer being simulated. For process Pi, each memory value
has an implicit clock value:

clocki(v) =

0 if v = ⊥
1 if v is an input value, and

1 + clocki(v[i]) otherwise.

The clock value counts the number of layers Pi must have taken to have pro-
duced such a value. Given a two-dimensional array of simulated memories
a[·][·], the function latest(a) returns a single simulated memory constructed
by taking their entry-wise maximums:

latest(a)[i] = a[j][i] such that j = argmaxj(clocki(a[j][i])).

That is, for each i, j is chosen to maximize clocki(a[j][i]). Given a simulated
memory m, the function vectorClock(m) produces an integer vector whose

14.7. SNAPSHOT FROM LAYERED SNAPSHOT 391

ith value is clocki(m[i]) which we call a vector clock. If c is a vector clock,
define

|c| =
n∑
i=0

c[i].

The processes share an N × n array mem[·][·] of simulated memories. Each
Pi initializes its simulated memory to hold its own input at its own position
(Line 11), and ⊥ elsewhere. At each layer `, Pi writes its simulated memory
to mem[`][i], and then takes a snapshot of all the simulated memories for
layer `. It then constructs a single simulated memory by merging the latest
entries for each process (Line 15), and constructs that simulated memory’s
vector clock (Line 16). If Pi’s own clock value in the simulated memory is
less than its value for `, then Pi has not yet simulated all its writes. The
value |c| computed on Line 16 is the total number of writes reflected in the
simulated memory. If Pi observes that this total equals the layer number
(Line 18), then the simulated memory it has assembled is a consistent simu-
lated snapshot, so it writes that snapshot to its own entry in the simulated
shared memory (Line 19), and resumes the next layer. After N layers, it
decides its own entry in the simulated memory.

Lemma 14.7.1. For each process, the total number of simulated writes that
Pi observes is less than or equal to its layer number: ` ≤ |c|.

Proof. By induction. For the base case, at layer 0, Pi has written its input
to s[i], so c ≥ 1.

For the induction step, suppose Pi computes vector clock c at layer `−1,
and vector clock c′ at layer `. By the induction hypothesis, ` − 1 ≤ |c|. If
` − 1 < |c|, then ` ≤ |c| ≤ |c′|. If, instead, ` − 1 = |c|, then Pi completes a
simulated snapshot at layer ` − 1 (Line 18), so it writes a new snapshot to
s[i], ensuring that at the following layer, |c′| is at least one larger than |c|.

`− 1 = |c|
` = |c|+ 1

` ≤ |c′|

Lemma 14.7.2. All processes that complete a simulated snapshot at layer `
do so with the same vector clock.

Proof. Consider a layer `. By construction, all processes in Si take the same
snapshot, and construct the same vector clock ci. By Lemma 14.7.1, ` ≤ ci

392 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

for processes that have not completed all their writes. If the processes in Si
and Sj both complete a simulated snapshot, then |ci| = |cj | = `. If i < j,
then for 0 ≤ k ≤ n, ci[k] ≤ cj [k], implying that if |ci| = |cj | = `, then for
0 ≤ k ≤ n, ci[k] = cj [k].

Lemma 14.7.3. If N is sufficiently large, then in any state where not every
process has completed, some process will eventually complete a simulated
snapshot.

Proof. By Lemma 14.7.1, the total number of completed snapshots and
writes is at least `. The claim follows because ` is continually increasing.

Lemma 14.7.4. Every non-faulty process completes all its simulated snap-
shots and simulated writes at or before layer (n+ 1)N .

Proof. A process Pi is incomplete if it has not completed N simulated writes
and snapshots. We first claim that if N is sufficiently large, and there are
incomplete processes, then some incomplete process will eventually com-
plete a snapshot. If not, then every incomplete process’s vector clock |c|
remains constant, while ` continues to advance. By Lemma 14.7.1, ` ≤ |c|
so eventually ` must catch up, and the snapshot will complete.

By Lemma 14.7.3, some process continually completes and writes a sim-
ulated snapshot. Some process Pi eventually completes `i such snapshots,
and drops out, leaving the rest to continue. Eventually, they all complete.

Once Pi has completed, its value of c[i] is N . The last process to complete
sees c[i] = N for every i, so |c| = (n+ 1)N = `.

Theorem 14.7.5. The protocol of Fig. 14.11 simulates a snapshot memory.

Proof. Each simulated snapshot is ordered when it completes at Line 18, and
each simulated write is ordered just before the first snapshot that includes
it.

More precisely, consider the vector clocks c0, c1, . . . , cN , where c0 is the
all-zero vector, and ci is the vector clock corresponding to the ith completed
simulated snapshot, completed in layer |ci|. We have seen that ci < ci+1.
Let Ri be the set of processes that completed a simulated snapshot in layer
|ci|, and Wj the set of processes Pj such that ci−1[j] < ci[j]. The snapshots
in Ri can be ordered arbitrarily, and the value s of the snapshot satisfies
vectorClock(s) = ci. Each write in Wj is ordered just before these snapshots,
in arbitrary order, yielding the schedule,

W1, R1, . . . ,W(n+1)N , R(n+1)N .

14.8. CHAPTER NOTES 393

This completes the reductions shown in Figure 14.3. Since each model
can be reduced to any other, they are all equivalent.

14.8 Chapter Notes

Lamport [107] shows the equivalence of various read-write memory models,
including the equivalence of the single and multiple-writer models. Afek et
al. [2] and Anderson [6] proposed the first read-write protocol for wait-free
atomic snapshot. These algorithms and proofs are covered in textbooks by
Attiya and Welch [17] and by Herlihy and Shavit [94].

The algorithm of Fig 14.9 (recall Exercise 4.12) is the iterative version
of the recursive algorithm by Gafni and Rajsbaum [69]. It is adapted from
Borowsky and Gafni [24]. See also the surveys by Herlihy, Rajsbaum and
Raynal [89, 131].

The algorithm of Fig. 14.11 is adapted from Gafni and Rajsbaum [68].
The first simulation algorithm for the layered model is by Borowsky and
Gafni [26]. Extensions of this algorithm to failure detector models were
studied by Rajsbaum, Raynal and Travers [133].

14.9 Exercises

Exercise 14.1. Explain why the existence of a read-write protocol for a task
implies the existence of a protocol in all of the other shared-memory models.

Exercise 14.2. Explain why the existence of a layered snapshot protocol for
a task implies the existence of a snapshot protocol. Do the same for layered
immediate snapshot and snapshot protocols.

Exercise 14.3. Explain why the existence of a snapshot protocol for a task
implies the existence of an immediate snapshot protocol. Do the same for
layered snapshot and layered immediate snapshot protocols.

Exercise 14.4. In the worst case, the protocol in Figure 14.8 can make 2n
collects before returning. Modify this protocol so that it makes n+1 collects
in the worst case.

Exercise 14.5. Give a direct proof that if we replace snapshots with imme-
diate snapshots, the protocol of Figure 14.11 allows the layered immediate
snapshot model to simulate the snapshot model.

394 CHAPTER 14. COLORED SIMULATIONS AND REDUCTIONS

Chapter 15

Classifying Loop Agreement
Tasks

Non Print Material 15. Abstract: Recall from subsection 5.6.2 that (color-
less) loop agreement is a family of tasks for which the existence of a wait-free
read-write protocol is undecidable. Here, we give a complete classification
of loop agreement tasks. Each loop agreement task can be assigned an al-
gebraic signature consisting of a group G and a distinguished element g in
G. Remarkably, this signature completely characterizes the task’s computa-
tional power. If T and T ′ are loop agreement tasks with respective signatures
〈G, g〉 and 〈G′, g′〉, then T implements T ′ if and only if there exists a group
homomorphism h : G→ G′ carrying g to g′. In short the algorithmic prob-
lem of determining how to implement one loop agreement task in terms of
another reduces to a problem in group theory.

Key words: algebraic signature, finitely generated groups, finite group
presentation, fundamental group, loop agreement, torsion.

A task T implements task T ′ if one can construct a wait-free protocol for T ′

by calling any protocol for T , possibly followed by access to a shared read-
write or snapshot memory. This notion of implementation induces a partial
order on tasks, and allows us to classify tasks by partitioning them into
disjoint classes such that tasks in the same class implement one another. In
this sense, the tasks in the same class are computationally equivalent. One
class is more powerful than another if any task in the first class implements
any class in the second, but not vice-versa.

395

396 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

Recall from Section 5.6.2 that loop agreement is a family of colorless
tasks for which the existence of a wait-free read-write protocol is undecid-
able. Here, we give a complete classification of loop agreement tasks. Each
loop agreement task can be assigned an algebraic signature consisting of
a group G and a distinguished element g in G. Remarkably, this signature
completely characterizes the task’s computational power. If T and T ′ are
loop agreement tasks with respective signatures 〈G, g〉 and 〈G′, g′〉, then T
implements T ′ if and only if there exists a group homomorphism h : G→ G′

carrying g to g′. In short the algorithmic problem of determining how to
implement one loop agreement task in terms of another reduces to a problem
in group theory.

We will see that the loop agreement task corresponding to 3-process 2-
set agreement belongs to the most powerful class in the classification (the
maximal element in the classification order), while (various forms of) ap-
proximate agreement belong to the weakest class (the minimal element). In
between, there are an infinite number of inequivalent classes.

The material in this chapter assumes the reader has some familiarity
with elementary abstract algebra, including finitely generated groups, group
homomorphisms, and presentations of finite groups.

15.1 The Fundamental Group

15.1.1 Basic Definitions

Let K be a 2-dimensional simplicial complex, and let I be the unit interval
[0, 1]. Recall from Section 5.6.1 that a path in a complex K is a continuous
map α : I → |K|. If α(0) = α(1) = x, the path is a loop with base point x.
Two loops with the same base point are homotopic if one can be continuously
deformed to the other while leaving the base point fixed. A loop α is simple
if its restriction to [0, 1) is injective.

Two paths α and β can be concatenated to form another path α ∗ β if
α(1) = β(0):

α ∗ β(s) =

{
α(2s) for 0 ≤ s ≤ 1

2

β(2s− 1) for 1
2 ≤ s ≤ 1

In particular, loops with the same base point can be concatenated in two
different ways.

The fundamental group π1(K, x0) of K is defined as follows. The elements
of the group are equivalence classes under homotopy of loops with base point
x0. The group operation “·” on these equivalence classes is concatenation

15.1. THE FUNDAMENTAL GROUP 397

of their representatives, i.e., [α] · [β] := [α ∗ β]. It is a standard exercise
to check that this operation defines a group whose identity element is the
equivalence class [x0] of the constant loop α(s) = x0, and where the inverse
of [α] is obtained by traversing α in the opposite direction,

α−1(t) := α(1− t), for t ∈ [0, 1],

and [α]−1 := [α−1]. The identity element is the equivalence class of con-
tractible loops, those that can be continuously deformed to x0.

For example, the fundamental group of the circle is isomorphic to the
group of integers under addition; this group is also called the infinite cyclic
group. The constant loop corresponds to the identity element 0: concate-
nating the constant loop to any other loop does not change its homotopy
type. By convention, the loop that wraps around the circle once in the clock-
wise direction corresponds to the generator 1, and counter-clockwise to the
generator −1. Any loop is homotopic to one that “wraps” around the circle
k times, where positive k is clockwise, and negative k is counter-clockwise.
Furthermore, any two loops which wrap around the circle different number
of times are not homotopic.

If the complexK is path-connected, its fundamental group is independent
of the base point, up to isomorphism. For simplicial complexes, the notions
of connected and path-connected coincide, and all the complexes we consider
are connected, so we often write π1(K) in place of π1(K, x0).

Let now L be another connected simplicial complex, let f : |K| → |L|
be a continuous map, and let α be a loop in |K|. The composition f ◦ α
is a loop in |L|. Define the map induced by f , f∗ : π1(K) → π1(L), to be
f∗([α]) = [f ◦ α]. It is a standard fact that f∗ is a group homomorphism.

Recall that an edge loop is a loop whose base point is a vertex of K
and whose path is a sequence of oriented edges in K. Since in a simplicial
complex every loop with a base at a vertex is homotopic to a standard loop
associated with an edge loop, every element of the fundamental group based
at a vertex has a representative which is associated with an edge loop.

15.1.2 A Representation of the Fundamental Group Associ-
ated with a Spanning Tree.

Assume K is a finite connected 2-dimensional simplicial complex. Let T be
a rooted spanning tree of skel1(K). There is a standard representation of
the fundamental group π1(K) in terms of generators and relations, which we
now proceed to describe. Let r denote the root of T , and let v0, v1, . . . , vs
denote all the vertices of K.

398 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

• Generators of π1(K). For each 0 ≤ i < j ≤ s, such that (vi, vj), is
an edge of K which does not belong to T , we take a generator gij . For
convenience, for all pairs (i, j), such that (vi, vj) is an edge of T , we
shall set by convention gij := 1. We shall also set gji := g−1

ij for all
i < j, and gii := 1, for all i.

• Relations of π1(K). Whenever the vertices vi, vj , vk, form a 2-simplex
of K, we have a relation

gij ◦ gjk = gik. (15.1.1)

Note the following special cases of the relation (15.1.1). If (vi, vj) and
(vj , vk) are edges of T , then automatically gik = 1. If (vi, vj) is an edge of
T , and k is arbitrary, then gik = gjk.

To see that the group defined by these generators and relations is isomor-
phic to the fundamental group π1(K) simply send each generator gij to the
standard loop associated with the edge loop constructed by concatenating
the following three paths:

(1) from r to vi along the tree,

(2) the edge {vi, vj},

(3) the edge path back from vj to r along the tree.

In particular, we see that the fundamental group of a finite complex is finitely
generated.

An alternative way to think of this representation is as follows. Consider
the space X obtained from |K| by shrinking the tree T to a point. This new
space has one vertex, all the edges are now loops and all the triangles are now
2-cells, which may have one, two, or three boundary edges. The space X is
topologically the same as |K|, speaking formally, it is homotopy equivalent
to |K|. In particular, the fundamental groups are the same. The above
representation can now be viewed as the representation of the fundamental
group of X, with edges of K giving generators, and 2-cells giving relations.
As mentioned above there are three different kinds of relations then. The
2-cell having only one boundary edge, gives relation gij = 1. The 2-cell with
two boundary edges will give a relation gij = gik or gij = gkj . Finally, the
2-cell with three boundary edges will give a relation of the type (15.1.1).

15.2. ALGEBRAIC SIGNATURES 399

15.2 Algebraic Signatures

Let K again be a 2-dimensional connected simplicial complex, and con-
sider a loop agreement task Loop (K, λ). The triangle loop λ =
(v0, v1, v2, p01, p12, p20) represents an element [c(λ)] of the fundamental group
π1(K, v0).

Definition 15.2.1. We call the pair (π1(K, x0), [c(λ)]) the algebraic signature
of the loop agreement task Loop (K, λ).

Let L be another 2-dimensional connected simplicial complex, and con-
sider a loop agreement task Loop (L, µ), where µ = (w0, w1, w2, q01, q12, q20)
is some triangle loop. We use the notation

h : (π1(K), [c(λ)])→ (π1(L), [c(µ)])

to denote any group homomorphism h from π1(K) to π1(L) that maps [c(λ)]
to [c(µ)], where on the left-hand side v0 is taken to be the base point, and
on the right hand side w0 is taken to be the base point.

Fact 15.2.2. Assume x and y are two distinct points of a topological space
X, and assume ρ, ρ′ : [0, 1]→ X are two simple paths from x to y such that
|ρ| = |ρ′|, then the paths ρ and ρ′ are homotopic.

Furthermore,

f : (K, λ)→ (L, µ).

denotes a continuous map from |K| to |L|, such that f(vi) = wi, and
f(|pij |) ⊆ |qij |, for all i, j. Let f∗ denote the homomorphism on underlying
fundamental groups induced by f .

Lemma 15.2.3. If f : (K, λ) → (L, µ) is a continuous map as above, then
f∗([c(λ)]) = [c(µ)].

Proof. We can use Fact 15.2.2 to reparameterize c(λ) and obtain a loop
` : [0, 1]→ |K| such that f ◦ l = c(µ). This of course means f∗([l]) = [c(µ)].
Since c(λ) and ` are homotopic, we conclude that f∗([c(λ)]) = [c(µ)].

We can show that the converse also holds. To start with, we have the
following general result.

Lemma 15.2.4. Assume K and L are finite simplicial complexes, the com-
plex K is 2-dimensional, x is a vertex of X, and y is a vertex of Y . Assume
ϕ : π1(K, x)→ π1(L, y) is a group homomorphism. Then, there exist a con-
tinuous map f : |K| → |L|, such that f(x) = y, and f∗ = ϕ.

400 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

Proof. Let T be a spanning tree of skel1K, rooted at x. Set as before
X := |K|/|T |, which is the space obtained from |K| by shrinking |T | to
a point, which we call t. Let q : |K| → X denote the quotient map, which
takes |T | to t. Since T is a tree, q∗ : π1(K, x)→ π1(X, t) is an isomorphism,
which we use to identify these two groups.

We now proceed to define a continuous map g : X → |L|. First, we set
g(t) := y. Next, take any directed edge e of X. Identify it with a charac-
teristic loop e : [0, 1] → X, e(0) = e(1) = t. It corresponds to an element
[e] ∈ π1(X, t) ' π1(K, x). Let `e be a representative loop of ϕ([e]) ∈ π1(L, y),
`e : [0, 1] → L, `e(0) = le(1) = y. Define g(e(q)) := le(q), for all q ∈ [0, 1].
This defines a continuous function g on the 1-skeleton of X.

As a last step, we can extend g to the rest of X, going cell-by-cell. For
each 2-cell σ, g can be extended to σ if and only if its boundary loop is
contractible in |L|. Clearly, the boundary loop of σ represents the trivial
element of the fundamental group π1(X, t). Since the map ϕ is a group
homomorphism, the image of the boundary map under g represents the
trivial element of π1(L, y). Thus g can be extended to σ, and since this can
be done for every 2-cell, we are done.

Finally, we construct the continuous map f : |K| → |L| as a composition
of g and q.

We now apply this result to the special situation of triangle loops.

Lemma 15.2.5. Assume K and L are 2-dimensional connected simplicial
complexes, λ is a triangle loop in K, and µ is a triangle loop in L. If there
exists a group homomorphism h : (π1(K), [c(λ)]) → (π1(L), [c(µ)]), then
there exists a continuous map f : (K, λ)→ (L, µ).

Proof. By Lemma 15.2.4, there exists a continuous map g : |K| → |L|,
which takes [c(λ)] to [c(µ)]. This means that g takes the loop c(λ) to a loop
` which is homotopic to c(µ). Let H be the loop homotopy from ` to c(µ).
It is a standard topological fact, which we use here without proof, that
the homotopy H can be extended to deform the whole map g to a map
f : |K| → |L|. This map f is continuous, and takes c(λ) to c(µ).

We finish the proof by remarking that the claim that H can be extended
to all of |K| follows from the fact that λ : S1 → |K| is a cofibration (see the
chapter notes).

Combining Lemmas 15.2.3 and 15.2.5 yields

Theorem 15.2.6. There exists a continuous map f : (K, λ) → (L, µ) if and
only if there exists a homomorphism h : (π1(K), [c(λ)]) → (π1(L), [c(µ)]).

15.3. MAIN THEOREM 401

15.3 Main Theorem

In this section, we demonstrate the equivalence of the existence of a contin-
uous map f : (K, λ) → (L, µ) and the existence of an implementation of
Loop (L, µ) by an instance of Loop (K, λ). This will imply our main result,
Theorem 15.3.8.

15.3.1 Map Implies Protocol

Recall that a simplicial map φ : K → L is a simplicial approximation of a
continuous map f : |K| → |L| if for every point x in |K|, |φ|(x) lies in the
carrier of f(x). The Simplicial Approximation Theorem 3.7.5 guarantees
that every such f has a simplicial approximation φ : BaryN K → L for large
enough N .

Lemma 15.3.1. Let K and L be simplicial complexes with respective sim-
plicial subcomplexes K0 and L0, and let f : |K| → |L| be a continuous
map such that f(|K0|) ⊆ |L0|. If φ : BaryN (K) → L is a simplicial
approximation to f , then |φ|(|K0|) ⊆ |L0|.

Proof. Let x be a point of |K0|. The carrier of f(x) is in |L0|, since f(|K0|) ⊆
|L0|. Because φ is a simplicial approximation to f , |φ|(x) ∈ |L0|.

In the barycentric agreement task, processes start with vertices in a
simplex σ in a complex L (of arbitrary dimension), and they must converge
to vertices of a simplex in BaryN (σ), the N -th barycentric subdivision of
the input simplex.

We can now settle one direction of our main theorem.

Lemma 15.3.2. If there exists a continuous map f : (K, λ) → (L, µ), then
an instance of Loop (K, λ) implements Loop (L, µ).

Proof. By the Simplicial Approximation Theorem, f has a simplicial ap-
proximation

φ : BaryN (K)→ L

for some N ≥ 0. Assume that we have λ = (v0, v1, v2, p01, p12, p20), and that
µ = (w0, w1, w2, q01, q12, q20). Assume a process has input wi. We proceed
as follows.

• Let this process run the wait-free protocol for Loop (K, λ) with input
vi, and let oi be its output.

402 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

• Run the wait-free read-write N -th barycentric agreement protocol for
K with oi as input, and let zi be its output.

• Choose φ(zi) and halt.

The entire protocol is wait-free because all its parts are wait-free.
The outputs of the Loop (K, λ) protocol lie on a single simplex of K,

and the outputs of the N -th barycentric agreement protocol lie on a single
simplex of BaryN (K). Because φ is a simplicial map, the decision values lie
on a single simplex of L.

Suppose the processes have two distinct inputs wi and wi+1 (where we
identify w0 with w3). The outputs of the Loop (K, λ) protocol lie on a single
simplex of pi,i+1, and the outputs of the N -th barycentric agreement pro-
tocol, lie on a single simplex of BaryN (pi,i+1). Because λ and µ are edge
loops, pi,i+1 and qi,i+1 can be considered subcomplexes of K and L respec-
tively. Because f(|pi,i+1|) ⊆ |qi,i+1|, Lemma 15.3.1 states that the simplicial
approximation φ carries BaryN (pi,i+1) to qi,i+1. All processes thus choose
vertices in a simplex of qi,i+1.

Suppose all processes have the same input wi. The outputs of the
Loop (K, λ) protocol are all vi, and the outputs of the N -th barycentric
agreement protocol are all vi. Since φ carries vi to wi, all processes thus
choose wi.

15.3.2 Protocol Implies Map

We now turn our attention to the other direction: if a protocol ex-
ists by which an instance of Loop (K, λ) implements Loop (L, µ), then so
does a continuous map f : (K, λ) → (L, µ). Assume that we have
λ = (v0, v1, v2, p01, p12, p20), and that µ = (w0, w1, w2, q01, q12, q20). Our
basic strategy is the following. We may assume without loss of generality
that the protocol has two phases. In the first phase, it calls a “subroutine”
to solve Loop (K, λ), and in the second phase, it uses the result as input to
a pure read-write phase. We can treat the read-write phase as a protocol in
its own right, where each process has a vertex of K as input, and chooses a
vertex of L as output.

Formally, there is a simple way to transform K into an output complex.

Definition 15.3.3. Let K be a complex. The colorized complex K̃ is defined
as follows.

• The vertices of K̃ are all combinations of the form 〈P, k〉, where P is
a process name and k a vertex of K.

15.3. MAIN THEOREM 403

• Vertices 〈P0, k0〉, . . . , 〈Pm, km〉 span an m-simplex in K̃ if and only if
the Pi are distinct, and k0, . . . , km (not necessarily distinct) span a
simplex in K.

Let π : K̃ → K be the projection simplicial map that discards colors.

The read-write phase can now be recast as the decision task 〈K̃, L̃,∆〉,
where ∆ is the “colorized” version of the loop agreement relation. Let ṽi
denote the maximal simplex of K̃, such that π(ṽi) = {vi}. Let p̃ij be the

subcomplex of K̃, such that for all S ∈ p̃ij , π(S) ⊆ pij , and similarly for w̃i
and q̃ij . The relation ∆ carries each ṽi to w̃i, and each simplex of p̃ij to q̃ij .

The circumstances under which a decision task has a wait-free read-
write implementation are given by the following asynchronous computability
theorem:

Theorem 15.3.4. A decision task 〈I,O,∆〉 has a wait-free protocol using
read-write memory if and only if there exists a chromatic subdivision σ of
I and a color-preserving simplicial map

µ : σ(I)→ O

such that for each vertex s in σ(I), µ(s) ∈ ∆(Car(s, I)).

Applying this theorem to the read-write phase, yields a color-preserving
simplicial map

µ : σ(K̃)→ L̃

that carries each ṽi to w̃i, and each p̃ij to q̃ij .

Composing µ with the color-discarding projection map π yields a sim-
plicial map

µ0 : σ(K̃)→ L.

The map µ0 carries each ṽi to wi, and each p̃ij to qij .

We now claim that we can assume without loss of generality that K has
a 3-coloring.

Lemma 15.3.5. If K is a 2-dimensional complex, then Bary(K) has a 3-
coloring.

Proof. Assign each x in Bary(K) the label dim(Car(x,K)). The result is a
3-coloring.

Lemma 15.3.6. The tasks Loop (K, λ) and Loop (Bary(K),Bary(λ)) are
equivalent: an instance of one implements the other.

404 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

Proof. To implement Loop (Bary(K),Bary(λ)), each process runs the proto-
col for Loop (K, λ), and feeds the output to a round of barycentric agreement.

To implement Loop (K, λ), each process runs the protocol for
Loop (Bary(K),Bary(λ)), yielding output k. Each process then chooses any
vertex in Car(k,K).

Assume K is 3-colorable. Pick a 3-coloring for K with the first three
process names, and let K∗ be the resulting colored complex. Clearly, K and
K∗ are isomorphic (the only difference is the labeling of vertices). Let v∗i
and p∗ij denote the images of vi and pij in K∗.

Note that K∗ is a subcomplex of K̃, so σ(K∗) is a subcomplex of σ(K̃).
We now have a simplicial map

µ1 : σ(K∗)→ L,

the restriction of µ0. Thus, the map µ1 carries each v∗i to wi, and each p∗ij
to qij .

Lemma 15.3.7. If an instance of Loop (K, λ) implements Loop (L, µ), then
there exists a continuous map f : (K, λ) → (L, µ).

Proof. The map µ1 constructed above induces a continuous map

|µ1| : |σ(K∗)| → |L|

carrying each v∗i to wi, and each |p∗ij | to |qij |. Since |σ(K∗)| = |K|, |µ1| is
the desired continuous map |K| → |L| carrying each vi to wi, and each pij
to qij .

Theorem 15.3.8. An instance of (K, λ) implements (L, µ) if and only if there
exists a group homomorphism h : (π1(K), [c(λ)]) → (π1(L), [c(µ)]).

Proof. From Lemmas 15.3.2, 15.3.7, and Theorem 15.3.8.

15.4 Applications

We start with a known result, but one that illustrates the power of the
theorem.

Proposition 15.4.1. (3, 2)-set agreement has no wait-free implementation us-
ing read-write registers.

15.4. APPLICATIONS 405

Proof. Recall that (3,2)-set agreement can be viewed as Loop (skel1 ∆2, ζ),
where ζ is the triangle loop (0, 1, 2, ((0, 1)), ((1, 2)), ((2, 0))). It is a standard
result that π1(skel1 ∆2) is infinite cyclic with generator [ζ]. Implement-
ing (3, 2)-set agreement wait-free is the same as implementing it with 0-th
barycentric agreement (∆2, ζ). Because π1(∆2) is trivial, the only homo-
morphism h : (π1(∆2), [ζ])→ (π1(skel1 ∆2), [ζ]) is the trivial one. It carries
[ζ] to the identity element of the group, and not to [ζ].

It is now easy to identify the most powerful and least powerful loop
agreement tasks. We say that a task is universal if it implements any loop
agreement task whatsoever.

Proposition 15.4.2. (3, 2)-set agreement is universal.

Proof. As was just mentioned, (3,2)-set agreement is Loop (skel1 ∆2, ζ),
where ζ is as above. It is a standard result that π1(skel1 ∆2) is the infi-
nite cyclic group Z with generator [ζ]. To implement any Loop (L, µ), let
h([ζ]) = [c(µ)].

Proposition 15.4.3. Uncolored simplex agreement is implemented by any
loop agreement task.

Proof. The complex for uncolored simplex agreement has trivial fundamen-
tal group because it is a subdivided simplex, and hence its polyhedron
is a convex subset of Euclidean space. To implement this task with any
Loop (L, µ), let h of every element be the identity.

As another example that illustrates the power of the theorem, we show
that the loop agreement tasks classification is undecidable. In fact we prove
a more specific result: it is undecidable to compute if a loop agreement task
belongs to the weakest class (of loop agreement tasks equivalent to uncolored
simplex agreement, by the previous proposition).

The following gives a different proof of the result showing that wait-free
task solvability is undecidable.

Proposition 15.4.4. It is undecidable to compute if an instance of uncolored
simplex agreement implements Loop (L, µ).

Proof. By Theorem 15.3.8, an instance of uncolored simplex agreement
(∆2, ζ) implements Loop (L, λ) if and only if there exists a group homo-
morphism h : (π1(∆2), [ζ]) → (π1(L), [c(µ)]). Since π1(∆2) is the trivial
group, h exists if and only if [c(µ)] is the identity of π1(L). That is, if and
only if µ is contractible in L. But it is a classic result that loop contractibility
is undecidable in 2-dimensional complexes.

406 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

15.5 Torsion Classes

The torsion number of (K, λ) is the least positive integer k such that [c(λ)]k

is the identity element of π1(K); in group theory this is called the order of
the element [c(λ)] of π1(K). If no such k exists, then the order is infinite.
Every loop agreement task has a well-defined torsion number. Define torsion
class k to be the tasks with torsion number k.

As an example of a loop agreement task with a non-trivial (i.e., not 1
and not ∞) torsion number, let K be complex whose polyhedron is isomor-
phic to a Moebius strip, and choose a triangle loop λ which geometrically
corresponds to the “equator” of the strip. Then c(λ) is the generator of
π1(K, k0), and has torsion class 2.

How much information does a task’s torsion number convey? The fol-
lowing properties follow directly from Theorem 15.3.8.

• If a task in class k (finite) implements a task in class `, then `|k (`
divides k).

• Each torsion class includes a universal task that solves any loop agree-
ment task in that class.

• A universal task for class k (finite) is also universal for any class `
where `|k.

• A universal task for class k (finite) does not implement any task in
class ` if ` does not divide k.

• A universal task for class ∞ is universal for any class k.

Torsion classes form a coarser partitioning than our complete classification,
but they are defined in terms of simpler algebraic properties, and they too
have an interesting combinatorial structure.

15.6 Conclusions

We have established a connection between the computational power of a
class of distributed tasks and the structure of the fundamental groups of
topological spaces related to the tasks. This connection raises a number of
open problems. Can we use a similar approach to characterize the computa-
tional power of tasks other than loop agreement tasks? A potential obstacle
here is that Theorem 15.3.8 is known to be false above dimension two, so it
may be necessary to settle for weaker characterizations in higher dimensions.

15.7. CHAPTER NOTES 407

Can we characterize the computational power of compositions of tasks? In
the implementations considered here, we compose one copy of a protocol
for (K, λ) with an arbitrary read-write protocol to construct a protocol for
(L, µ). Can we give a similar characterization for multiple tasks in terms of
the fundamental groups of their components? There is a need for further
investigation into these questions.

15.7 Chapter Notes

Most of the results in this chapter originally appeared in Herlihy and Rajs-
baum [85].

The notion of loop agreement task was extended to degenerate loop agree-
ment tasks by Liu et al. [110, 111], A degenerate loop agreement task is
defined by a graph (1-complex) K with two distinguished vertices, a and
b. Each process starts with a binary input (0 or 1). Each process halts
with a vertex from K. If the inputs of all participating processes are 0, the
processes halt with output value a, and if all values are 1, they halt with
b. If the inputs are mixed, each process processes halts with a vertex from
K, and all vertices chosen must lie on an edge or vertex (0 or 1-simplex) of
K. The degenerate loop agreement tasks fall into two equivalence classes:
those that are equivalent to consensus, and those that are equivalent to
read-write memory. The “consensus” class is universal, in the sense that
any task in that class implements any degenerate loop agreement task. The
“read-write” class is the weakest class, in the sense that any degenerate loop
agreement task implements any task from the read-write class.

Fraignaud, Rajsbaum and Travers [60] use techniques similar to the ones
in this chapter to obtain a classification of locality-preserving tasks in term of
their computational power, considering a relationship with covering spaces
(the classic algebraic topology notion).

More on cofibrations can be found in Kozlov [102, Chapter 7]. The
representation of the fundamental group of a simplicial complex from sub-
section 15.1.2 is taken from Armstrong [7, p.135]. Notions related to the
torsion number appear in Munkres [126, p.22] and in Armstrong [7, p.178].

15.8 Exercises

Exercise 15.1. Find a loop agreement task Loop (K, λ), which is equivalent
to the 2-set agreement, but such that the fundamental group of K is not Z.

408 CHAPTER 15. CLASSIFYING LOOP AGREEMENT TASKS

Exercise 15.2. Consider the loop agreement task Loop ∗(K, λ), where we
no longer assume that K is 2-dimensional. What can be said about the
solvability of Loop ∗(K, λ)?

Exercise 15.3. Construct an infinite sequence of loop agreement tasks
Loop (K1, λ1), Loop (K2, λ2), . . . , such that for all i < j the task
Loop (Ki, λi) is implemented by the task Loop (Kj , λj), but not vice versa.

Exercise 15.4. Give an example of a loop agreement task which does not
solve the universal task in its torsion class.

Chapter 16

Immediate Snapshot
Subdivisions

Non Print Material 16. Abstract: Throughout this book, we have relied
on the fact that Ch ∆n, the standard chromatic subdivision of the n-simplex
∆n defined in Chapter 3, is indeed a subdivision of ∆n. In this chapter, we
give a rigorous proof of this claim.

Key words: Schlegel diagram, affinely independent, cross-polytope,
polytope, subdivision.

Throughout this book, we have relied on the fact that Ch ∆n, the standard
chromatic subdivision of the n-simplex ∆n defined in Chapter 3, is indeed
a subdivision of ∆n. In this chapter, we give a rigorous proof of this claim.

The complex Ch ∆n captures all single-layer immediate snapshot exe-
cutions for n + 1 processes. Recall that a single-layer immediate snapshot
execution is given by a schedule S0, . . . , Sd, where each Si is the set of pro-
cesses that participate in step i, the Si are disjoint, and the complete set of
processes [n] is their union. We call S0, . . . , Sd an ordered partition of [n].

16.1 A glimpse of discrete geometry

16.1.1 Polytopes

Recall from basic linear algebra that a hyperplane in Rd+1 is a solution of a
single linear equation

∑d+1
i=0 cixi = 0. Given such an equation, we also have

two open half-spaces: the set of points for which
∑d+1

i=0 cixi < 0, and the set

409

410 CHAPTER 16. IMMEDIATE SNAPSHOT SUBDIVISIONS

for which
∑d+1

i=0 cixi > 0. It also defines two closed half-spaces: the unions
of the hyperplane with the open half-spaces.

A (d + 1)-dimensional convex polytope1 P is the convex hull of finitely
many points in Rd+1, where we assume that not all points lie on the same
hyperplane. A face of a polytope P is the intersection of P with a hyperplane
that does not intersect the interior of P . An (d + 1)-dimensional polytope
P is bounded by a number of d-dimensional faces, which are themselves
polytopes. In fact, P is an intersection of the closed half-spaces associated
to its d-faces.

16.1.2 Schlegel Diagrams

In general, it can be complicated to prove that one simplicial complex is a
subdivision of another, even for a subdivision of a simplex. A straightfor-
ward argument would need to go into the technical details of topology of
a geometric simplicial complex, possibly having to deal with explicit point
descriptions as convex combinations of the vertices, and so on.

Fortunately, in this case there is a short-cut: Schlegel diagrams. Infor-
mally, a Schlegel diagram is constructed by taking a “photograph” (per-
spective projection) of the polytope from a vantage point just outside of it,
centered over a chosen d-face F . Since the polytope is convex, it is possible
to choose the vantage point so that all the faces project onto F , and the
projections of disjoint faces are themselves disjoint.

Let us make this more specific. Pick a d-dimensional face F of the
polytope P . As noted, F itself is a d-dimensional polytope obtained as an
intersection of P with some hyperplane H, so that the rest of the polytope
lies entirely on one side of this hyperplane. Let H− denote the open half-
space bordered by H which does not intersect the polytope P . Choose a
point x in H− very close to the barycenter of F (in fact any point in the
interior of F will do). Now project the boundary of the polytope P along
the rays connecting it to x into the hyperplane H. If x is sufficiently close
to the barycenter of F , the image of that projection will be contained in F .
(In fact, topologically it will be precisely F .) Furthermore, by linearity, the
images of the faces on the boundary of P , excluding F itself, will constitute
a polyhedral subdivision of F , which we denote SchF (P). See Figure 16.1
for examples of Schlegel diagrams of a tetrahedron, cube and dodecahedron.

1This is a special case of what is called polytope in some literature, which will be
sufficient for our purposes.

16.1. A GLIMPSE OF DISCRETE GEOMETRY 411

Figure 16.1: Schlegel diagrams of tetrahedron, cube and dodecahedron.

16.1.3 Schlegel diagrams of cross-polytopes

A polytope whose d-faces are simplices is said to be simplicial. If the poly-
tope P is simplicial, then the Schlegel diagram is a simplicial subdivision of
the d-simplex F . We now consider a specific simplicial polytope in Rd+1.
For i = 0, . . . , d, let ei denote the point whose ith coordinate is 1, and
all other coordinates are 0. Let Pd be the convex hull of the point set
{e0, . . . , ed,−e0, . . . ,−ed}. It is easy to see that these 2d + 2 points are
in convex position and that the obtained polytope is simplicial. This is
the so-called cross-polytope. Since for any pair of d-faces of Pd there exists
a symmetry of Pd moving one of the faces to the other one, the Schlegel dia-
gram will not depend on which face of Pd we choose, so we just write SchPd.
Examples of Schlegel diagrams for crosspolytopes of dimensions 1 and 2 are
shown in Figure 16.2. Note that the boundary complex of Pd is precisely
the simplicial join of d+ 1 copies of the simplicial complex consisting of two
points with no edge between them.

412 CHAPTER 16. IMMEDIATE SNAPSHOT SUBDIVISIONS

Figure 16.2: Schlegel diagrams of 1 and 2-dimensional cross-polytopes.

We shall need the following combinatorial description of the sim-
plicial complex SchPd. The set of vertices is indexed by V =
{(i, s) | 0 ≤ i ≤ d, s ∈ {+,−}}, where for every i = 0, . . . , d, the pair (i,+)
denotes the inner point of SchPd corresponding to the ith axis, whereas the
pair (i,−) denotes the vertex of the d-simplex used as the initial face for
constructing the Schlegel diagram, corresponding to the ith axis. The d-
dimensional simplices of SchPd are all tuples ((0, s0), . . . , (d, sd)), such that
(s0, . . . , sd) 6= (−, . . . ,−).

Clearly, the advantage of using Schlegel diagrams is that one gets the
fact that the diagram is a subdivision of the face for free. Figure 16.2 shows
that SchP1 is isomorphic to Ch ∆1, whereas SchP2 is different from Ch ∆2.
To get from SchP2 to Ch ∆2 one needs to further subdivide each of the edges
of the triangle, and extend these subdivisions to the subdivision of S2. For
higher d one needs to do this several times.

16.1. A GLIMPSE OF DISCRETE GEOMETRY 413

16.1.4 Extending Subdivisions of Simplices

To generalize the construction to higher dimensions, we need the following
standard fact about simplicial complexes. Let K be an arbitrary simplicial
complex, and let σ be any simplex of K. Recall that the (closed) star of σ is
the union of all simplices which contain σ, denoted by stK(σ). The complex
K is the union of St(σ,K) and the deletion dl(σ,K). The intersection of these
two pieces is precisely the join of the link Lk(σ,K) with the boundary ∂σ.
The closed star itself is the simplicial join of σ with its link, see Section 3.3.

Assume now that X is a subdivision of σ which only subdivides the
interior of σ, while leaving the boundary of σ unchanged. A Schlegel diagram
is an example of such a subdivision. In this case, the join of X with Lk(σ,K)
is a subdivision of St(σ,K).

Fact 16.1.1. Whenever we have a join of two simplicial complexes X ∗Y, we
can replace X with any simplicial subdivision X̃ and the obtained complex
X̃ ∗ Y will be a subdivision of X ∗ Y. One can see this geometrically, if one
remembers the realization of the join from Section 3.3. Indeed, when X and
Y are embedded in complementary dimensions, and the join is obtained by
drawing all the line segments connecting points in X and in Y, then it is
immediate that replacing X with its subdivision will subdivide the join.

Back to our subdivision, we notice that since it does not change the link
of σ, and it does not change the boundary ∂σ, it will also not change their
join. Since this is precisely the space along which we attach σ ∗ Lk(σ,K),
we can extend our local subdivision to a global subdivision of the entire K.

We now have all the tools at hand to describe how to obtain the chro-
matic subdivision Ch ∆n. Start with X0 = ∆d. Subdivide it as a Schlegel
diagram of the cross-polytope. Proceed with the faces of ∆d of codimen-
sion 1: replace them with corresponding Schlegel diagrams and extend these
subdivisions using the argument above to the global subdivision of the en-
tire complex. After this, proceed to do the same for the faces of ∆d of
codimension 2 and so on. We denote the simplicial complexes constructed
in this way by X0, . . . ,Xd−1. In short: to go from Xk to Xk+1 we replace
all boundary simplices of codimension k of the original simplex ∆d with
Schlegel diagrams SchPd−k, and then extend this to the subdivision of the
entire Xk as described above.

We are now ready to give a combinatorial description of the simplicial
structure which we get at every step of the process.

Proposition 16.1.2. For k = 0, . . . , d, the simplicial complex Xk has the
following combinatorial description.

414 CHAPTER 16. IMMEDIATE SNAPSHOT SUBDIVISIONS

• The vertices of Xk are indexed by pairs (i, A), such that A ⊆ [d], i ∈ A,
and either |A| = 1, or |A| ≥ d− k + 2.

• The d-simplices of Xk are indexed by all sets of d + 1 vertices corre-
sponding to tuples σ = ((i0, A0), . . . , (id, Ad)), with {i0, . . . , id} = [d],
satisfying the following conditions:

(1) |A0| ≤ · · · ≤ |Ad|,
(2) Ap ⊆ Aq, whenever p < q, and |Aq| 6= 1,

(3) |Ad−k+2| ≥ 2.

Proof. First we note that for k = 0, we get only vertices (i, A), with |A| = 1,
i.e., the vertices (0, {0}), . . . , (d, {d}). These form a single d-simplex; so our
combinatorial description is correct for X0 = ∆d.

Let us now show that for k = 0, . . . , d − 1 the transformation from Xk

to Xk+1 produces the combinatorial simplicial structure described in the
proposition. For convenience, we define r(σ) to be the minimal index such
that Ar(σ) = 1, and set R(σ) =

{
i0, . . . , ir(σ)

}
.

First, we consider what happens to vertices. For every simplex of ∂∆d

of codimension k, i.e., for every subset S ⊆ [d], such that |S| = d + 1 − k,
we add new vertices (s0, S), . . . , (sd−k, S), where S = {s0, . . . , sd−k}. This
is consistent with the Schlegel construction and with the description of the
set of vertices of Xk.

Next, we analyze what happens with the d-simplices. Many d-
simplices stay intact. Those which get subdivided are of the form σ =
((i0, A0), . . . , (id, Ad)), such that r(σ) = d−k+1. Each such σ gets replaced
by new d-simplices, which are obtained as follows. Choose a non-empty sub-
set S ⊆ R(σ). For ease of presentation, we can re-index the vertices so that
there exists r, such that {i0, . . . , ir} = R(σ) \ S, i.e.,

{
ir+1, . . . , ir(σ)

}
= S.

Then the new simplex is

τ = ((i0, A0), . . . , (ir, Ar), (ir+1, R(σ)), . . . , (ir(σ), R(σ)),

(ir(σ)+1, Ar(σ)+1), . . . , (id, Ad)).

We have r(τ) = r, and R(τ) = R(σ) \ S. To see that this is exactly
what happens when Schlegel diagrams are extended to the entire complex,
one can think of the part

{
(i0, A0), . . . , (ir(σ), Ar(σ))

}
as the maximal face

the corresponding cross-polytope indexed by the tuple (−, . . . ,−). In the
Schlegel constructions it gets replaced by simplices indexed by all possible
non-empty subsets of

{
i0, . . . , ir(σ)+1

}
. Then, the extension of these subdi-

visions to the entire complex corresponds to appending this with the rest

16.2. CHAPTER NOTES 415

of the vertices, which is exactly what we do. The obtained d-simplices are
precisely those occurring in our description of the d-simplices of Xk+1, where
the order of the vertices is given by the construction.

Corollary 16.1.3. Xd = Ch ∆n

Proof. For k = d we have d−k+2 = 2, which means that there is at most one
singleton set among A0, . . . , Ad. We see that the vertices of Xk are all the
pairs (i, A), for i ∈ [d], i ∈ A ⊆ [d], whereas a set of d+ 1 vertices forms a d-
simplex if and only if it can be ordered into a tuple ((i0, A0), . . . , (id, Ad))
satisfying {i0, . . . , id} = [d], |A0| ≤ · · · ≤ |Ad|, and Ap ⊆ Aq, whenever
p < q. In other words, the conditions for the sets of d + 1 vertices to form
d-simplices translate precisely into our previous description of the simplicial
complex Ch ∆n.

Remark 16.1.4. For k ≥ 1, the transient simplicial complexes Xk can also
be given a distributed computing interpretation. Namely, we consider all
the executions where in the initial stage a certain number of processes,
numbering at most d + 1 − k, will only perform the write operation; with
the rest of processes functioning normally and performing a write with the
immediate snapshot read operation. In particular, the views of those first
“write-only” processes consist solely of their own names. Note that this also
explains the equality Xd = Xd+1, since it does not matter whether the first
process also reads or not after it wrote its name into the shared memory.

16.2 Chapter Notes

More information on Schlegel diagrams can be found in Grunbaum [76], and
more on cross-polytope in Coxeter [42].

16.3 Exercises

Exercise 16.1. Let f(d, n) denote the number of d-simplices in the chromatic
subdivision Ch ∆n. Give recursive formulas for the numbers f(d, n). Can
you estimate their asymptotics? What is the answer in the special cases
d = 0 and d = n?

Exercise 16.2. Describe the links of vertices in Ch ∆n as complexes con-
structed from standard chromatic subdivisions of simplices of lower dimen-
sion. How many different types of links are there?

416 CHAPTER 16. IMMEDIATE SNAPSHOT SUBDIVISIONS

Exercise 16.3. Describe the links of d-simplices of Ch ∆n for arbitrary d,
using standard chromatic subdivisions of simplices of lower dimension.

Bibliography

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience
asynchronous approximate agreement. In Proceedings of the 8th inter-
national conference on Principles of Distributed Systems, OPODIS’04,
pages 229–239, Berlin, Heidelberg, 2005. Springer-Verlag.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. Journal of the
ACM, 40(4):873–890, 1993.

[3] Yehuda Afek and Eli Gafni. Asynchrony from synchrony. In Davide
Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar,
and Prasun Sinha, editors, Distributed Computing and Networking,
volume 7730 of Lecture Notes in Computer Science, pages 225–239.
Springer Berlin Heidelberg, 2013.

[4] Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, and
Corentin Travers. The k-simultaneous consensus problem. Distributed
Computing, 22(3):185–195, 2010.

[5] Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers.
Generating fast indulgent algorithms. In MarcosK. Aguilera, Haifeng
Yu, NitinH. Vaidya, Vikram Srinivasan, and RomitRoy Choudhury,
editors, Distributed Computing and Networking, volume 6522 of Lec-
ture Notes in Computer Science, pages 41–52. Springer Berlin Heidel-
berg, 2011.

[6] James H. Anderson. Composite registers. Distrib. Comput., 6(3):141–
154, 1993.

[7] M. A. Armstrong. Basic Topology (Undergraduate Texts in Mathe-
matics). Springer, July 1983.

417

418 BIBLIOGRAPHY

[8] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. J. ACM, 42(1):124–142, January
1995.

[9] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger
Reischuk. Renaming in an Asynchronous Environment. Journal of the
ACM, July 1990.

[10] Hagit Attiya, Fatemeh Borran, Martin Hutle, Zarko Milosevic, and
André Schiper. Structured Derivation of Semi-Synchronous Algo-
rithms. In David Peleg, editor, Distributed Computing, volume 6950
of Lecture Notes in Computer Science, pages 374–388. Springer Berlin
Heidelberg, 2011.

[11] Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz.
Upper bound on the complexity of solving hard renaming. In Proceed-
ings of the 2013 ACM symposium on Principles of distributed comput-
ing, PODC ’13, pages 190–199, New York, NY, USA, 2013. ACM.

[12] Hagit Attiya and Armando Castañeda. A non-topological proof for
the impossibility of k-set agreement. In Xavier Défago, Franck Petit,
and Vincent Villain, editors, Stabilization, Safety, and Security of Dis-
tributed Systems, volume 6976 of Lecture Notes in Computer Science,
pages 108–119. Springer Berlin Heidelberg, 2011.

[13] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Bounds on the time to reach agreement in the presence of timing
uncertainty. J. ACM, 41:122–152, January 1994.

[14] Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots
using lattice agreement. Distributed Computing, 8(3):121–132, 1995.

[15] Hagit Attiya and Ami Paz. Counting-based impossibility proofs for
renaming and set agreement. In Marcos K. Aguilera, editor, Distri-
buted Computing, volume 7611 of Lecture Notes in Computer Science,
pages 356–370. Springer Berlin Heidelberg, 2012.

[16] Hagit Attiya and Sergio Rajsbaum. The Combinatorial Structure of
Wait-Free Solvable Tasks. SIAM J. Comput., 31(4):1286–1313, April
2002.

[17] Hagit Attiya and Jennifer Welch. Distributed ComputingFundamen-
tals, Simulations, and Advanced TopicsSecond Edition. John Wiley
and Sons, Inc., 2004.

BIBLIOGRAPHY 419

[18] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial char-
acterization of the distributed tasks which are solvable in the presence
of one faulty processor. In PODC ’88: Proceedings of the seventh an-
nual ACM Symposium on Principles of distributed computing, pages
263–275, New York, NY, USA, 1988. ACM.

[19] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A Combinatorial
Characterization of the Distributed 1-Solvable Tasks. J. Algorithms,
11(3):420–440, 1990.

[20] Ofer Biran, Shlomo Moran, and Shmuel Zaks. Deciding 1-sovability of
distributed task is np-hard. In Proceedings of the 16rd International
Workshop on Graph-Theoretic Concepts in Computer Science, WG
’90, pages 206–220, London, UK, UK, 1991. Springer-Verlag.

[21] Ofer Biran, Shlomo Moran, and Shmuel Zaks. Tight Bounds on the
Round Complexity of Distributed 1-Solvable Tasks. Theor. Comput.
Sci., 145(1-2):271–290, 1995.

[22] J.A. Bondy and U.S.R. Murty. Graph theory with applications. Else-
vier, 1976.

[23] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility re-
sult for t-resilient asynchronous computations. In STOC ’93: Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pages 91–100, New York, NY, USA, 1993. ACM.

[24] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and
fast renaming. In PODC ’93: Proceedings of the twelfth annual ACM
symposium on Principles of distributed computing, pages 41–51, New
York, NY, USA, 1993. ACM.

[25] Elizabeth Borowsky and Eli Gafni. The Implication of the Borowsky-
Gafni Simulation on the Set-Consensus Hierarchy. Technical report,
UCLA, 1993.

[26] Elizabeth Borowsky and Eli Gafni. A Simple Algorithmically Rea-
soned Characterization of Wait-Free Computations (Extended Ab-
stract). In PODC ’97: Proceedings of the sixteenth annual ACM sym-
posium on Principles of distributed computing, pages 189–198, New
York, NY, USA, 1997. ACM.

420 BIBLIOGRAPHY

[27] Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum.
The BG distributed simulation algorithm. Distributed Computing,
14(3):127–146, 2001.

[28] G. Bracha. Asynchronous byzantine agreement protocols. Information
and Computation, 75(2), 1987.

[29] Armando Castañeda, Damien Imbs, Sergio Rajsbaum, and Michel
Raynal. Generalized symmetry breaking tasks. Rapport de recherche
PI-2007, ASAP - INRIA - IRISA, September 2013.

[30] Armando Castañeda, Damien Imbs, Sergio Rajsbaum, and Michel
Raynal. Renaming is weaker than set agreement but for perfect renam-
ing: A map of sub-consensus tasks. In David Fernndez-Baca, editor,
LATIN 2012: Proc. 10th Latin American Symposium Theoretical In-
formatics, volume 7256 of Lecture Notes in Computer Science, pages
145–156. Springer Berlin Heidelberg, 2012.

[31] Armando Castañeda and Sergio Rajsbaum. New combinatorial topol-
ogy upper and lower bounds for renaming. In Proceedings of the
twenty-seventh ACM symposium on Principles of distributed comput-
ing, PODC ’08, pages 295–304, New York, NY, USA, 2008. ACM.

[32] Armando Castañeda and Sergio Rajsbaum. New combinatorial topol-
ogy bounds for renaming: the lower bound. Distributed Computing,
22:287–301, 2010. 10.1007/s00446-010-0108-2.

[33] Armando Castañeda and Sergio Rajsbaum. New combinatorial topol-
ogy bounds for renaming: The upper bound. J. ACM, 59(1):3:1–3:49,
March 2012.

[34] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. The re-
naming problem in shared memory systems: An introduction. Com-
puter Science Review, 5(3):229–251, 2011.

[35] Tushar Chandra, Vassos Hadzilacos, Prasad Jayanti, and Sam Toueg.
Generalized Irreducibility of Consensus and the Equivalence of t-
Resilient and Wait-Free Implementations of Consensus. SIAM J. Com-
put., 34(2):333–357, February 2005.

[36] Bernadette Charron-Bost and André Schiper. The heard-of model:
computing in distributed systems with benign faults. Distributed Com-
puting, 22:49–71, 2009.

BIBLIOGRAPHY 421

[37] S. Chaudhuri. Agreement Is Harder Than Consensus: Set Consen-
sus Problems in totally asynchronous systems. In Proceedings Of The
Ninth Annual ACM Symosium On Principles of Distributed Comput-
ing, pages 311–234, August 1990.

[38] Soma Chaudhuri. More choices allow more faults: Set consensus prob-
lems in totally asynchronous systems. Information and Computation,
105(1):132–158, July 1993.

[39] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R.
Tuttle. A Tight Lower Bound for k-Set Agreement. In In Proceedings
of the 34th IEEE Symposium on Foundations of Computer Science,
pages 206–215, 1993.

[40] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R.
Tuttle. Tight bounds for k-set agreement. J. ACM, 47(5):912–943,
September 2000.

[41] Soma Chaudhuri and Paul Reiners. Understanding the Set Consensus
Partial Order Using the Borowsky-Gafni Simulation (Extended Ab-
stract). In Proceedings of the 10th International Workshop on Distri-
buted Algorithms, pages 362–379, London, UK, 1996. Springer-Verlag.

[42] H. S. M. Coxeter. Regular Polytopes. Dover Publications, third edition
edition, June 1973.

[43] Roberto de Prisco, Dahlia Malkhi, and Michael Reiter. On k-set con-
sensus problems in asynchronous systems. IEEE Trans. Parallel Dis-
trib. Syst., 12(1):7–21, January 2001.

[44] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Petr
Kuznetsov. Wait-freedom with advice. In Proceedings of the 2012
ACM symposium on Principles of distributed computing, PODC ’12,
pages 105–114, New York, NY, USA, 2012. ACM.

[45] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and
Andreas Tielmann. The Disagreement Power of an Adversary. In
Idit Keidar, editor, Distributed Computing, volume 5805 of Lecture
Notes in Computer Science, chapter 6, pages 8–21. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2009.

[46] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and
Andreas Tielmann. The disagreement power of an adversary. Distri-
buted Computing, 24(3-4):137–147, 2011.

422 BIBLIOGRAPHY

[47] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark,
and William E. Weihl. Reaching approximate agreement in the pres-
ence of faults. J. ACM, 33(3):499–516, 1986.

[48] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM J. Comput., 12(4):656–666, 1983.

[49] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[50] Cynthia Dwork and Yoram Moses. Knowledge and common knowl-
edge in a byzantine environment: Crash failures. Information and
Computation, 88(2):156 – 186, 1990.

[51] Tzilla Elrad and Nissim Francez. Decomposition of distributed pro-
grams into communication-closed layers. Science of Computer Pro-
gramming, 2(3):155 – 173, 1982.

[52] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[53] Lisbeth Fajstrup, Martin Rauen, and Eric Goubault. Algebraic topol-
ogy and concurrency. Theoretical Computer Science, 357(13):241 –
278, 2006. ¡ce:title¿Clifford Lectures and the Mathematical Founda-
tions of Programming Semantics¡/ce:title¿.

[54] Jose M. Faleiro, Sriram Rajamani, Kaushik Rajan, G. Ramalingam,
and Kapil Vaswani. Generalized lattice agreement. In Proceedings
of the 2012 ACM symposium on Principles of distributed computing,
PODC ’12, pages 125–134, New York, NY, USA, 2012. ACM.

[55] Ky Fan. Simplicial maps from an orientable n-pseudomanifold into sm
with the octahedral triangulation. Journal of Combinatorial Theory,
2(4):588 – 602, 1967.

[56] M. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility Of Distri-
buted Commit With One Faulty Process. Journal of the ACM, 32(2),
April 1985.

[57] Michael J. Fischer. The consensus problem in unreliable distributed
systems (a brief survey). Technical Report YALEU/DCS/TR-273,
Yale University, Department of Computer Science, 2000.

BIBLIOGRAPHY 423

[58] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. Inf. Process. Lett., 14(4):183–186,
1982.

[59] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Locality
and checkability in wait-free computing. In David Peleg, editor, Distri-
buted Computing, volume 6950 of Lecture Notes in Computer Science,
pages 333–347. Springer Berlin Heidelberg, 2011.

[60] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Local-
ity and checkability in wait-free computing. Distributed Computing,
26(4):223–242, 2013.

[61] E. Gafni, R. Guerraoui, and B. Pochon. The complexity of early
deciding set agreement. SIAM Journal on Computing, 40(1):63–78,
2011.

[62] Eli Gafni. Round-by-round fault detectors (extended abstract): unify-
ing synchrony and asynchrony. In Proceedings of the seventeenth an-
nual ACM symposium on Principles of distributed computing, PODC
’98, pages 143–152, New York, NY, USA, 1998. ACM.

[63] Eli Gafni. The extended BG-simulation and the characterization of
t-resiliency. In Proceedings of the 41st annual ACM symposium on
Theory of computing, STOC ’09, pages 85–92, New York, NY, USA,
2009. ACM.

[64] Eli Gafni and Elias Koutsoupias. Three-Processor Tasks Are Unde-
cidable. SIAM J. Comput., 28(3):970–983, 1999.

[65] Eli Gafni and Petr Kuznetsov. On set consensus numbers. Distributed
Computing, 24(3-4):149–163, 2011.

[66] Eli Gafni and Petr Kuznetsov. Relating L-resilience and wait-freedom
via hitting sets. In Marcos K. Aguilera, Haifeng Yu, Nitin H. Vaidya,
Vikram Srinivasan, and Romit Roy Choudhury, editors, Distributed
Computing and Networking, volume 6522 of Lecture Notes in Com-
puter Science, pages 191–202. Springer Berlin Heidelberg, 2011.

[67] Eli Gafni, Achour Mostfaoui, Michel Raynal, and Corentin Travers.
From adaptive renaming to set agreement. Theoretical Computer Sci-
ence, 410(14):1328 – 1335, 2009. ¡ce:title¿Structural Information and
Communication Complexity (SIROCCO 2007)¡/ce:title¿.

424 BIBLIOGRAPHY

[68] Eli Gafni and Sergio Rajsbaum. Distributed programming with tasks.
In Proceedings of the 14th international conference on Principles of
distributed systems, OPODIS’10, pages 205–218, Berlin, Heidelberg,
2010. Springer-Verlag.

[69] Eli Gafni and Sergio Rajsbaum. Recursion in distributed computing.
In Shlomi Dolev, Jorge Cobb, Michael Fischer, and Moti Yung, editors,
Stabilization, Safety, and Security of Distributed Systems, volume 6366
of Lecture Notes in Computer Science, pages 362–376. Springer Berlin
Heidelberg, 2010.

[70] Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus
Tasks: Renaming Is Weaker Than Set Agreement. In Distributed Com-
puting, 20th International Symposium, Stockholm, Sweden, Septem-
ber 18-20, 2006, Proceedings(DISC), volume 4167 of Lecture Notes in
Computer Science, pages 329–338. Springer, 2006.

[71] George Gamow and Marvin Stern. Puzzle-Math. Viking Press, 1958.

[72] P.F Garst. Cohen-Macaulay Complexes and Group Actions. PhD
thesis, University of Wisconsin, 1979.

[73] Leslie C. Glaser. Geometrical Combinatorial Topology, Volume I. Van
Nostrand, 1st edition.

[74] Marco Grandis. Directed Algebraic Topology, Models of Non-Reversible
Worlds. New Mathematical Monographs. Academic, October 2009.

[75] Jim Gray. Notes on Data Base Operating Systems. In Operating
Systems, An Advanced Course, pages 393–481, London, UK, 1978.
Springer-Verlag.

[76] Branko Grunbaum. Convex Polytopes (Graduate Texts in Mathemat-
ics). Springer, 2nd edition, October 2003.

[77] J. Havlicek. A note on the homotopy type of wait-free atomic snapshot
protocol complexes. SIAM Journal on Computing, 33(5):1215–1222,
2004.

[78] John Havlicek. Computable obstructions to wait-free computability.
Distributed Computing, 13:59–83, 2000.

[79] Michael Henle. A Combinatorial Introduction to Topology. Dover,
1983.

BIBLIOGRAPHY 425

[80] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, January 1991.

[81] Maurice Herlihy and Sergio Rajsbaum. Set consensus using arbitrary
objects (preliminary version). In PODC ’94: Proceedings of the thir-
teenth annual ACM symposium on Principles of distributed computing,
pages 324–333, New York, NY, USA, 1994. ACM.

[82] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed
decision tasks (extended abstract). In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages
589–598, New York, NY, USA, 1997. ACM.

[83] Maurice Herlihy and Sergio Rajsbaum. New perspectives in distri-
buted computing (invited lecture). In Miros?aw Kuty?owski, Leszek
Pacholski, and Tomasz Wierzbicki, editors, Mathematical Foundations
of Computer Science 1999, volume 1672 of Lecture Notes in Computer
Science, pages 170–186. Springer Berlin Heidelberg, 1999.

[84] Maurice Herlihy and Sergio Rajsbaum. Algebraic spans. Mathematical
Structures in Computer Science, 10(4):549–573, 2000.

[85] Maurice Herlihy and Sergio Rajsbaum. A classification of wait-free
loop agreement tasks. Theor. Comput. Sci., 291(1):55–77, 2003.

[86] Maurice Herlihy and Sergio Rajsbaum. The topology of shared-
memory adversaries. In Proceeding of the 29th ACM SIGACT-
SIGOPS symposium on Principles of distributed computing, PODC
’10, pages 105–113, New York, NY, USA, 2010. ACM.

[87] Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions
for colorless tasks. In Proceedings of the 2012 ACM symposium on
Principles of distributed computing, PODC ’12, pages 253–260, New
York, NY, USA, 2012. ACM.

[88] Maurice Herlihy and Sergio Rajsbaum. The topology of distributed
adversaries. Distributed Computing, 26(3):173–192, 2013.

[89] Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. Computability
in distributed computing: a tutorial. SIGACT News, 43(3):88–110,
August 2012.

426 BIBLIOGRAPHY

[90] Maurice Herlihy, Sergio Rajsbaum, and Mark Tuttle. An Axiomatic
Approach to Computing the Connectivity of Synchronous and Asyn-
chronous Systems. Electron. Notes Theor. Comput. Sci., 230:79–102,
2009.

[91] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying
synchronous and asynchronous message-passing models. In PODC ’98:
Proceedings of the seventeenth annual ACM symposium on Principles
of distributed computing, pages 133–142, New York, NY, USA, 1998.
ACM.

[92] Maurice Herlihy and Nir Shavit. The asynchronous computability
theorem for t-resilient tasks. In STOC ’93: Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing, pages 111–120,
New York, NY, USA, 1993. ACM.

[93] Maurice Herlihy and Nir Shavit. The topological structure of asyn-
chronous computability. J. ACM, 46(6):858–923, 1999.

[94] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann, March 2008.

[95] Gunnar Hoest and Nir Shavit. Towards a topological characterization
of asynchronous complexity. In Proceedings of the sixteenth annual
ACM symposium on Principles of distributed computing, PODC ’97,
pages 199–208, New York, NY, USA, 1997. ACM.

[96] Gunnar Hoest and Nir Shavit. Toward a topological characterization
of asynchronous complexity. SIAM J. Comput., 36(2):457–497, August
2006.

[97] Damien Imbs, Sergio Rajsbaum, and Michel Raynal. The universe
of symmetry breaking tasks. In Adrian Kosowski and Masafumi Ya-
mashita, editors, Structural Information and Communication Com-
plexity, volume 6796 of Lecture Notes in Computer Science, pages 66–
77. Springer Berlin Heidelberg, 2011.

[98] Damien Imbs and Michel Raynal. Visiting Gafni’s Reduction Land:
From the BG Simulation to the Extended BG Simulation. In Pro-
ceedings of the 11th International Symposium on Stabilization, Safety,
and Security of Distributed Systems, SSS ’09, pages 369–383, Berlin,
Heidelberg, 2009. Springer-Verlag.

BIBLIOGRAPHY 427

[99] Damien Imbs and Michel Raynal. The multiplicative power of con-
sensus numbers. In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, PODC ’10, pages
26–35, New York, NY, USA, 2010. ACM.

[100] Flavio Junqueira and Keith Marzullo. A framework for the design of
dependent-failure algorithms: Research Articles. Concurr. Comput. :
Pract. Exper., 19(17):2255–2269, 2007.

[101] Flavio P. Junqueira and Keith Marzullo. Designing Algorithms for
Dependent Process Failures. Technical report, 2003.

[102] Dimitry N. Kozlov. Combinatorial Algebraic Topology, volume 21 of
Algorithms and Computation in Mathematics. Springer, 1 edition,
October 2007.

[103] Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex.
Homology, Homotopy and Applications, 14(2):197–209, 2012.

[104] Dmitry N. Kozlov. Weak symmetry breaking and abstract simplex
paths. preprint, 2013.

[105] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed compu-
tation in dynamic networks. In Proceedings of the 42nd ACM sympo-
sium on Theory of computing, STOC ’10, pages 513–522, New York,
NY, USA, 2010. ACM.

[106] Leslie Lamport. Time, clocks, and the ordering of events in a distri-
buted system. Commun. ACM, 21(7):558–565, July 1978.

[107] Leslie Lamport. On interprocess communicationn, parts i and ii. Dis-
tributed Computing, 1(2):77–101, 1986.

[108] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[109] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,
July 1982.

[110] Xingwu Liu, Juhua Pu, and Jianzhong Pan. A Classification of De-
generate Loop Agreement Fifth Ifip International Conference On The-
oretical Computer Science Tcs 2008. In Giorgio Ausiello, Juhani

428 BIBLIOGRAPHY

Karhumäki, Giancarlo Mauri, and Luke Ong, editors, Fifth Ifip In-
ternational Conference On Theoretical Computer Science 2008, vol-
ume 273 of IFIP International Federation for Information Processing,
chapter 14, pages 203–213. Springer Verlag, Berlin, 2008.

[111] Xingwu Liu, Zhiwei Xu, and Jianzhong Pan. Classifying rendezvous
tasks of arbitrary dimension. Theor. Comput. Sci., 410:2162–2173,
May 2009.

[112] M. C. Loui and H. H. Abu-Amara. Memory requirements for agree-
ment among unreliable asynchronous processes, volume 4, pages 163–
183. JAI press, 1987.

[113] Ronit Lubitch and Shlomo Moran. Closed schedulers: a novel tech-
nique for analyzing asynchronous protocols. Distributed Computing,
8(4):203–210, 1995.

[114] Dahlia Malkhi, Michael Merritt, Michael K. Reiter, and Gadi Tauben-
feld. Objects shared by byzantine processes. Distrib. Comput.,
16(1):37–48, February 2003.

[115] Jiri Matousek. Using the Borsuk-Ulam Theorem: Lectures on Topolog-
ical Methods in Combinatorics and Geometry (Universitext). Springer,
December 2007.

[116] Hammurabi Mendes and Maurice Herlihy. Multidimensional approx-
imate agreement in byzantine asynchronous systems. In Proceedings
of the 45th annual ACM symposium on Symposium on theory of com-
puting, STOC ’13, pages 391–400, New York, NY, USA, 2013. ACM.

[117] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. The
topology of asynchronous byzantine colorless tasks, July 2013.

[118] Dimitris Michailidis. Fast set agreement in the presence of timing
uncertainty. In Proceedings of the eighteenth annual ACM symposium
on Principles of distributed computing, PODC ’99, pages 249–256, New
York, NY, USA, 1999. ACM.

[119] Mark Moir and James H. Anderson. Wait-free algorithms for fast,
long-lived renaming. Sci. Comput. Program., 25(1):1–39, October
1995.

BIBLIOGRAPHY 429

[120] Shlomo Moran and Yaron Wolfstahl. Extended impossibility results
for asynchronous complete networks. Inf. Process. Lett., 26(3):145–
151, 1987.

[121] Yoram Moses, Danny Dolev, and Joseph Y. Halpern. Cheating Hus-
bands and other Stories: A Case Study of Knowledge, Action, and
Communication. Distributed Computing, 1(3):167–176, September
1986.

[122] Yoram Moses and Sergio Rajsbaum. A Layered Analysis of Consensus.
SIAM J. Comput., 31:989–1021, April 2002.

[123] A. Mostefaoui, S. Rajsbaum, M. Raynal, and C. Travers. The com-
bined power of conditions and information on failures to solve asyn-
chronous set agreement. SIAM Journal on Computing, 38(4):1574–
1601, 2008.

[124] Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. Conditions
on input vectors for consensus solvability in asynchronous distributed
systems. J. ACM, 50(6):922–954, November 2003.

[125] Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. Syn-
chronous condition-based consensus. Distributed Computing, 18:325–
343, 2006. 10.1007/s00446-005-0148-1.

[126] James Munkres. Elements of Algebraic Topology. Prentice Hall, 2
edition, January 1984.

[127] Armando C. Neda, Maurice Herlihy, and Sergio Rajsbaum. An equiv-
ariance theorem with applications to renaming. In Proceedings of the
10th Latin American international conference on Theoretical Infor-
matics, LATIN’12, pages 133–144, Berlin, Heidelberg, 2012. Springer-
Verlag.

[128] P.S. Novikov. On the algorithmic unsolvability of the word problem
in group theory. Trudy Mat. Inst. Steklov, 44:3—143, 1955.

[129] Michael O. Rabin. Recursive Unsolvability of Group Theoretic Prob-
lems. The Annals of Mathematics, 67(1):172+, January 1958.

[130] Sergio Rajsbaum. Iterated shared memory models. In Alejandro
López-Ortiz, editor, LATIN 2010: Theoretical Informatics, volume
6034 of Lecture Notes in Computer Science, pages 407–416. Springer
Berlin / Heidelberg, 2010.

430 BIBLIOGRAPHY

[131] Sergio Rajsbaum and Michel Raynal. A survey on some recent ad-
vances in shared memory models. In Adrian Kosowski and Masa-
fumi Yamashita, editors, Structural Information and Communication
Complexity, volume 6796 of Lecture Notes in Computer Science, pages
17–28. Springer Berlin Heidelberg, 2011.

[132] Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Computing in
the Presence of Concurrent Solo Executions. Rapport de recherche
PI-2004, May 2013.

[133] Sergio Rajsbaum, Michel Raynal, and Corentin Travers. The iterated
restricted immediate snapshot model. In Xiaodong Hu and Jie Wang,
editors, Computing and Combinatorics, volume 5092 of Lecture Notes
in Computer Science, pages 487–497. Springer Berlin Heidelberg, 2008.

[134] Sergio Rajsbaum, Michel Raynal, and Corentin Travers. The Iter-
ated Restricted Immediate Snapshot Model. In Computing and Com-
binatorics, 14th Annual International Conference, COCOON 2008,
Dalian, China, June 27-29, 2008, Proceedings, volume 5092 of Lecture
Notes in Computer Science, pages 487–497. Springer, 2008.

[135] Michel Raynal. Fault-tolerant agreement in synchronous message-
passing systems. Synthesis Lectures on Distributed Computing Theory,
1(1):1–189, 2010.

[136] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is im-
possible: the topology of public knowledge. In STOC ’93: Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing,
pages 101–110, New York, NY, USA, 1993. ACM.

[137] Michael Saks and Fotios Zaharoglou. Wait-Free k-Set Agreement is
Impossible: The Topology of Public Knowledge. SIAM J. Comput.,
29(5):1449–1483, 2000.

[138] Nicola Santoro and Peter Widmayer. Time is not a healer. In
B. Monien and R. Cori, editors, STACS 89, volume 349 of Lecture
Notes in Computer Science, pages 304–313. Springer Berlin / Heidel-
berg, 1989. 10.1007/BFb0028994.

[139] Nicola Santoro and Peter Widmayer. Agreement in synchronous net-
works with ubiquitous faults. Theor. Comput. Sci., 384(2-3):232–249,
October 2007.

BIBLIOGRAPHY 431

[140] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results
and lower bounds for consensus under link failures. SIAM J. Comput.,
38(5):1912–1951, January 2009.

[141] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Comput. Surv., 22(4):299–319,
December 1990.

[142] Francis Sergeraert. The Computability Problem In Algebraic Topol-
ogy. Adv. Math, 104:1–29, 1994.

[143] T. Srikanth and S. Toueg. Simulating authenticated broadcasts to de-
rive simple fault-tolerant algorithms. Distributed Computing, 2, 1987.

[144] John Stillwell. Classical Topology and Combinatorial Group Theory.
Springer, 2nd edition, March 1993.

[145] Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in
complete graphs. In Proceedings of the 2013 ACM symposium on Prin-
ciples of distributed computing, PODC ’13, pages 65–73, New York,
NY, USA, 2013. ACM.

[146] Jun Wang and Min Song. A new algorithm to solve synchronous
consensus for dependent failures. In Proceedings of the Sixth Interna-
tional Conference on Parallel and Distributed Computing Applications
and Technologies, PDCAT ’05, pages 371–375, Washington, DC, USA,
2005. IEEE Computer Society.

[147] Jiong Yang, Gil Neiger, and Eli Gafni. Structured derivations of con-
sensus algorithms for failure detectors. In Proceedings of the seven-
teenth annual ACM symposium on Principles of distributed computing,
PODC ’98, pages 297–306, New York, NY, USA, 1998. ACM.

	I Fundamentals
	Introduction
	Concurrency Everywhere
	Distributed Computing and Topology
	Our Approach
	Two Ways of Thinking about Concurrency

	Distributed Computing
	Processes and Protocols
	Communication
	Failures
	Timing
	Tasks

	Two Classic Distributed Computing Problems
	The Muddy Children Problem
	The Coordinated Attack Problem

	Chapter Notes
	Exercises

	Two-Process Systems
	Elementary Graph Theory
	Graphs, Vertices, Edges and Colorings
	Simplicial Maps and Connectivity
	Carrier Maps
	Composition of Maps

	Tasks
	Example: Coordinated Attack
	Example: Consensus
	Example: Approximate Agreement

	Models of Computation
	The Protocol Graph
	The Alternating Message-Passing Model
	The Layered Message-Passing Model
	The Layered Read-Write Model

	Approximate Agreement
	Two-Process Task Solvability
	Chapter Notes
	Exercises

	Elements of Combinatorial Topology
	Basic Concepts
	Simplicial Complexes
	Abstract Simplicial Complexes and Simplicial Maps
	The Geometric View
	The Topological View

	Standard Constructions
	Star
	Link
	Join

	Carrier Maps
	Chromatic Complexes

	Connectivity
	Path Connectivity
	Simply Connected Spaces
	Higher-Dimensional Connectivity

	Subdivisions
	Stellar Subdivision
	Barycentric Subdivision
	Standard Chromatic Subdivision
	Subdivision Operators
	Mesh-Shrinking Subdivision Operators

	Simplicial and Continuous Approximations
	Chapter Notes
	Exercises

	II Colorless Tasks
	Colorless Wait-free Computation
	Operational Model
	Overview
	Processes
	Configurations and Executions
	Colorless Tasks
	Protocols for Colorless Tasks

	Combinatorial Model
	Colorless Tasks Revisited
	Examples of Colorless Tasks
	Protocols Revisited
	Protocol Composition
	Single-Layer Colorless Protocol Complexes
	Multi-Layer Protocol Complexes

	Wait-Free Colorless Immediate Snapshots
	Colorless Task Solvability
	Applications

	Chapter Notes
	Exercises

	Solvability of Colorless Tasks
	Overview
	t-Resilient Layered Snapshot Protocols
	Layered Snapshots with k-Set Agreement
	Adversaries
	Message-Passing Protocols
	Set Agreement
	Barycentric Agreement
	Solvability Condition

	Decidability
	Paths and Loops
	Loop Agreement
	Examples of Loop Agreement Tasks
	Decidability for Layered Snapshot Protocols
	Decidability with k-Set Agreement

	Chapter Notes
	Exercises

	Byzantine Colorless Computation
	Byzantine failures
	Byzantine Communication Abstractions
	Byzantine Set Agreement
	Byzantine Barycentric Agreement
	Byzantine Task Solvability
	Byzantine Shared Memory
	Chapter Notes
	Exercises

	Simulations and Reductions
	Motivation
	Combinatorial Setting
	Applications
	BG-Simulation
	Safe Agreement
	The Simulation

	Conclusions
	Chapter Notes
	Exercises

	III General Tasks
	Read-Write Model for General Tasks
	Overview
	Tasks
	Examples of Tasks
	Consensus
	Approximate Agreement
	Set Agreement
	Chromatic Agreement
	Weak Symmetry Breaking
	Renaming

	Protocols
	Single-Layer Immediate Snapshot Protocols
	Multi-Layer Protocols
	Protocol Composition

	Chapter Notes
	Exercises

	Manifold Protocols
	Manifold Protocols
	Subdivisions and Manifolds
	Composition of Manifold Protocols

	Layered Immediate Snapshot Protocols
	Properties of Single-Layer Protocol Complexes
	One-Layer Protocol Complexes are Manifolds

	No Set Agreement from Manifold Protocols
	Sperner's Lemma
	Application to Set Agreement

	Set Agreement vs Weak Symmetry-Breaking
	Comparing the Powers of Tasks
	Weak Symmetry-Breaking from Set Agreement
	Weak Symmetry-Breaking does not Implement Set Agreement

	Chapter Notes
	Exercises

	Connectivity
	Consensus and Path-Connectivity
	Immediate Snapshot Model and Connectivity
	Critical Configurations
	The Nerve Graph
	Reasoning about Layered Executions
	Application

	k-Set Agreement and (k-1)-Connectivity
	Immediate Snapshot Model and k-Connectivity
	The Nerve Lemma
	Reachable Complexes and Critical Configurations

	Chapter Notes
	Exercises

	General Wait-Free Computability
	Inherently Colored Tasks
	Hourglass task

	Solvability for Colored Tasks
	Algorithm Implies Map
	Map Implies Algorithm
	Basic Concepts from Point-Set Topology
	Geometric Complexes
	Colors and Covers
	Construction

	A Sufficient Topological Condition
	Chapter Notes
	Exercises

	IV Advanced Topics
	Renaming and Oriented Manifolds
	An Upper Bound: Renaming with 2n+1 Names
	An Existence Proof
	An Explicit Protocol

	Weak Symmetry-Breaking
	The Index Lemma
	Binary Colorings
	A Lower Bound for 2n-Renaming
	Chapter Notes
	Exercises

	Shellability and Task Solvability
	Shellability
	Basic Definitions and Facts

	Examples
	Pseudospheres
	Carrier Maps and Shellable Complexes
	Applications
	Asynchronous Message-Passing
	Synchronous Message-Passing
	Asynchronous Snapshot Memory
	Semi-Synchronous Message-Passing

	Chapter Notes
	Exercises

	Colored Simulations and Reductions
	Model
	Shared-Memory Models
	Trivial Reductions
	Layered Snapshot from Read-Write
	Immediate Snapshot from Snapshot
	Immediate Snapshot from Layered Immediate Snapshot
	Snapshot from Layered Snapshot
	Chapter Notes
	Exercises

	Classifying Loop Agreement Tasks
	The Fundamental Group
	Basic Definitions
	A Representation of the Fundamental Group Associated with a Spanning Tree.

	Algebraic Signatures
	Main Theorem
	Map Implies Protocol
	Protocol Implies Map

	Applications
	Torsion Classes
	Conclusions
	Chapter Notes
	Exercises

	Immediate Snapshot Subdivisions
	A glimpse of discrete geometry
	Polytopes
	Schlegel Diagrams
	Schlegel diagrams of cross-polytopes
	Extending Subdivisions of Simplices

	Chapter Notes
	Exercises

