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Preamble

Applied topology is a modern mathematical subject which appeared in
recent years as a concentration point for many methods, topological in
nature, which were used in a wide variety of applications, both within and
outside of classical mathematics. While displaying an amazing breadth,
these methods have at least one thing in common - the emphasis on the
computational aspect.

Clearly, whenever computations are involved, there arises the question
of their complexity. No application will be truly useful if it results in a
computationally intractable problem. Accordingly, the simplification of the
required computations takes the central stage. Whether within a topolog-
ical, combinatorial, or algebraic context, we need to be able both to define
single elementary simplifications, as well as to manage their sequences,
telling us for instance which sequence is permissible, and also what the
final result of applying a certain sequence of simplifications will be.

In topological context, the tool of choice for handling these considera-
tions came to be popularly known as discrete Morse theory, and this book
grew out of the author’s thoughts about the role discrete Morse theory
should play within the wider context of applied topology.

Although, some of the viewpoints, and even some of the results pre-
sented here are new, this is not a research manuscript. When writing this
book, we tried to produce a text, which would be useful for beginning
graduate, as well as advanced undergraduate students. Due to the big dif-
ferences in the master studies curricula in various educational systems, we
have tried to keep the presentation self-contained.

xi



xii Preamble

As a result, we have included a brief introduction to the basics of alge-
braic topology. So, while our target audience consists of graduate students
in applied topology, the book can also be used by anybody looking for a first
textbook treatment of homology. Furthermore, we intended the book to be
of interest to students and specialists in computer science and engineering,
who would like to learn about applications of topology to their fields, as
well as for research mathematicians interested in learning about the subject,
and applying it in their context.

During the work on this book the author was supported by University of
Bremen, Germany, as well as by Okinawa Institute of Science and Technol-
ogy, Japan. He expresses his deepest gratitude to both of these wonderful
institutions.

Herbert Edelsbrunner has been both an initiator and a strong supporter
of this undertaking. Without him this book would probably never have
been started.

Once it was, writing it was a long and excruciating process. During this
time, the author had a great benefit of experiencing a constant and friendly
encouragement of the AMS Editor Ina Mette. This support is recognized
and very much appreciated.

After a text reaches a certain size, it starts having a life of its own. It
is only with the help of careful proofreaders, that the author may proceed
beyond a certain point. Here, the author would especially like to mention
his graduate student Leonard Wienke, whose notational and typographic
suggestions have been most helpful.

Last, but not least, I would like to express my gratitude to my family,
to whom this book is dedicated. Without them the book would either have
been finished much sooner, or not finished at all.



Preface

The idea of homology

The main idea of algebraic topology is to try to use algebraic structures to
say something qualitative about topological spaces. Over time one developed
many such algebraic invariants. Perhaps the simplest one to define is the
so-called fundamental group of a space. Most probably the reader has seen its
definition in one form or another. Roughly speaking, one chooses a point in
the space and then defines some calculus using all possible loops anchored
at this point. A clear weakness of such an invariant is that it does not tell
us anything beyond the first few dimensions: taking any space and then
attaching balls of dimension 3 and higher to that space will not be detected
by the fundamental group at all. That in itself can be fixed by introducing
higher-dimensional homotopy groups. What is much worse, from the point
of view of applied topology, is that not only these invariants are hard to
compute, but the famous result of P.S. Novikov, [No55], actually tells us
that it is not decidable whether the fundamental group is trivial or not.

All these problems are solved, if one passes to the so-called homology
groups. These are defined in all dimensions, and, if the framework is right,
can be computed using linear algebra.

Before talking about invariants though, let us contemplate for a mo-
ment how topological spaces can be described. Many classic examples,
including curves, surfaces, or more generally manifolds, are given by their
defining equations in Euclidean spaces. While useful in many other fields
of mathematics, such as differential geometry, as well as in physics, this
will give us only a limited supply of spaces. Furthermore, the description

xiii
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using equations is indirect, making a constructive computation of algebraic
invariants rather daunting.

An alternative approach is combinatorial in nature. Instead of using
geometry as our guidance, we take some elementary building blocks, the
so-called simplices, and then glue them together to produce a topological
space, which we then call an abstract simplicial complex. This combinatorial
gluing scheme then takes the role of the space description, and the actual
topological space can be recovered from it, uniquely up to homeomorphism,
using the so-called geometric realization construction.

In the opposite direction, the bridge from the continuous to the discrete
is provided by the concept of triangulation. Although, there is a number
of underwater stones here, in essence well-behaved spaces can be triangu-
lated, so that an abstract simplicial complex can be produced. The main
problem is that a triangulation, as opposed to the geometric realization, is
in no way unique, and it is not feasible to define combinatorially a sensible
equivalence relation on the set of simplicial complexes such that any two
triangulations of the same topological space are equivalent. This conun-
drum can eventually be resolved, though not without using the technical
tool of simplicial approximation.

One way to bypass these difficulties altogether is to take the idea of
a combinatorial gluing scheme one step further, into the realm of abstract
algebra. The sets of simplices are replaced by vector spaces, or, more
generally, by free abelian groups, and the gluing information gets baked into
a linear map, the so-called boundary operator, leading to the concept of a chain
complex. The resulting inter-relations between topology, combinatorics, and
algebra are shown in Figure 0.1.

chain complexes

triangulations
combinatorial

cell complexes

Topology

Combinatorics

Algebra

Figure 0.1. Inter-relations between topology, combinatorics and algebra.
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The idea of discrete Morse theory

In general, given two topological spaces, it is hard to tell whether they are
homotopy equivalent. The intuitive picture of allowing stretchings of the
space results in the formal concept of a strong deformation retraction, and it is
possible to take it as a basis for an equivalence relation. Unfortunately, this
is rather impractical, and completely useless from the computational point
of view.

One is therefore sorely tempted to introduce such deformations in the
combinatorial context of simplicial complexes. This leads to the so-called
simplicial collapses, and their theory, known as simple homotopy theory, which
was ingeniously developed by J.H.C. Whitehead in the 30’s, [Co73, Wh50].
Unfortunately, (or perhaps fortunately), it turned out that even when two
topological spaces can be deformed to each other, in the desired way, the
corresponding combinatorial deformation may not exist. In fact, there
is a possible obstruction to the existence of such a deformation, the so-
called Whitehead torsion which can be found in the so-called Whitehead group
of the appropriate fundamental group. On one hand, this leads to an
interesting and subtle theory of combinatorial torsions. On the other, these
“difficulties” led to the fact that the combinatorial track of development in
topology was abandoned, to the advantage of the purely algebraic one.

In recent years, there arose many situations, where the revival of combi-
natorial thinking could be of use. Many topological spaces are constructed
not by starting from geometry, but rather directly as abstract simplicial
complexes. Oftentimes, these are artificial objects which are associated to
various situations in combinatorics, or other fields, constructed for the sole
purpose of using the power of topology, where there was no topology to
start with. One particular field, which has lately received a rather substan-
tial development boost, is applied topology. Here simplicial complexes play
an important role in many applied contexts, from data analysis to robotics.
Just as in the combinatorial context, there is a renewed and natural desire
to return to the theory of combinatorial deformations.

This is where discrete Morse theory comes in. This occurs on two levels.
First, we would like to go beyond the usual simplicial collapses, and to allow
the sort of deformations, which could be thought of as internal collapses.
These will still yield homotopy equivalences, but will no longer preserve
simplicial structure, producing more complicated gluing maps. Second,
once we resign ourselves to perform sequences of such deformations, it
is imperative to give conditions under which sequences are allowed, the
so-called acyclicity condition, as well as to learn to do good book-keeping for
collapsing sequences.
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Once these objectives are achieved, we will have on our hands a theory
which is very effective from the computational point of view. It can then be
combined in a mutually profitable way with other tools of applied topology
and combinatorics.

Field Deformation
Topology strong deformation retraction

Combinatorics simplicial collapse
Algebra change of basis

Table 0.1. The many faces of discrete Morse theory.

A sample application

To give an illustration of how discrete Morse theory works, let us consider
the simplicial complex in Figure 0.2.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

1

0 3

2

4

5

4

5

6

6

Figure 0.2. A triangulation of a pinched torus.

In this figure each set of vertices may span at most one simplex, so
simplices with the same sets of vertices are to be identified. It is easy to
see that we have a triangulation of a sphere with north and south poles
identified, producing vertex 6. Alternatively, this can be viewed as the so-
called pinched torus, obtained from a usual torus by shrinking an essential
circle to a point.

In discrete Morse theory, we want to consider a sort of a discrete flow,
illustrated in Figure 0.3 by adding a number of arrows. This family of arrows
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Figure 0.3. Acyclic simplex matching.

must satisfy an additional property - the acyclicity condition, which we will
define later.

Later in the book, we will see that a fruitful way to work with such
a discrete flow is to view it as a matching on the set of simplices, and to
define various notions in terms of emerging combinatorics.

For example, a careful reader will see that the only simplices which are
not matched in Figure 0.3 are the vertex 6, the edge 16 and the triangle 012.
Discrete Morse theory (or, more specifically, Theorem 11.2) will allow us
to immediately conclude that (the geometric realization of) our simplicial
complex is homotopy equivalent to another space which is obtained by
gluing a 2-disc onto a circle along some function on the boundary of that
2-disc.

This is of course, by itself, a great simplification of the initial space, and
this is precisely how discrete Morse theory is often used. Since there are
several functions along which the gluing may occur, there is more work
needed for the complete understanding of the space. Still, this can be
done by using a little more advanced topics of our theory, for example, by
studying the associated Morse chain complex, and coupling this with the
fact that the maps between circles are classified, up to homotopy, by their
winding numbers.

In the end one can conclude that the topological space associated to our
simplicial complex is homotopy equivalent to a circle and a 2-sphere, glued
together at a single point; the standard “name” of this space is S2 ∨ S1.
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How to use this book

When writing this book, we have envisioned a number of various uses. To
start with, it can certainly be adopted as a first text in algebraic topol-
ogy, specifically as an introduction to homology. That being said, the
author assumes the knowledge of fundamental groups, as would be the
case at the University of Bremen, where fundamental groups are included
in the undergraduate topology course. In a different system this has to
be adjusted by either adding a crash course on the fundamental group, or
skipping the topics which involve it. Parts 1 and 2 of this book may be taken
to form a backbone of such an introductory course in homology theory.
Another target audience for this book consists of those readers who are
interested in combinatorial topology, and specifically in the role played by
discrete Morse theory. Such a reader should concentrate on Part 3, where
the majority of examples are drawn from the vast pool of combinatorially
defined simplicial, but not only simplicial, complexes. Many results of com-
binatorial topology are recovered there from the point of view of discrete
Morse theory. The previous book by this author, [Ko08], may also be of
benefit as a reference material here.
Finally, the author would be honoured, if this text was found of interest by
the dynamic and fast-growing community in applied topology. Certainly,
a number of shortcuts can be done by an applied topologist interested only
in simplicial or cellular models. A different, more computational approach,
would essentially allow skipping part 2, and also some of the examples.
On the other hand, the algorithmic procedure from Chapter 12 for produc-
ing explicit homology generators from acyclic matchings would be of great
interest, as would be part 4, including the short Chapter 18 describing a
relation to persistent homology.

Here is the summary of the contents of the four parts.
Part 1: Introduction to homology. We adopt the simplicial approach and
gear the introduction towards advanced undergraduate or graduate stu-
dents in mathematics, looking for their first exposure to homology theory,
or computer science and engineering graduate students interested in appli-
cations of topology to their fields.
Part 2: More advanced topics in homology theory, including chain ho-
motopy, long exact sequences, singular homology and cellular homology.
While invaluable for anyone learning algebraic topology, it may be skipped
if applied topology is the primary focus.
Part 3: Basic discrete Morse theory. Graduate level introduction to the sub-
ject of discrete Morse theory. Formulation and proof of all the basic results
which have so far been most useful. The emphasis here is on the approach
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via simple homotopy theory, using collapses and acyclic matchings. In the
end a connection to the historical framework using discrete Morse functions
and discrete vector fields is made.
Part 4: Collection of topics from advanced discrete Morse theory. Algebraic
Morse theory and the change of bases. Discrete Morse theory via poset
maps with small fibers. Connections to persistent homology.

Prerequisites

As prerequisites, we expect that the reader is familiar with linear algebra,
group theory, and point-set topology. In particular, we expect the knowl-
edge of the quotient group and the classification theorem for the finitely
generated abelian groups. We do not require detailed knowledge of finite
fields, however we expect familiarity with the field with 2 elements, which
we denote Z2, and vector spaces over that field.

Beyond group theory, we assume that the reader is familiar with parts
of abstract algebra, including rings, modules, and tensor products, and that
he has basic knowledge of the concepts from category theory.

Finally, the knowledge of the fundamental group would come in handy
as the guiding principle for some of the intuition, that being said, it is not
a strict prerequisite for most of the book.

Guide to the literature

Discrete Morse theory was introduced by Robin Forman in his seminal
paper [Fo98]. Since then the subject has been treated in the textbook form
by Knudson, [Kn15], and more recently by Scoville, [Sc19]. There have
also been chapter-long treatments by Forman, [Fo02a], and by the author,
[Ko08, Chapter 11]. Our approach here is closest to the last reference.

Furthermore, a large number of research articles appeared related to
this subject. This book consists of 4 parts, and we have decided to provide
the reader with references and suggestions for further reading at the end of
parts 2, 3, and 4.
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Chapter 1

The First Steps

1.1. Dimension 0: Counting points using vector spaces and free
abelian groups

The simplest topological spaces imaginable are just collections of finitely
many points, equipped with the usual discrete topology. The only infor-
mation of interest would then be the number of points in such a space S.
As a foretaste of things to come, let us see how this information can be
extracted in an algebraic way.

Assume the space S has n points. We now describe how to retrieve n in
a way, which at a first glance would appear rather round-about, but which
illustrates what will be done in general. Let us consider a vector space over
the real numbers whose basis is indexed by the elements of S. We call it
V = R〈S〉, and we can formally think about points from S as the actual basis
vectors in V . Now, imagine that we do not know the set S; instead we are
given the vector space V without any specified basis. The question is: what
can we say about the set S?

Clearly, the vector space V will have plenty of bases, and we may not
find the one corresponding to S. On the other hand, a basic course in linear
algebra tells us that the dimension of V is well-defined, and of course it is
equal to |S|. So, while being unable to recover the set S itself, without further
information, we can easily recover the cardinality of S, as the dimension of
the vector space that was given to us. This situation is a precursor of
homology with coefficients in the field R.

As the next step, note, that we could have played the same trick taking
free abelian groups instead of the vector spaces. Indeed, given S, we can
consider the free abelian group Z〈S〉 generated by the elements of S. Recall,

3
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that by definition, the elements of Z〈S〉 are all possible linear combinations
c1α1 + · · · + ctαt, where c1, . . . , ct are integers and α1, . . . , αt are elements
of S, and the addition operation is the one you expect:

(c1α1 + · · ·+ ctαt) + (d1α1 + · · ·+ dtαt) = (c1 + d1)α1 + · · ·+ (ct + dt)αt.

Again, when we are given the abelian group Z〈S〉, but not told what the
set S is, we can still read off the cardinality of S from that group. This is
a corollary of the classification theorem of finitely generated abelian groups:
the group Z〈S〉 is free, and |S| is the dimension of that free part.

Finally, we could also consider the vector space Z2〈S〉 instead of R〈S〉.
Everything becomes even easier in this case, since that vector space has
finitely many points, namely 2|S| points, so it is very easy to read off the
number |S| from the vector space.

Can we allow the set S to be infinite? The answer is: yes, the cardinality
of S can still be determined directly from R〈S〉 or from Z2〈S〉. However,
the details are slightly more involved, and we skip them here, as we do
not want to get distracted by unnecessary deviations into the realm of set
theory.

It turns out that there is a wide-reaching generalization of this “count-
ing” method, and that we have just calculated our first instance of a homology
group! Indeed, the space R〈S〉 is called the 0th homology group of S with coef-
ficients in R, and it is denoted H0(S;R). Similarly, the space Z〈S〉 is called
the 0th homology group of S with coefficients in Z, or alternatively, with integer
coefficients, and it is denoted H0(S;Z). The group H0(S;Z2) is defined the
same way. Let us now see what happens for slightly less trivial spaces.

1.2. Dimension 1: Graphs

Let us now move one up in dimension and consider graphs, which are
topological spaces obtained by taking a set of vertices and then connecting
them by a number of edges. For a graph G, we write G = (V, E), where V
denotes the set of vertices of G, and E denotes the set of edges. In order to
keep things simple we assume that

• the vertices of the graph G are labeled v1, . . . , vn, with n > 1;
• G does not have edges glued on the same vertex with both ends

(the so-called loops) and, we also do not allow two edges to be glued
on the same set of two vertices (multiple edges);
• for each edge (vi, vj) ∈ E we require i < j.

The graphs without loops and without multiple edges are called simple
graphs. Also our default choice is to consider graphs with only finitely many
vertices and hence finitely many edges. We call these finite graphs.
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Figure 1.1. Three ways to draw the Petersen graph.

At times, graphs can confront us with surprisingly complicated prob-
lems. For example, it is hard to tell whether two graphs are isomorphic:
the so-called Graph Isomorphism Problem, see [KST]. Figure 1.1 illustrates
this fact by showing three visually rather different ways to draw the same
graph. The so-called Petersen graph, whose vertices can be indexed by all
2-element subsets of a 5-element set, and edges connect disjoint subsets.

The question of main interest in our present context is: what topological
features of G can we “count”, in analogy with what we did with the set S?

1.2.1. Counting connected components of a simple graph. Clearly, the
first thing that we can count is the number of connected components of G.
Here is how it can be done algebraically. Consider the vector space R〈V〉,
with the chosen basis v1, . . . , vn. The basis vectors are in bijection with the
vertices ofG, and we use the same notation. For reasons, which will become
clear shortly, a consistent notation for that space will be C0(G;R), and the
consistent name for this space will be the space of 0-dimensional chains of G
with coefficients in R.

Let us define an equivalence relation on the set of vertices of G by
saying that two vertices connected by an edge are equivalent. In other words,
for any two vertices vi, vj ∈ V , which are connected by an edge in G, that is
(vi, vj) ∈ E, we want to have an algebraic way of saying “set the vertex vi
equal to the vertex vj”. The standard way to do that is to consider vj−vi = 0
as a relation, or, equivalently, consider a relator vj−vi. Formally, letU be the
subspace of C0(G;R) spanned by all such relators, corresponding to edges
in E, and then consider the quotient vector space C0(G;R)/U. This quotient
is again a homology group! It is denoted by H0(G;R), and it is called, just
as above, 0th homology group of G with coefficients inR. We can formalize our
verbal definition by writing

(1.1) H0(G;R) := R
〈
V | vj − vi, for all (vi, vj) ∈ E

〉
.

Let us make precise our choice of notations. Let R be some ring, let S be
some set, and let T be some subset of R 〈S〉. We write R 〈S | T〉 to denote the
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quotient R 〈S〉 / R 〈T〉. Here S is the set of generators, and T can be thought
of as a set of relations. Taking the quotient is the algebraic way to say that
we set certain expressions in R 〈S〉 to be equal to 0. When R is a field, the
quotient R 〈S〉 / R 〈T〉 is a vector space over R. When R = Z, the quotient
R 〈S〉 / R 〈T〉 is an abelian group. Typically, it will not be free.

In general, the vector subspaceU, defined above, is denoted byB0(G;R),
and is called the space of 0-dimensional boundaries of G with coefficients in R.
We leave it as an exercise, see Exercise (2a), to show that the dimension of
the vector space H0(G;R) is equal to the number of connected components
of G. This number is also called the 0th Betti number of G, and it is denoted
by β0(G).

Switching fromR toZ2, the vector spaceZ2〈V〉 is denoted byC0(G;Z2)
and everything can be done in much the same way. We let the sums v +w
(which overZ2 is the same as v−w) span a vector subspaceU of C0(G;Z2),
and let the quotientC0(G;Z2)/U be denotedH0(G;Z2), which is then called
the 0th homology group of G with coefficients inZ2. In fact, taking an arbitrary
field k we can define

H0(G; k) := k
〈
V | vj − vi, for all (vi, vj) ∈ E

〉
.

Again, we leave it as an exercise, see Exercise (2b), to show that

dimH0(G; k) = β0(G),

which does not depend on the choice of the field k.
Let us now go through the above procedure again, this time replacing

the vector space R〈V〉 with the free abelian group Z〈V〉, which we denote
C0(G;Z). We can again form a subgroup H generated by all the differences
vj − vi, whenever (vi, vj) ∈ E. As above, consider the quotient C0(G;Z)/H:

(1.2) H0(G;Z) := Z
〈
V | vj − vi, for all (vi, vj) ∈ E

〉
.

Remember, that in principle, a quotient of free abelian groups does not have
to be free (though it certainly has to be abelian). Fortunately, nothing of the
sort happens on the right hand side of Equation (1.2). Exercise (2c) asks the
reader to show that H0(G;Z) is free abelian, and that its dimension is equal
to the Betti number β0(G).

Remark 1.1. When the graph G is not simple, everything can be done in
almost the same way. Indeed, the spaceC0(G;R) is just the same. The loops
will have no influence, since a loop based at a vertex vi will simply give
the relation vi − vi = 0, or, equivalently will ask the vertex to be equivalent
to itself. The multiple edges will also not change anything since repeating
edges will just repeat the relations vj − vi = 0, which are there anyway. In
other words, we can simply adopt Equation (1.1) directly.
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1.2.2. Counting 1-dimensional holes in simple graphs. We now would
like to understand what is going on in the context above in dimension 1.
If the finite graph G is planar, that is, there is a way to draw it in the plane
without self-intersections, then it will divide the plane into regions, with
exactly one infinitely large region, surrounding the graph. We could then
count the number of bounded regions, and say that their number is the
number of “1-dimensional holes” in the graph G. That would actually be
fine, and we could let the 1st Betti number β1(G) denote that number. There
is still an issue though with the question whether or not this number will
depend on the actual way we drew the graph, but that can be settled by
a simple induction argument. In fact, it is not difficult to show, for example
using induction on |V | + |E|, that we will have β1(G) = |E| − |V | + β0(G), for
all planar graphs G, even the non-simple ones.

A much bigger problem is that not all graphs are planar; in fact, most of
them are not. If the graph is not planar, it can actually be rather confusing
to talk about the number of 1-dimensional holes, or even to try to say what
such a hole would actually be. In fact, it might be the sort of “intuition”,
which can make the understanding of what is going on harder, not easier.
For example, how many holes should the complete graph on 5 vertices K5
have? We want to say that “K5 has 6 holes”, but how can we formalize, or
even visualize that?

Figure 1.2. The graph K5 without an edge has 5 holes, adding one more
edge should create the 6th one.

We shall not talk about 1-dimensional holes of a graph for a simple
reason: we do not know what it means. Instead, to draw analogy to the
previous section, we can learn how to add cycles and then measure the
dimensions of the obtained groups.

Let us now describe the formal framework. Recall, that the vertices
of the simple graph G are labeled by v1, . . . , vn. In complete analogy to
the 0-dimensional case, let C1(G;R) denote the vector space R〈E〉, whose
basis is indexed by the edges of E. In other words, for 1 6 i < j 6 n,
such that (vi, vj) ∈ E, we let eij denote the corresponding basis vector; for
convenience, we shall also set eji := −eij, for all 1 6 j < i 6 n, and set
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eii := 0, for all 1 6 i 6 n. By construction, a vector c ∈ C1(G;R) is a linear
combination

∑
i<j,(vi,vj)∈E αijeij, where αij ∈ R, for all i < j, (vi, vj) ∈ E.

We shall say that c is a cycle if for every 1 6 k 6 n we have

(1.3) α1k + α2k + · · ·+ αk−1,k + αk+1,k + · · ·+ αnk = 0,

where we use the handy notation αji := −αij, for i < j. One can see that the
“old-fashioned” graph cycles are reflected in this construction as follows:
a cycle vw1 , vw2 , . . . , vwt corresponds to the vector

ew1w2 + ew2w3 + · · ·+ ewt−1wt + ewtw1 .

One can furthermore see that all cycles actually form a vector subspace.
This can be either seen via an ad hoc computation, or, more structurally, by
viewing it as the kernel of a certain linear map, see the next subsection. We
denote this vector space by Z1(G;R) and call it the group of 1-cycles of G with
real coefficients. We shall also denote the same space H1(G;R), and call it the
first homology group of G with real coefficients. For higher dimensional spaces,
these two groups do not have to coincide, but for graphs they do. We set
the first Betti number β1(G) to be the dimension dimH1(G;R).

As an example, letG be the complete graph on 3 vertices: V = {v1, v2, v3}

and E = {(v1, v2), (v1, v3), (v2, v3)}. A cycle is a linear combination α12e12 +
α13e13 + α23e23 satisfying 

α12 + α13 = 0

α12 − α23 = 0

α13 + α23 = 0

The solutions to this system form a line in R3 generated by the vector
(1,−1, 1), where the ordered basis is taken to be {e12, e13, e23}. So as the
homology group we get H1(G;R) = R〈(1,−1, 1)〉 ≈ R. It makes sense to
think about e12 − e13 + e23 as a generating cycle.

The reader who is familiar with the fundamental group will appreciate
how much easier it is to compute the first homology group of this graph
as opposed to the fundamental group of the circle. On the other hand, it
is not apriori clear, although true and easy to see in this particular case,
that different graph representations of the same topological space will yield
isomorphic homology groups. In general, this is known as the question of
invariance under the simplicial subdivision.

1.2.3. The boundary operator. It is useful to view what we did so far
through the lens of a certain linear map

(1.4) ∂1 : C1(G;R) −→ C0(G;R),
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with which we now proceed. Define the linear map ∂1 by setting

(1.5) ∂1(eij) := vj − vi, for all 1 6 i < j 6 n,

on the basis vectors, and then extending this linearly. This map is called
the boundary operator. We leave it as Exercise (3) to show that B0(G;R) is the
image of ∂1, and Z1(G;R) is the kernel of this map. This yields alternative
definitions of both of these groups.

The whole context can be replicated nearly verbatim, with the real
coefficients replaced by integers. The kernel of the group homomorphism
∂1 : C1(G;Z) −→ C0(G;Z)must itself be a free abelian group, and is denoted
by H1(G;Z).

We can also use Z2-coefficients instead. The kernel of the linear map
∂1 : C1(G;Z2) −→ C0(G;Z2) is clearly a vector space over Z2, it is denoted
by H1(G;Z2). In fact, the case of Z2-coefficients is in some sense easier to
deal with. In this situation, the elements of C1(G;Z2) simply correspond to
graphs on n vertices. Such a graph corresponds to a cycle if and only if, the
valencies1 of all vertices are even. The reader is invited to see how adding
such graphs with Z2-arithmetic works in practice.

We remark that the identity

(1.6) β1(G) − β0(G) = |E|− |V |

holds for all finite graphs G, not just for the planar ones. Indeed, we have

(1.7) |E| = dimC1(G;R) = dim Ker∂1 + dim(C1(G;R)/Ker∂1),

(1.8) |V | = dimC0(G;R) = dim Im∂1 + dim(C0(G;R)/Im∂1),

and clearly
dim(C1(G;R)/Ker∂1) = dim Im∂1,

since ∂1 : C1(G;R)/Ker∂1 → Im∂1 is an isomorphism of vector spaces. We
then obtain Equation (1.6) by subtracting Equation (1.8) from Equation (1.7)
and recalling that dim Ker∂1 = β1(G), and dim(C0(G;R)/Im∂1) = β0(G).

1.2.4. Non-simple graphs. Again, passing on to non-simple graphs will
not present much difficulty. When G is non-simple, the edges are no longer
uniquely determined by their vertices. Instead, we have a set E of edges
and two functions

∂◦, ∂◦ : E→ V,

where ∂◦(e) is the initial vertex of e, and ∂◦(e) is the terminal one. If
∂◦(e) = vi and ∂◦(e) = vj, we require i 6 j. For loops we will have ∂◦(e) =
∂◦(e), and for multiple edges e1 and e2, we will have ∂◦(e1) = ∂◦(e2) and
∂◦(e1) = ∂◦(e2). The vector spaces C1(G;R) and C0(G;R) are defined in the

1Recall that valency of a vertex is also alternatively called degree of a vertex.



10 1. The First Steps

same way as for the simple graphs, and we define the boundary operator
∂1 : C1(G;R)→ C0(G;R), by setting

∂1(e) := ∂◦(e) − ∂
◦(e), for all e ∈ E.

Then we set H1(G;R) := Ker∂1. Of course, when G is simple, this coincides
with our previous definition.

1.2.5. Infinite graphs. When we have a graph G = (V, E) where V or E can
be infinite, everything is still the same except for one point where one has to
be somewhat careful. For this, recall that elements of a vector space are finite
linear combinations of basis vectors, even when the basis itself is allowed
to be infinite. Similarly, an element of a free abelian group generated by
a set X is a finite linear combination of the generators.

Keeping this important technical detail in mind, we can still define
the boundary operator ∂1 by taking the linear extension of Equation (1.5).
Once we have the boundary operator, we simply setH1(G;R) := Ker∂1 and
H0(G;R) := C0(G;R)/Im ∂1, just as before. This will extend the definition
of homology to infinite graphs. In particular, the cycles will be finite linear
combinations of edges satisfying the sum is 0 at each vertex condition, cf.
Equation (1.3).

As an example consider the infinite graph G = (V, E) given by the
following:

V := {vm |m ∈ Z} , E := {(vm, vm+1) |m ∈ Z} .

Clearly, there is no finite linear combination of edges having boundary 0,
so H1(G;R) = 0. However, there exists an infinite linear combination of
edges having boundary 0, namely take the sum of all edges

∑
m em,m+1.

Following up on this innocent looking example will eventually lead to
Borel-Moore homology, see [BM60, Br97].

1.3. Dimension 2: Loosing the freedom

1.3.1. Simplicial complexes of dimension 2. To proceed with dimension 2
we need a slightly more formal definition than the one we have had for
graphs. The 2-dimensional simplicial complexes can be obtained from sim-
ple graphs by filling out some of the triangles. In order to keep technicalities
as simple as possible, we restrict our framework a little bit further by con-
sidering the so-called plain complexes.

Definition 1.2. A plain 2-dimensional simplicial complex K consists of a finite
simple graph G = (V, E), together with a set of triangles T , where

(1) each triangle is a triple (vi, vj, vk), for some vi, vj, vk ∈ V , such that
i < j < k;
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(2) if (vi, vj, vk) ∈ T , then all the 3 tuples (one should think of them as
edges) (vi, vj), (vi, vk), and (vj, vk), must also lie in E;

(3) all triples in T are distinct.

We shall set K(0) := V , K(1) := E, and K(2) := T .

1.3.2. Homology groups in dimensions 0 and 2. Let us set

C0(K;R) := R〈V〉 , C1(K;R) := R〈E〉 , and C2(K;R) := R〈T〉 .

The 0th homology group H0(K;R) is the same as H0(G;R); to define it, we
simply ignore that we have added triangles.

Let us describe the second homology group H2(K;R). First, for all 1 6
i < j < k 6 n, such that (vi, vj, vk) ∈ T , we let tijk denote the corresponding
generator of C2(K;R). For convenience, we set

tjki :=tkij := tijk, and

tjik :=tikj := tkji := −tijk.
(1.9)

An easy way to remember this sign rule is to say that each time some two
neighboring indices are swapped, the generator changes its sign.

A 2-chain is an expression of the type
∑
i,j,k αijktijk, where αijk ∈ R,

and the summation is taken over all triples (i, j, k), such that i < j < k, and
(vi, vj, vk) ∈ T . We say that a 2-chain is a 2-cycle if for any (vi, vj) ∈ E we
have

(1.10)
∑
k,i,j

αijk = 0,

where, in analogy to Equations (1.3) and (1.9) we use the notation αjki :=
αkij := αijk and αjik := αikj := αkji := −αijk. Note, that over Z2, Equa-
tion (1.10) just says that we have selected a set of triangles such that each
edge belongs to an even number of these triangles.

Now the groups Z2(K;R) andH2(K;R) are both set to be the group of all
2-cycles. Again, one can show, that the latter is actually a vector subspace.
This can be done either by an ad hoc computation, or by viewing it as the
kernel of the linear map defined in the next subsection.

Completely analogously, one can define H2(K;Z) and H2(K;Z2). In
Exercise (4) the reader is asked to show that H2(K;Z) is a free abelian
group.

1.3.3. Homology group in dimension 1. To start with, the group of 1-cycles
Z1(K;R) is the same as H1(G;R). As the second ingredient for defining the
first homology group, for each i < j < k such that (vi, vj, vk) ∈ T we want to
introduce a relation

eij + ejk = eik.
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The way to do it is to span the subspace, which we call B1(K;R), by all the
elements eij − eik + ejk, for i < j < k, (vi, vj, vk) ∈ T ; note that each such
element can alternatively be written in the cyclic fashion as eij + ejk + eki.
Then take the quotient Z1(K;R)/B1(K;R). The quotient is well-defined,
since any element eij− eik+ ejk is obviously a cycle. Taking this quotient is
an algebraic way of saying that we allow the cycles to be deformed across
triangles, thus modeling the continuous notion of homotopy. Per definition,
we now set H1(K;R) := Z1(K;R)/B1(K;R).

Again, it is rather useful to phrase everything we are doing using linear
maps, the so-called boundary operators. In fact, here we have two such
maps: one map in dimension 1

∂1 : C1(K;R) −→ C0(K;R),

defined by ∂1(eij) = vj − vi, for all i < j; and one map in dimension 2

∂2 : C2(K;R) −→ C1(K;R),

defined by ∂1(tijk) = eij − eik + ejk, for all i < j < k. We can then set

Z1(K;R) := Ker∂1, Z2(K;R) := Ker∂2,

B0(K;R) := Im∂1, and B1(K;R) := Im∂2.

To make notations uniform, we furthermore set

Z0(K;R) := C0(K;R), and B2(K;R) := 0.

Then we can summarize what we have defined so far as:

H0(K;R) = Z0(K;R)/B0(K;R),

H1(K;R) = Z1(K;R)/B1(K;R),

H2(K;R) = Z2(K;R)/B2(K;R).
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Figure 1.3. Simplicial complex Xwith torsion in H1(X;Z). This is a trian-
gulation of the real projective plane.
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Let us now see what happens here when we use integer coefficients
instead. Clearly, Z1(K;Z) is a free abelian group, since it is the kernel
of a group homomorphism from a free abelian group, and B1(K,Z) is a
free abelian group, since it is the image of a group homomorphism into a
free abelian group. However, as we mentioned before, when one takes a
quotient of two free abelian groups, it can happen that the quotient is not
free. We have said it already, but here it is the first time that we have the
situation where this actually might happen. In this case, one speaks of the
existence of torsion in the corresponding homology group. For torsion to
occur, we need to have a 1-cycle c which is not a 1-boundary, but for which
there exists a positive integer m such that m · c is a 1-boundary. Figure 1.3
shows an example of such a situation.

Exercises

(1) The maximal connected subgraphs of G are called the connected com-
ponents. Show by elementary methods that for any graph G without
self-crossings on the 2-dimensional sphere we have the formula

v+ r = e+ c+ 1,

where v is the number of vertices, e is the number of edges, c is the
number of connected components of G, and r is the number of regions
into which the sphere is divided by our graph.

(2) Let G be a finite simple graph. Let c denote the number of connected
components of G.
(a) Show that H0(G;R) ≈ Rc.
(b) Show that H0(G; k) ≈ kc, where k is an arbitrary field.
(c) Show that H0(G;Z) is a free abelian group and that furthermore

we have an isomorphism H0(G;Z) ≈ Zc.
(3) Let G be a finite simple graph. Show that B0(G;R) is the image of

∂1, and that Z1(G;R) is the kernel of the boundary map defined by
Equation (1.5).

(4) Assume K is a plain 2-dimensional simplicial complex. Show that
H2(K;Z) is a free abelian group.

(5) Construct a plain connected2 2-dimensional simplicial complex K such
that
(a) H1(K;Z) ≈ Z⊕Z2;
(b) H1(K;Z) ≈ Z3.

2Such a complex is called connected if the underlying edge graph is connected.
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(6) If you are familiar with the concept of simplicial subdivision, construct
a plain 2-dimensional simplicial complex K such that its second homol-
ogy group is non-trivial, i.e., H2(K;R) , 0, yet it does not contain a
simplicial subdivision of a 2-dimensional sphere. What is the minimal
number of triangles that one needs?



Chapter 2

Simplicial Homology

In the previous chapter we have gotten a low-dimensional glimpse of the
general idea of how we are going to tie algebraic structures to combinatori-
ally defined topological spaces. Let us now set up the formal framework.

There are many different homology theories defined for various sets of
mathematical objects. We do not make any attempt to reach the highest
possible generality. On the contrary, we start in the elementary setting
of plain simplicial complexes and go for the direct hands-on definition of
their homology groups. We can then compute homology groups of sample
spaces and spend some time contemplating the general properties.

Once we feel comfortable in this restricted setting, we shall proceed to
expand the universe of objects which we consider, and to gradually deal
with the additional complications as they arise.

The general intuitive idea of homology would be to use algebraic struc-
tures for encoding certain numbers. However, we shall see that the actual
situation will turn out to be quite a bit more complicated.

2.1. Plain simplicial complexes

As mentioned above, while defining homology we start by looking at the
simplest possible case: the so-called plain simplicial complexes. Though
stripped down to bare necessities, these will already be sufficient to give
us the first taste and to demonstrate most of the interesting features of
simplicial homology.

2.1.1. Simplices and complexes. When working in the simplicial context,
we like to start counting from 0. The reasons for this will become apparent

15
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as we move along. Accordingly, we introduce the following handy notation:
for all integers t, such that t > 0, we set [t] := {0, 1, . . . , t}.

Definition 2.1. Assume we are given an integer t > 0, and let K be some
collection of subsets of [t]. Then K is called a plain simplicial complex1 if the
following two conditions are satisfied:

(1) for each x ∈ [t], we have {x} ∈ K;
(2) if K contains a subset σ, then it also contains all the subsets of σ.

0-simplex

1-simplex

2-simplex

3-simplex

Figure 2.1. Geometric intuition behind simplices.

Elements of K are called simplices.
The dimension of such a simplex is one less than its cardinality, so the

minimal possible dimension of a non-empty simplex is 0, and the maximal
possible dimension is t. This number is used so frequently, that we want to
have a separate notation for it: for σ ∈ K, we set dim(σ) := |σ|− 1.

We call a simplex of dimension n simply an n-simplex. The set of n-
simplices of a plain simplicial complex K is denoted by K(n). For reasons
which will become apparent later, it is handy to consider the empty set to
be the unique (−1)-simplex of K. Furthermore, it is practical to have K(n)

1An alternative ‘full’ name for such an object is ‘standard finite abstract simplicial complex’.
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defined for all integers n, so we agree on the convention that K(n) is the
empty set, unless −1 6 n 6 t.

Following that terminology, the one-element sets contained in K are the
0-simplices, and they are also called vertices. The 1-simplices are also called
edges, though this is a bit less frequent.

Let dim(K) denote the maximal dimension achieved by a simplex in K,
in other words, we set

dim(K) := max
σ∈K

dim(σ).

This number is well-defined as we do not allow K to be empty, so it must
contain some simplices. We call this number the dimension of K. Of course,
we have 0 6 dimK 6 t.

Figure 2.2. A visualization of the 4-simplex. Reader familiar with convex
geometry will recognize the Schlegel diagram of the corresponding poly-
tope.

An n-simplex has n + 1 vertices, these vertices can be re-indexed by
the set [n], and there is a unique such re-indexing which also preserves
the natural order of the vertices. We shall think about an n-simplex σ as
an ordered sequence (v0, . . . , vn) of elements of [t]. Such a sequence is also
called an [n]-tuple, or, if only the number of the elements is to be emphasized,
a (n+1)-tuple. The elements of this ordered sequence are called vertices of σ.
Because subsets of simplices are simplices again, vertices of any simplex
are also vertices of the underlying simplicial complex.

Given an [n]-tuple (v0, . . . , vn), and any index 0 6 i 6 n, it is customary
to write (v0, . . . , v̂i, . . . , vn) to denote the tuple obtained by omitting the
vertex vi. Even though the notation may suggest otherwise, we make no
assumption here that i , 0, or that i , n. On the contrary, deleting the first
or the last vertex is allowed, and we get (v0, . . . , v̂i, . . . , vn) = (v1, . . . , vn), for
i = 0, and (v0, . . . , v̂i, . . . , vn) = (v0, . . . , vn−1), for i = n. This notation can
easily be extended to cover the case when we omit more than one vertex,
so, for instance, we can write (n − 1)-tuples like (v0, . . . , v̂i, . . . , v̂j, . . . , vn),
where i < j. Furthermore, when n = 0, we shall mostly drop the round
brackets and write, for instance, v0 instead of (v0).

It can be handy to describe the plain simplicial complex K by giving a
list of the maximal sets which it contains. For brevity, we often skip commas
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0 3

4 5
2

1

Figure 2.3. The plain simplicial complex X.

and curly brackets from the set notation, especially when dealing with sets
of sets, so that {0, 1, 2} becomes 012. For example, assume t = 5, and consider
the simplicial complex X whose set of maximal simplices is {012, 13, 23, 45}.
This simplicial complex has 6 vertices, 6 edges and 1 simplex of dimension 2.
We also have dimX = 2. There is a geometric way of thinking about X,
shown in Figure 2.3; more on this will be said in Section 2.4.

2.1.2. Chain groups. Let us fix some dimension n. What we want is to set
up a framework in which we can add and subtract simplices of that dimen-
sion. If we allow these operations, then we also need to allow multiplying
simplices by integers, since multiplying by a positive integer is a result of
repeated addition of the simplex to itself, while multiplying by a negative
integer is a result of repeated subtraction of that simplex. In fact, we need
to allow all possible linear combinations c1α1 + · · ·+ ctαt, where c1, . . . , ct
are integers and α1, . . . , αt are elements of K(n). On the other hand, adding
and subtracting such linear combinations from each other does not give
anything new anymore: we simply get some other linear combinations of
this type.
Traditionally, such linear combinations are calledn-chains, or simply chains.
In fact, the set of all n-chains forms an abelian group under addition. More
specifically, we arrive at a standard construction in algebra, which is called
the free abelian group generated by K(n). We give a formal summary in the
following definition.

Definition 2.2. Assume K is a plain simplicial complex, and let n be an ar-
bitrary integer.

• A linear combination c1α1+ · · ·+ctαt, where c1, . . . , ct are integers
and α1, . . . , αt are elements of K(n) is called an n-chain of K.
• The free abelian group generated by K(n) is called the nth chain

group of K.2 It will be denoted Cn(K;Z), or simply Cn(K).

2Actually the full name would be the nth chain group with integer coefficients.
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(0) + (4) ∈ C0(X)
(12) − 3 · (45) ∈ C1(X)

−7 · (012) ∈ C2(X)
Table 2.1. Examples of chains of the sample complex X.

To distinguish between the actual subsets of [t] and the correspond-
ing generators of the chain groups, we shall use round brackets. So the
generator corresponding to the set {0, 1, 2} = 012 will be denoted by (012).

Recall that the empty set is not a group, since any group must contain
the neutral element. Instead, the free abelian group generated by the empty
set is the so-called trivial group, that is, a group which consists only of the
neutral element. When no confusion arises, we shall denote both the group
and the neutral element by 0. For any integer n outside of the interval
[−1,dimK], we have seen that K(n) was an empty set. Accordingly, for
these values of n we get Cn(K) = 0.

The question remains as to what to do about C−1(K). There are two
valid options: either we set C−1(K) := 0, or, following the logic above, we
let it be the free abelian group generated by the unique (−1)-simplex, in
which case it would be isomorphic to Z. For now, we go with the first
option, and set C−1(K) := 0, while noting that the alternative choice will
later lead to the notion of reduced homology.

For the sample complex X in Figure 2.3 we get C0(X) ≈ Z6, C1(X) ≈ Z6,
C2(X) ≈ Z, and all other chain groups are trivial.

2.2. The boundary operator

Our next goal is to produce an algebraic framework associated to plain
simplicial complexes. This framework will consist of free abelian groups
and maps between them. To do this, we shall now connect the chain groups
using a family of special group homomorphisms.

2.2.1. Cycles and boundaries. Recall, that if G and H are two abelian
groups, and G is generated by some set S, then we can uniquely specify
a group homomorphism ϕ from G to H by fixing the values of ϕ on the
elements of S. Usually, not every choice of values is allowed, but if G is the
free abelian group generated by S, andH is abelian, then there are no restric-
tions. This is because the only possible restriction would be to require that
any relation satisfied by elements of S within G needs also to be satisfied
by their images under ϕ within the group H. However, since G is gener-
ated freely, there would be no such relations, except for the commutators.
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This observation can be applied in our situation, where we define a group
homomorphism from Cn(K) to Cn−1(K) by simply specifying its values on
simplices.

Definition 2.3. Let K be a plain simplicial complex. For all integersn, n > 1,
we define a boundary operator

∂n : Cn(K) −→ Cn−1(K)

as follows: for any simplex α ∈ K(n), say α = (v0, . . . , vn), where v0 < · · · <
vn, we set

(2.1) ∂nα :=

n∑
i=0

(−1)i (v0, . . . , v̂i, . . . , vn) ,

and then extend the definition to the whole chain group Cn(K) by means
of linearity.

When n 6 0 or n > dimK+ 1 we simply set ∂n to be the 0-map.

The chain ∂nα is then called the boundary of α. We have

∂0(v0) = 0, ∂1(v0, v1) = v1 − v0,

∂2(v0, v1, v2) = (v1, v2) − (v0, v2) + (v0, v1),

∂3(v0, v1, v2, v3) = (v1, v2, v3) − (v0, v2, v3) + (v0, v1, v3) − (v0, v1, v2),

and so on. When we need to state things more precisely we shall also
write ∂Kn .

Definition 2.4. Thenth cycle group of a plain simplicial complex K is defined
to be the kernel of the boundary operator ∂n : Cn(K) → Cn−1(K). This is
a free abelian subgroup of Cn(K), and we denote it by Zn(K).

The elements of Zn(K) are called n-cycles or simply cycles.

Definition 2.5. The nth boundary group of a plain simplicial complex K is
the image of the boundary operator ∂n+1 : Cn+1(K)→ Cn(K). This is a free
abelian subgroup of Cn(K), and it is denoted by Bn(K).

The elements of Bn(K) are called n-boundaries or simply boundaries.

2.2.2. Boundary of a boundary. The crucial fact about the boundary oper-
ator is that its second iteration will always be 0. This follows from the next
proposition.

Proposition 2.6. The boundary of any simplex is itself a cycle. Another way to
say the same thing is: taking the boundary of the boundary of a simplex yields 0.
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Proof. The proposition can be shown by the following direct calculation of
taking the boundary twice:

∂n−1(∂n(v0, . . . , vn)) = ∂n−1

( n∑
i=0

(−1)i (v0, . . . , v̂i, . . . , vn)
)

=

n∑
i=0

(−1)i∂n−1 (v0, . . . , v̂i, . . . , vn)

=

n∑
i=0

(−1)i
( i−1∑
j=0

(−1)j
(
v0, . . . , v̂j, . . . , v̂i, . . . , vn

)
+

n∑
j=i+1

(−1)j−1
(
v0, . . . , v̂i, . . . , v̂j, . . . , vn

) )
=
∑

06k<l6n

(
(−1)k+l + (−1)k+l−1

)
(v0, . . . , v̂k, . . . , v̂l, . . . , vn)

= 0.

(−1)k

(−1)l(−1)k

(−1)l−1

(v0, . . . , vn)

v̂lv̂k

v̂k, . . . , v̂l

Figure 2.4. Cancelling terms when k < l.

A verbal summary might be instructive. It is clear even before calculating
∂n−1(∂n(v0, . . . , vn)) that the result will be a linear combination of (n − 2)-
simplices obtained from (v0, . . . , vn) by deleting two vertices. Surely, to
show that this linear combination is equal to 0 all we need to do is to choose
arbitrary indices 0 6 k < l 6 n, and then show that the coefficient of the
term (v0, . . . , v̂k, . . . , v̂l, . . . , vn) is equal to 0. The crucial observation now is
that this term will appear exactly twice in the double boundary calculation:
once when we first delete vk, and then delete vl, and once, when we first
delete vl, and then delete vk. These two will each contribute a coefficient
from the set {1,−1}, and these coefficients will have opposite signs, see
Figure 2.4. �

Since n-chains are finite linear combinations of n-simplices, Proposition 2.6
actually implies that the boundary of any chain is a cycle. Here are some
equivalent ways to express that relation:
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• in the set-theoretic language: Bn(K) is contained inZn(K), for alln;
• in the functorial language: ∂n−1 ◦ ∂n = 0, for all n.

The equality ∂n−1 ◦ ∂n = 0 is often simplified to ∂2 = 0, and one says that
the square of the boundary operator is zero.

2.2.3. An example. Let us see what all these maps and groups are in our
sample complex X. To start with, we see that all the groups Zn(X), Bn(X),
and Cn(X), are trivial, whenever n , 0, 1, 2.
Let now n = 0. Since ∂0 = 0, we have Z0(X) = C0(X) ≈ Z6. To compute
B0(X) we need to understand the boundary operator ∂1 : C1(X) → C0(X).
Since ∂1(i, j) = j− i, whenever (i, j) is an edge of K, we have

Im∂1 = 〈(1) − (0), (2) − (0), (2) − (1), (3) − (1), (3) − (2), (5) − (4)〉 ,

where we note that we use the short-hand notation 〈〉 or 〈 | 〉 to denote
a group presentation when using integer coefficients.

These generators are dependent. For example, we have ((2) − (1)) +

((1) − (0)) = (2) − (0), so any of these three generators can be expressed
using the other two. We can thus just drop one of them. It is by no means
predetermined which one we should drop and there are usually many
choices which we need to make. We choose to drop (2) − (1) and (3) − (2),
both of which can be expressed through the remaining four generators. On
the other hand, the four generators which are left are clearly independent
and generate the free abelian subgroup

B0(X) = Im∂1 = 〈(1) − (0), (2) − (0), (3) − (1), (5) − (4)〉 ≈ Z4.

Let n = 1. One can see that Ker∂1 is freely generated by (01) + (12) − (02)

and (12) + (23) − (13), so

Z1(X) = Ker∂1 = 〈(01) + (12) − (02), (12) + (23) − (13)〉 ≈ Z2.

The boundary operator ∂2 : C2(X)→ C1(X) takes (012) to (12) − (02) + (01).

Cn(X) Zn(X) Bn(X)

n = 0 Z6 Z6 Z4

n = 1 Z6 Z2 Z

n = 2 Z 0 0

Table 2.2. Chain, cycle, and boundary groups of X.

We conclude that

B1(X) = Im∂2 = 〈(12) − (02) + (01)〉 ≈ Z.
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Finally, let n = 2. Since ∂2(012) , 0, we have Z2(X) = Ker ∂2 = 0. On the
other hand, we also have ∂3 = 0, so B2(X) = Im∂3 = 0 as well.

2.3. Homology of a plain simplicial complex

We can now associate the so-called homology groups to any plain simplicial
complex. Before we do this, we need to review some basic algebraic notions.

2.3.1. Cycles modulo boundaries. Recall from your course in abstract al-
gebra that given an abelian group G and a subgroup H, we can define
a quotient group G/H. Actually, the quotient can be defined for any groups
G and H, as long as H is a normal subgroup of G; and, of course, all the
subgroups of an abelian group are normal. The elements of this quotient
group are the so-called cosets of H. For non-abelian groups one would need
to distinguish between left and right cosets. Since we assume that G is
abelian, we do not need to do that here.

Each coset of H is obtained by choosing an element g ∈ G and then
taking the set Hg = {g + h |h ∈ H}. An alternative notation for this set
is g + H. In particular, we have He = H + e = H. These cosets produce
a disjoint partition of G, see Figure 2.5. Different choices of g may yield the
same coset, in fact, we recall from abstract algebra that Hg = Hk if and only
if g− k ∈ H. The set of cosets, which we denote by G/H, can then be turned
into an abelian group by defining the addition operation using the formula
Hg +Hk := Hg+k. We can now adapt this general algebraic construction to
our special case.

Definition 2.7. Let K be a plain simplicial complex, and let n be an arbitrary
integer. We set

(2.2) Hn(K) := Zn(K)/Bn(K),

and call this group the nth homology group of K.3

Hg

G

Hk

H

. . .

Figure 2.5. A decomposition of a group into cosets.

Expressed verbally:

3The full name is actually the nth homology group of K with integer coefficients, cf., Subsection 2.3.6.
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the nth homology group is the quotient of the group of all n-
cycles by the group of all n-boundaries.

The etymology of Definition 2.7 is clear: homologous should encode similar.
Colloquially one often talks about looking at the cycles which are not boundaries.
What one is attempting to measure here are the essential cycles, i.e., those
which are not boundaries, and consequently one also equates two cycles
which differ by a boundary.

2.3.2. A presentation of the homology group. A classical algebraic situa-
tion in which one uses the quotient construction for abelian groups is when
an abelian group is defined by a presentation, that is by listing its generators
and by providing a set of relations which these generators need to satisfy.
Formally, the group itself is then a quotient of the free abelian group by
the subgroup which is generated by these relations.
Accordingly, we can view the group Hn(K) as being obtained from the nth
cycle group Zn(K) by adding more relations: one for each (n + 1)-simplex
of K. Specifically, each such new relation says that the boundary of a certain
simplex is set to be 0. As already mentioned, the nth cycle group Zn(K)

is free. Combining any set of generators for this group with the relations,
which we have just described, will give an explicit presentation of Hn(K).
Clearly, the groupHn(K) is still abelian. However, it may no longer be free,
which is hardly surprising as we have added some relations.

. . .

Zn(K)

α+ Bn(K)

Bn(K)

Figure 2.6. Homology classes.

2.3.3. Homology classes. Let us now turn our attention to the single ele-
ments of the homology group Hn(K). Since Hn(K) is defined as a quotient
group, its elements are de facto subsets of elements of the group Zn(K) ⊆
Cn(K). Each such set is called a homology class. Choosing an arbitrary cycle
α ∈ Zn(K) will give a homology class α + Bn(K), which is then denoted
by [α]. In this situation, the cycle α is said to represent the homology class [α].
Different cycles may yield the same homology class. In fact, we have
[α] = [β] if and only if α − β ∈ Bn(K). The rules of arithmetic of the
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homology classes are straightforward: we have [α] + [β] = [α + β], and
[cα] = c[α], whenever c is an integer, and α,β ∈ Zn(K).

In the future, when we say let [α] ∈ Hn(K), we mean pick a n-cycle α and
take the corresponding homology class.

3

2

1

4 5

0

Figure 2.7. Generators of H0(X).

2.3.4. Homology groups of X. Let us calculate the homology groups of our
sample complex X. If Zn(X) = 0, then clearlyHn(X) = 0, so we immediately
have Hn(X) = 0 for all n , 0, 1.

For n = 0 we have H0(X) = C0(X)/B0(X). Therefore we have

H0(X) = 〈(0), (1), (2), (3), (4), (5) |
(1) − (0), (2) − (0), (2) − (1), (3) − (1), (3) − (2), (5) − (4)〉 .

A relation a−b = 0 is the same as saying that a = b, so, slightly abusing
our notations, we can write

H0(X) = 〈(0), (1), (2), (3), (4), (5) | (0) = (1) = (2) = (3), (4) = (5)〉 .

Clearly this means that H0(X) ≈ Z2, and we can for example choose [(0)]

and [(4)] as generators for that group, so H0(X) = 〈[(0)], [(4)]〉.4

For n = 1, we have

H1(X) = 〈(01) + (12) − (02), (12) + (23) − (13) | (01) + (12) − (02)〉 ,

so H1(X) = 〈[(12) + (23) − (13)]〉 ≈ Z. Note, that there are infinitely many
possible choices of cycles which will generate H1(X). We have taken (12) +

(23) − (13), but we might have as well taken (01) + (13) − (23) − (02) or
2 · (01) + 3 · (12) + (23) − (13) − 2 · (02), cf. Figure 2.8.

4The reader is invited to unwind the three types of brackets in the expression 〈[(0)], [(4)]〉.
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2.3.5. The 0th homology group. Let us look at the meaning of the 0th
homology group of a plain simplicial complex K. The simplest possible
case, which we already considered in the previous chapter, is when K has
dimension 0. In other words, K is just a collection of vertices K(0). In this
situation, we have H0(K) = Z0(K) = C0(K) ≈ ZK(0). So, if we are just
given the free abelian group H0(K), taking its dimension provides a way,
albeit admittedly a rather round-about way, to count the vertices of K.5

0 3

4 5
2

1

0 3

4 5
2

1

Figure 2.8. Choices of cycles generating H1(X).

In the general case, we haveH0(K) = Z0(K)/B0(K) = C0(K)/B0(K). The
free abelian group B0(K) is generated by the differences i− j, where (i, j) is
an edge of K. As mentioned above in the computation of the homology of
X, to have such a difference as a relation is the same as to simply equate i = j.
So, we obtainH0(K) fromC0(K) by equating (the generators corresponding
to) any two vertices which are connected by an edge. One way to re-phrase
this is to consider an equivalence relation on the set K(0), by requesting
that any two vertices which are connected by an edge must be equivalent.
We then immediately see that H0(K) is again a free abelian group, and
that its generating set can be indexed by these equivalence classes. These
deliberations can be formalized as follows.

Definition 2.8. We say that a plain simplicial complex is connected if any
two vertices v,w ∈ K(0) can be connected by a path v = v1, v2, . . . , vk = w,
all of whose edges are in K(1), that is {v1, v2}, . . . , {vk−1, vk} ∈ K(1).

In other words, a plain simplicial complex K is connected, if and only if
the underlying graph, whose vertex set is K(0) and whose edge set is K(1)

is connected. This graph is also called the 1-skeleton of K, and is denoted by
sk1K.

The vertex sets of connected components of the graph sk1K are precisely
the equivalence classes which we just talked about. We can now state
a theorem, which we essentially have already proved in the discussion
above.

5The fact that this dimension is well-defined is a standard one in abstract algebra.
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Theorem 2.9. Assume K is a non-empty plain simplicial complex, and let q be
the number of the connected components of sk1K. Then we have H0(K) ≈ Zq.

More precisely, assume V1, . . . , Vq are the vertex sets of the connected com-
ponents of sk1K. Any choice v1 ∈ V1, . . . , vq ∈ Vq will give a basis for the 0th
homology group: we have H0(K) = 〈[v1], . . . , [vq]〉.

For our sample complex X, the graph sk1X has 2 connected components,
so our calculation H0(X) = 〈[0], [4]〉 ≈ Z2 fits well with the statement of
Theorem 2.9.

In a certain sense, Theorem 2.9 can be extended to all dimensions, see
Theorem 2.29.

2.3.6. Homology with field coefficients. As mentioned earlier, what we
have defined so far is known under the name of homology groups with
integer coefficients. This is a very standard choice of coefficients. Another
widely used option is to use the so-called field coefficients.

Let k be an arbitrary field, and let K be a plain simplicial complex.
For a nonnegative integer n, let Cn(K; k) denote the vector space over k
with basis K(n). The boundary operator ∂n : Cn(K; k) → Cn−1(K; k) is
again defined by formula (2.1). We can then consider the groups of cycles
Zn(K; k) := Ker∂n and the groups of boundaries Bn(K; k) := Im∂n.

Definition 2.10. Assume, as above, that K is a plain simplicial complex, n
is an arbitrary integer, and k is an arbitrary field. We set

(2.3) Hn(K; k) := Zn(K; k)/Bn(K; k)

and call this group the nth homology group of K with coefficients in k.

Admittedly, the terminology is somewhat confusing, since theHn(K; k)
is not just a group, it is actually a vector space over k.

The typical choices for k are the fields Z2 and Q.

2.3.7. Betti numbers and torsion coefficients. Before moving on to higher
dimension, let us stop and contemplate what possible structure a homology
group might have. We know that Hn(K) is abelian, and we know that it is
finitely generated, see Subsection 2.3.2. We can therefore apply one of the
main theorems of group theory: the fundamental theorem of finitely generated
abelian groups. Recall, that this theorem says that any finitely generated
abelian group G is isomorphic to a direct sum of infinite cyclic groups and
finite cyclic groups whose orders divide each other. In other words, we can
always write

(2.4) G ≈ Zr ⊕Zm1
⊕ · · · ⊕Zmt ,
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such thatm1|m2| . . . |mt. The groupZr in Equation (2.4) is called the free part
of G, and the group Zm1

⊕ · · · ⊕Zmt is called its torsion part. The numbers
r and m1, . . . ,mt are uniquely determined by G.

Z6 ⊕Z10 ≈ Z2 ⊕Z30
Z6 ⊕Z10 ⊕Z14 ≈ Z2 ⊕Z2 ⊕Z210

Table 2.3. Examples of decomposition in Equation (2.4).

Definition 2.11. Assume Hn(K) ≈ Zr ⊕ Zm1
⊕ · · · ⊕ Zmt , such that

m1|m2| . . . |mt. The number r is called the nth Betti number of K, and is
denoted by βn(K). The numbersm1, . . . ,mt are called the torsion coefficients
of Hn(K).

For our sample complexXwe haveβ0(X) = 2, β1(X) = 1, andβn(X) = 0,
for all n , 0, 1. There is no torsion in the homology of X in any dimension.

In analogy to Definition 2.11 one can define Betti numbers with respect
to any field.

Definition 2.12. Assume k is an arbitrary field, and Hn(K; k) ≈ kn. The
number n is called the nth Betti number of K with coefficients in k, and is
denoted by βn(K; k).

It is possible to show that βi(K) = βi(K;Q), and that the Betti number
βi(K; k) for each i only depends on the characteristic of k. This is best shown
within the context of the universal coefficient theorem for homology, and
we shall not do this here.

2.3.8. Reduced homology. When a plain simplicial complex K consists
of a single vertex, it has exactly one non-trivial homology group, namely
H0(K) ≈ Z. From a certain point of view, one would like to consider
this one-point complex K as the most trivial case, and accordingly, have
a homology theory where all homology groups of this complex would be
trivial. This is realized on the concept of reduced homology, which is defined
as follows.

Definition 2.13. Let K be a plain simplicial complex. The reduced homology
groups of K are given by: H̃n(K) := Hn(K), if n > 1, and

H̃0(K) :=

{
0, if K is connected;
Zq−1, if K is disconnected,

where q is the number of connected components of K.
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The reduced homology with field coefficients is defined in the same
way. When k is an arbitrary field, we set H̃n(K; k) := Hn(K; k), if n > 1, and

H̃0(K; k) :=

{
0, if K is connected;
kt−1, if K is disconnected.

2.3.9. Euler-Poincaré formula for plain simplicial complexes. The famous
Descartes-Euler polyhedral formula says that for a simply connected poly-
hedron the number of faces plus the number of vertices is 2 more than the
number of edges. The next theorem states a very closely related statement
for the plain simplicial complexes.

Theorem 2.14. (Euler-Poincaré).
Assume K is a plain simplicial complex of dimension n, and k is an arbitrary field.
Then we have the following equality of alternating sums

(2.5) |K(0)|− |K(1)|+ |K(2)|− · · ·+ (−1)n|K(n)|

= β0(K; k) − β1(K; k) + β2(K; k) − · · ·+ (−1)nβn(K; k).

Proof. First, a standard fact from linear algebra tells us that for all iwe have
a linear isomorphism

Ci(K; k)/Ker∂i ≈ Im∂i.

Hence, for all i, we have

(2.6) |K(i)| = dimCi(K; k) = dim Ker∂i + dim Im∂i.

Summing Equation (2.6) over all i with alternating coefficients (−1)i will
yield ∑

i

(−1)i|K(i)| =
∑
i

(−1)i(dim Ker∂i + dim Im∂i)

=
∑
i

(−1)i dim Ker∂i +
∑
i

(−1)i dim Im∂i.
(2.7)

Furthermore, by the definition of Betti numbers and homology groups, for
all i we have

βi(K; k) = dimHi(K; k) = dimZi(K; k) − dimBi(K; k)
= dim Ker∂i − dim Im∂i+1.

(2.8)

Again, summing Equation (2.8) over all iwith alternating coefficients (−1)i

will yield∑
i

(−1)iβi(K; k) =
∑
i

(−1)i(dim Ker∂i − dim Im∂i+1)

=
∑
i

(−1)i dim Ker∂i +
∑
i

(−1)i dim Im∂i.
(2.9)
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Comparing Equations (2.7) and (2.9) yields Equation (2.5). �

At this point it is curious to note that the left-hand side of Equation (2.5)
does not depend on the field k. Therefore, even though the Betti numbers
themselves may very well vary when the field changes, their alternating
sum will remain constant.

The uses of Theorem 2.14 are manifold. For example, if we are con-
sidering the homology with coefficients in a field k of a two-dimensional
plain simplicial complex K, and we know the 1st and the 0th Betti number
of K, then we can determine the 2nd Betti number, and therefore the whole
homology group H2(K; k).

Finally we remark that Theorem 2.14 holds for integers as well. To see
this one can either essentially repeat the proof above or refer to the fact that
βn(K) = βn(K;Q), for all n.

2.4. Geometric realization

A certain geometric picture can be associated to each plain simplicial com-
plex. This picture is useful now in supplying us with the geometric intuition
for the algebraic constructions, and it will be useful later in connecting our
formal algebraic framework to the world of topology.

Figure 2.9. The standard 2-simplex.

2.4.1. Finite geometric simplicial complexes. A geometric simplex is a con-
vex hull of a set of affinely independent points in a Euclidean space. Taking
convex hulls of various subsets of this set yields all of its geometric subsim-
plices.

For later gluing constructions it is useful to distinguish one generic
geometric simplex in every dimension.

Definition 2.15. Let n be a positive integer. The standard n-simplex, denoted
∆n, is the convex hull of n + 1 points in Rn+1, whose coordinates are
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1).

The points of the standardn-simplex have natural coordinates inherited
from the imbedding inRn+1. These are the so-called barycentric coordinates.
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Another way to describe them is to say that we consider all (n + 1)-tuples
of nonnegative real numbers, whose sum is equal to 1.

The geometric simplices can be glued together to form more complicated
structures.

Definition 2.16. A finite geometric simplicial complex is a union of finitely
many geometric simplices, such that for any two simplices σ and τ their
intersection σ∩τ is either empty, or is a (not necessarily proper) subsimplex
of each of them.

Figure 2.10. Constructions which are not geometric simplicial complexes.

2.4.2. The plain geometric realization.

Definition 2.17. Let t > 0 be an integer, and let K be a collection of non-
empty subsets of [t] which is a plain simplicial complex. Consider the
standard simplex∆t inRt+1, and let |K| denote the union of those boundary
simplices in ∆t, which correspond to the sets in K.

The set |K| is called the plain geometric realization of K. It has a natural
topology inherited from the Euclidean space Rt+1.

As an example, our Figure 2.3 could be thought of as showing parts
of the boundary of the simplex with 6 vertices. Clearly, a plain geometric
realization of a plain simplicial complex is a finite geometric simplicial
complex.

It might be instructive to go through our algebraic inventory and see
the geometric counterparts. Clearly, what we call vertices and edges of
the plain simplicial complex are precisely the vertices and edges of its
plain geometric realization. In general the n-simplices correspond to the
geometric simplices withn+1 vertices and the dimension coincides with the
geometric dimension. The subcomplex corresponds to taking the convex
closure of a subset of simplices.

Finally, we note that the boundary map corresponds to taking the geo-
metric boundary, at least as long as one forgets about the signs. This explains
the etymology of our notation.
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Figure 2.11. Geometric view of the boundary map evaluated on a 2-
simplex and on a 3-simplex.

It would be both tempting and correct to say that when computing
the (simplicial) homology of the plain simplicial complex, we are actually
computing the (singular) homology of the geometric realization, viewed
as a topological space. The subtle point, which is preventing us from do-
ing that, is that it is not clear apriori why two plain simplicial complexes
whose plain geometric realizations are homeomorphic should have the
same homology. Phrased equivalently, a topological space has many possi-
ble presentations as a geometric realization of a plain simplicial complex6,
and it is not clear why all of them should yield the same homology. In fact,
it is well-known that relating two different triangulations of the same space
can be a notoriously difficult question. We avoid these complications by
steering clear of topology altogether. Instead, we develop the pure alge-
braic point of view, connecting back to topology here and there, but never
needing topology for developing our theory.

2.5. Finite abstract simplicial complexes and standard
constructions

2.5.1. The general setting. Although the plain simplicial complexes are
sufficient to demonstrate many important aspects of homology, several
features of the arising theory remain unsatisfactory. Fortunately, restricting
ourselves to the sets [t] as indexing sets of the vertices of the complex turns
out to be unnecessary, and the first thing which one can do in order to relax
the conditions of Definition 2.1, is to allow any finite set to be a set of vertices
of K.

6These are called triangulations.
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Definition 2.18. Assume S is a finite set, and let K be a family of subsets of
S. Then, K is called an abstract simplicial complex on the set S if the following
two conditions are satisfied:

(1) for all v ∈ S, we have {v} ∈ K;

(2) if σ ∈ K and τ ⊂ σ, then τ ∈ K.

Let us make a couple of remarks concerning Definition 2.18. First, we
did not specify at this point any particular order on the set of the vertices of
the abstract simplicial complex, making it impossible for now to define the
boundary operator, at least over the integers. This issue will be addressed
later.

Second, we do not require that the subsets in K are non-empty. In fact,
quite the opposite: if S contains an element v, then by Definition 2.18(1) we
have {v} ∈ K, but ∅ ⊆ {v}, so by Definition 2.18(2) we get ∅ ∈ K.

To be fair, we need to remark that we also allow S itself to be the empty
set. If this is the case, then both conditions of Definition 2.18 are trivially
satisfied. There are then two possibilities for the family K. Either this family
is empty or it consists of the empty set. To distinguish the two, in the first
case we say that the abstract simplicial complex is void, and in the second
case we call it the empty simplicial complex.

Definition 2.19. Given an abstract simplicial complex K, and a subfamily
L ⊆ K, we say that L is a subcomplex of K, if L itself is an abstract simplicial
complex on the set of its vertices.

As before, we set dimσ := |σ| − 1, for all σ ∈ K, we set dimK :=

maxσ∈K dimσ, and call these numbers the dimension of the simplex σ, and
the dimension of the abstract simplicial complex K, respectively.

Finally, we give a name to the quantity which previously appeared in
the Euler-Poincaré formula (2.5).

Definition 2.20. Let K be a finite abstract simplicial complex, such that K(0)

is non-empty. We set

χ(K) := |K(0)|− |K(1)|+ · · ·+ (−1)n|K(n)|,

where n = dimK. The number χ(K) is called the Euler characteristic of K.

If K is empty, we set χ(K) := 0, and when it is void, we set χ(K) := 1.
Furthermore, we set χ̃(K) := χ(K) − 1, and call this the reduced Euler

characteristic of K. In particular, the reduced Euler characteristic of the void
simplicial complex is equal to 0.
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2.5.2. Deletion. We shall now proceed with defining various standard con-
structions for abstract simplicial complexes.

The easiest operation on a simplicial complex is the deletion of one of
its simplices α. In order to preserve the simplicial structure we are bound
to delete not just α, but all the simplices which contain α as well.

Definition 2.21. Let K be an abstract simplicial complex, and let α be a sim-
plex of K. The deletion of α is the abstract simplicial subcomplex of K,
denoted dlK(α) defined by

dlK(α) := {σ ∈ K |σ + α}.

Note, that in particular, deletion of an arbitrary simplex can be defined
using deletions of vertices only, and we have

dlK(α) = ∪v∈αdlK(v) = ∪v∈α {σ ∈ K | v < σ} .

Geometrically, deletion of a vertex corresponds to deleting a small
neighborhood of the vertex, and then all the simplices which are affected
by that. For higher dimensional simplices, in order to interpret the deletion
geometrically, we need to choose a generic point in the interior of that sim-
plex, delete a small neighborhood around that point, and then delete all the
simplices which are affected by that.

2.5.3. Closed star. The next definition gives a simplicial way to describe
the neighborhood of a simplex.

Definition 2.22. Let K be an abstract simplicial complex, and let α be a sim-
plex of K. The star of α is the abstract simplicial subcomplex of K, denoted
stK(α), defined by

stK(α) := {σ ∈ K |σ ∪ α ∈ K}.

For example, the star of the simplexαwhich has the maximal dimension
consists of α itself and all the simplices it contains, whereas the star of
a vertex v consists of all the simplices which contain v together with all the
simplices which are contained in one of them.

The star is sometimes called the closed star in order to distinguish the
above construction from the so-called open star.

Definition 2.23. Let K be an abstract simplicial complex, and let α be a sim-
plex of K. The open star of α is a subset of the set of simplices of K, denoted
sto

K(α), defined by
sto

K(α) := {σ ∈ K |σ ⊇ α}.

Note, that unlike the closed star, the open star does not in general form
an abstract simplicial complex. Of course we have

dlK(α) = K \ sto
K(α).
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2.5.4. Link. The link of a simplex α is a slightly trickier concept. Formally
we have the following definition.

Definition 2.24. Let K be an abstract simplicial complex, and let α be a sim-
plex of K. The link of α is the abstract simplicial subcomplex of K, denoted
lkK(α) defined by

lkK(α) := {σ ∈ K |σ ∩ α = ∅, and σ ∪ α ∈ K}.

dl lk st

α

K

α

Figure 2.12. Deletion, star and link of the simplex α.

For example, if K is the boundary of a tetrahedron, then the link of
an edge consists of the two other vertices of K. Note that, the link of
a maximal-dimensional simplex is empty, whereas the link of a vertex v is
the intersection of the star at v with the deletion of v.

In general, for any simplex α ∈ K, we have

lkK(α) = stK(α) ∩
(
∩v∈α dlK(v)

)
.

Accordingly, one can think of lkK(α) as the subcomplex along which α is
attached to the rest of the simplicial complex: it is obtained from the closed
star by deleting all the vertices of α.

2.6. Abstract simplicial complexes on finite ordered sets

Before proceeding with more constructions on abstract simplicial com-
plexes, let us address the issue of defining homology groups.
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2.6.1. Choosing an order on the vertex set. As mentioned above, one can-
not define the boundary operator, and hence also one cannot define the
homology groups, for abstract simplicial complexes, without making some
further assumptions. There are several options, and perhaps the simplest
of them is to fix a total order on the vertex set.

Definition 2.25. An abstract simplicial complex on the finite ordered set S is
simply an abstract simplicial complex on S, with a fixed choice of order on
the vertex set S.

v2

v4 v5

v1

v0

v3

Figure 2.13. A simplicial complex X̃ on the ordered set (v0, v1, v2, v3, v4, v5).

Any plain simplicial complex K on the set [t] gives rise to a simplicial
complex on the finite ordered set K(0), with the order on K(0) induced from
the natural order on [t]. On the other hand, given a simplicial complex K

on a finite ordered set, we can rename the vertices, preserving their relative
order, so that K becomes a plain simplicial complex.

Most of the concepts and constructions from the plain simplicial com-
plexes transfer verbatim to the simplicial complexes on finite ordered sets.
One slight difference is that the subcomplexes may now have a different
ground set, since we require that all the elements in the ground set must be
vertices.

The existence of an order on S allows us to define the boundary operator
in exactly the same way as in Definition 2.3, effortlessly leading to the def-
inition of homology. Furthermore, the finiteness condition implies that we
can still employ the classification of finitely generated abelian groups to de-
rive the existence of Betti numbers and torsion coefficients. In a sense, there
is not much which we cannot simply carry over from the plain simplicial
complex case.

2.6.2. Homology is independent on the order of the vertex set . One new
thing, which we can do now is to contemplate how the homology groups
depend on the order on the set S. Obviously, choosing a different order may
result in a different boundary operator. Still, the homology groups will
remain isomorphic, no matter which order is chosen, as the next lemma
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and the subsequent corollary formally demonstrate. The proof is simple,
but it allows us to get a first taste of the important general concepts to come,
so we do it in some detail.

Lemma 2.26. Let t be an integer, t > 2, and assume S = (x1, . . . , xt) is an ordered
t-tuple. Pick any 1 6 k 6 t − 1, and let S̃ be the t-tuple obtained from S by
swapping xk and xk+1, i.e., we set

S̃ := (x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xt).

Assume we are given a simplicial complex K on the ordered set S. We construct
a simplicial complex K̃ on the ordered set S̃, by taking the same family of subsets
as K.7 Then, the homology groups of K and K̃ are isomorphic.

Proof. Given a tuple σ ⊆ S, which contains both xk and xk+1, we let σ̃ ⊆ S̃
be the tuple obtained from σ by swapping xk and xk+1. Clearly, this is
a bijection between the sets of those simplices of K and K̃, which contain
both xk and xk+1.

For an arbitrary dimension n, we define a group isomorphism ϕn be-
tween the chain groups Cn(K) and Cn(K̃). The map ϕn is specified on
simplices as follows:

(2.10) ϕn(σ) :=

{
−σ̃, if xk, xk+1 ∈ σ;
σ, otherwise.

Since the map ϕn is a bijection on the sets of generators, it is a group
isomorphism between the chain groups Cn(K) and Cn(K̃).

Let ∂̃n : Cn(K̃)→ Cn−1(K̃) denote the boundary operator of the simpli-
cial complex K̃. We shall now see that for any α ∈ Cn(K), we have8

(2.11) ∂̃n(ϕn(α)) = ϕn−1(∂nα).

Since both the boundary map, and the maps ϕn, ϕn−1, are linear, it
is enough to verify Equation (2.11) when α is a n-simplex. If one of the
elements xk and xk+1 does not belong to α, then ϕn is the identity on α,
and ϕn−1 is the identity on the boundary simplices of α, so this case is
immediate.

7Clearly, the tuples S and S̃ coincide, when considered as sets.
8Later on maps likeϕwill be called chain maps.
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Cn(K) Cn(K̃)

Cn−1(K) Cn−1(K̃)

ϕn

∂n ∂̃n

ϕn−1

Table 2.4. The commuting diagram corresponding to the Equation (2.11).

Assume nowxk, xk+1 ∈ α. Let us sayα = (y0, . . . , yp, xk, xk+1, z0, . . . , zq).
First we calculate the left-hand side of Equation (2.11).

∂̃n(ϕn(α)) = ∂̃n(−(y0, . . . , yp, xk+1, xk, z0, . . . , zq))

= −∂̃n(y0, . . . , yp, xk+1, xk, z0, . . . , zq)

=

p∑
i=0

(−1)i+1(y0, . . . , ŷi, . . . , yp, xk+1, xk, z0, . . . , zq)

+ (−1)p(y0, . . . , yp, xk, z0, . . . , zq)

+ (−1)p+1(y0, . . . , yp, xk+1, z0, . . . , zq)

+

q∑
j=0

(−1)p+j(y0, . . . , yp, xk+1, xk, z0, . . . , ẑj, . . . , zq).

(2.12)

We then calculate the right-hand side of Equation (2.11).

ϕn−1(∂nα) = ϕn−1(∂n(y0, . . . , yp, xk, xk+1, z0, . . . , zq))

= ϕn−1

( p∑
i=0

(−1)i(y0, . . . , ŷi, . . . , yp, xk, xk+1, z0, . . . , zq)

+ (−1)p+1(y0, . . . , yp, xk+1, z0, . . . , zq)

+ (−1)p(y0, . . . , yp, xk, z0, . . . , zq)

+

q∑
j=0

(−1)p+j+1(y0, . . . , yp, xk, xk+1, z0, . . . , ẑj, . . . , zq)
)

=

p∑
i=0

(−1)i+1(y0, . . . , ŷi, . . . , yp, xk+1, xk, z0, . . . , zq)

+ (−1)p+1(y0, . . . , yp, xk+1, z0, . . . , zq)

+ (−1)p(y0, . . . , yp, xk, z0, . . . , zq)

+

q∑
j=0

(−1)p+j(y0, . . . , yp, xk+1, xk, z0, . . . , ẑj, . . . , zq).

(2.13)
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The comparison of the final expressions of Equations (2.12) and (2.13) proves
the validity of Equation (2.11).

It is instructive to see how an equation like Equation (2.11) can be put
to use. To start with, take a cycle α ∈ Zn(K). We have

∂̃n(ϕn(α)) = ϕn−1(∂nα) = ϕn−1(0) = 0,

so ϕn(α) ∈ Zn(K̃). Put succinctly, the map ϕn maps cycles to cycles, that is,
we have ϕn(Zn(K)) ⊆ Zn(K̃).

On the other hand, take α ∈ Zn(K̃), and set β := ϕ−1
n (α), which is

well-defined, since ϕn is an isomorphism. We have

ϕn−1(∂nβ) = ∂̃n(ϕn(β)) = ∂̃nα = 0.

The map ϕn−1 is injective, so ∂nβ = 0, and hence β ∈ Zn(K). Altogether,
we conclude that ϕn is a group isomorphism between Zn(K) and Zn(K̃).

ϕn : Zn(K)→ Zn(K̃)

ϕn : Bn(K)→ Bn(K̃)

ϕ∗n : Hn(K)→ Hn(K̃)

Table 2.5. The maps induced by ϕ.

We can deal with the boundaries in a similar way. Assume we have
α ∈ Bn(K), so there exists β ∈ Cn+1(K), such that ∂n+1β = α. We have

ϕn(α) = ϕn(∂n+1β) = ∂̃n+1(ϕn+1(β)),

so ϕn(Bn(K)) ⊆ Bn(K̃), and ϕn maps boundaries to boundaries. On the other
hand, take α ∈ Bn(K̃), so there exists β ∈ Cn+1(K̃), such that ∂̃n+1β = α.
Set γ := ϕ−1

n+1(β). We have

α = ∂̃n+1(ϕn+1(γ)) = ϕn(∂n+1γ),

so ϕ−1
n (α) ∈ Bn(K). Again, we conclude that ϕn is a group isomorphism

between Bn(K) and Bn(K̃).
It follows that ϕn induces a group isomorphism ϕ∗n between Hn(K)

and Hn(K̃). �

We summarize the maps induced by ϕ in Table 2.5.
Since any permutation can be represented as a product of elementary

transpositions, the repeated use of Lemma 2.26, yields the following theo-
rem.
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Theorem 2.27. Up to isomorphism, homology groups of an abstract simplicial
complex on a finite ordered set do not depend on the order of that set.

In other words, let S = (x1, . . . , xt) be an ordered t-tuple, and let S̃ be obtained
from S by an arbitrary permutation. Let K be an abstract simplicial complex on S,
and let K̃ be the abstract simplicial complex on S̃, obtained by taking the same
family of subsets. Then, the homology groups of K and K̃ are isomorphic.

Theorem 2.27 allows us, up to isomorphism, to define homology groups
of an arbitrary abstract simplicial complex.

As an example, consider the plain simplicial complex X̃ shown in Fig-
ure 2.13. It is obtained from the sample plain simplicial complex X shown in
Figure 2.3 by renaming the vertices, while also slightly changing their order.
Accordingly, the homology groups are isomorphic, though the generators
are different. The family of maps ϕ defined by Equation (2.10) provides the
required isomorphisms.

2.7. Further constructions and associated homology

2.7.1. Disjoint union of simplicial complexes. Given two simplicial com-
plexes, the simplest way to produce a new simplicial complex is to take
their disjoint union.

Definition 2.28. Given two non-empty abstract simplicial complexes K1
and K2 with disjoint vertex sets, their disjoint union K1

∐
K2 is defined by

setting

(K1
∐

K2)(t) := K1(t) ∪K2(t),

for all t > 0, where the union on the right-hand side is, of course, disjoint.

The disjoint union operation can be iterated, and it is clearly associative.
Hence we can talk about multiple disjoint unions K1

∐
· · ·
∐

Kq.

Theorem 2.29. Assume K1, . . . ,Kq are non-empty abstract simplicial complexes
and set K := K1

∐
· · ·
∐

Kq. For any non-negative integer n, we have the
following isomorphism

(2.14) Hn(K) ≈ Hn(K1)⊕ · · · ⊕Hn(Kq).

Proof. We clearly have Cn(K) = Cn(K1)⊕ · · · ⊕ Cn(Kq) and ∂n(Cn(Ki)) ⊆
Cn−1(Ki), for all integers n, and all i = 1, . . . , q. It follows that Zn(K) =

Zn(K1)⊕· · ·⊕Zn(Kq) andBn(K) = Bn(K1)⊕· · ·⊕Bn(Kq), again for alln. The
Equation (2.14) then follows from the general algebraic theorem describing
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the quotients of direct sums of groups:

Hn(K) = Zn(K)/Bn(K) =
Zn(K1)⊕ · · · ⊕ Zn(Kq)
Bn(K1)⊕ · · · ⊕ Bn(Kq)
≈(Zn(K1)/Bn(K1))⊕ · · · ⊕ (Zn(Kq)/Bn(Kq))

=Hn(K1)⊕ · · · ⊕Hn(Kq). �
�

0 3

2

1

4 5

X2

X1

Figure 2.14. Connected components of X.

Our sample simplicial complexX is a disjoint union of the subcomplexes
X1 on vertices 0, 1, 2, and 3, and X2 on vertices 4 and 5. Therefore, Theo-
rem 2.29 can be applied with q = 2. We obtain H0(X1) ≈ H0(X2) ≈ Z, and
H1(X1) ≈ Z, which fits with our previous computation of the homology
groups of X.

2.7.2. Wedge of simplicial complexes. Assume we are given two non-
empty abstract simplicial complexes K1 and K2, with disjoint vertex sets,
and let us pick vertices v1 ∈ K1(0) and v2 ∈ K2(0). The following definition
makes formal the intuitive notion of gluing K1 with K2 by identifying v1
with v2.

Definition 2.30. The wedge, or wedge sum, of K1 and K2, with respect to
the vertices v1 and v2, is the abstract simplicial complex W defined by

• W(0) = {v} ∪ (K1(0) \ {v1}) ∪ (K2(0) \ {v2}), where v is a new vertex;
• σ ⊆ W(0), such that |σ| = n + 1, is an n-simplex of W if and only if

one of the following cases applies
(1) v < σ and σ ∈ K1(n) ∪K2(n);
(2) v ∈ σ and σ is an n-simplex of K1 once the vertex v is replaced

with the vertex v1;
(3) v ∈ σ and σ is an n-simplex of K2 once v is replaced with v2.

We denote the wedge of K1 and K2 by K1 ∨K2.
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We remark, that strictly speaking the wedge sum is not an operation on
simplicial complexes, since it also requires a choice of vertices. Rather it is
an operation on the so-called pointed simplicial complexes, that is, pairs (K, v),
where K is a simplicial complex, and v is some vertex of K.

Like the disjoint union, the wedge operation can be iterated. If we have
a sequence K1, . . . ,Kq of abstract simplicial complexes, we also need to
choose a sequence of vertices v1, . . . , vq, such that vi ∈ Ki, for all 1 6 i 6 q.
We can then define the multiple wedge sum K1 ∨ · · · ∨ Kq as a result of
iterative wedging. It is easy to show, that the end result does not depend,
up to simplicial isomorphism, on the order in which the wedge operation
is iterated.

Proposition 2.31. Assume K1, . . . ,Kq are abstract simplicial complexes. For all
n > 1, we have the formula

Hn(K1 ∨ · · ·∨Kq) ≈ Hn(K1)⊕ · · · ⊕Hn(Kq).

Furthermore, we have

H0(K1 ∨ · · ·∨Kq)⊕Zq−1 ≈ H0(K1)⊕ · · · ⊕H0(Kq).

Proof. The proof is essentially the same as that of Theorem 2.29. We only
need to pay a little bit closer attention to dimension 0. �

Note, that Proposition 2.31 is valid independently of the choice of the
wedge points in the simplicial complexes K1, . . . ,Kq.

2.7.3. Homology of graphs revisited. Let us now move up a notch and
calculate the first homology group of a plain 1-dimensional simplicial com-
plex K.9 Due to Theorem 2.29 we might as well assume that K is connected.

We have already considered homology of graphs in Chapter 1. In what
follows we will describe a canonical basis of the first homology group
associated to any given spanning tree.

Recall that a connected graph is called a tree if its number of vertices is
one more than its number of edges, or, equivalently one says that a tree is
a connected graph without cycles.10 The homology of a tree is especially
easy to compute.

Lemma 2.32. The first homology group of a tree is trivial.

Proof. Let T be a 1-dimensional plain simplicial complex, which is also
a tree. Take an arbitrary σ ∈ Z1(T). Let H be the subgraph of T consisting of
all the edges which are summands of σ with a non-zero coefficient, and all

9Such complexes are essentially the same as simple graphs.
10The word cycle is used here in its graph-theoretic sense.
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the vertices which are adjacent to one of such edges. Any vertex of H must
be adjacent to at least two edges fromH, or else the boundary of σwould not
be equal to 0 at this vertex. Clearly, a finite non-empty graph where all the
vertices have valency at least 2, will contain a cycle. Thus, ifH is non-empty,
we will find a cycle in T , contradicting the fact that it is a tree. We conclude,
that H must be empty, hence σ = 0, and so H1(T) = Z1(T) = 0. �

Before dealing with the general case, it is handy to introduce new no-
tation, and to set (v1, v0) := −(v0, v1), for (v0, v1) ∈ K(1), v0 < v1. In other
words, (v1, v0) simply denotes the element of C1(K), which is equal to
−(v0, v1). We perform a simple calculation

∂1(v1, v0) = ∂1(−(v0, v1)) = −∂1(v0, v1) = −(v1 − v0) = v0 − v1,

to see that the formula ∂1(v,w) = w − v is valid no matter if v < w or not.
We also set (v, v) := 0, for all v ∈ K(1), and note that ∂1(v,w) = w− v even if
v = w.

r

Figure 2.15. A spanning tree in a graph; fixing the vertex r makes it
a rooted spanning tree.

Set n := |K(0)| andm := |K(1)|. Since K is connected we havem+ 1 > n.
Let T be any connected subgraph of K with n vertices and n − 1 edges. It
always exists, and is easy to generate by adding one edge at a time. Such
a graph T is called a spanning tree of K, since it is a tree and it spans the
entire set of vertices. See Figure 2.15 for an example.

Let us fix a vertex r ∈ K(0), which we call a root of the tree T . For any
vertex v, a sequence (r, v1), (v1, v2), . . . , (vp−1, v) of distinct edges in T is
called a T -path from r to v. When r = v, we allow this sequence to be empty,
giving us the unique T -path from r to r. The fact that T is a tree implies that
for every v ∈ K(0) there exists a unique path from r to v.

Assume now that e = (v,w) is an edge of K which does not belong
to T . Let (r, v1), (v1, v2), . . . , (vp−1, v) be the T -path from r to v, and let
(r,w1), (w1, w2), . . . , (wq−1, w) be the T -path from r tow. We now associate



44 2. Simplicial Homology

a 1-chain σe ∈ C1(K) to the edge e by setting

(2.15) σe := (r, v1) + (v1, v2) + · · ·+ (vp−2, vp−1) + (vp−1, v) + (v,w)

+ (w,wq−1) + (wq−1, wq−2) + · · ·+ (w2, w1) + (w1, r).

An example is shown in Figure 2.16. We now have enough terminology to
describe the first homology group of K.

Theorem 2.33. Assume K is a connected 1-dimensional plain simplicial complex
with n vertices and m edges, then we have H1(K) ≈ Zm−n+1.

Furthermore, let T be some spanning tree of K, and let e1, . . . , em−n+1 be
the complete list of edges of K which do not belong to T . Then the group H1(K) is
freely generated by the homology classes [σe1 ], . . . , [σem−n+1

].

e

σe

r

v

w

Figure 2.16. The 1-cycle σe.

Proof. A direct computation shows that

∂1σe = (v1 − r) + (v2 − v1) + · · ·+ (r−w1) = 0,

hence each σe is a 1-cycle, i.e., σe ∈ Z1(K), and the homology classes [σe1 ],
. . . , [σem−n+1

] are well-defined.
Since B1(K) = 0, we might as well drop the square brackets and talk

about the homology classes σe1 , . . . , σem−n+1
. For each 1 6 i 6 m − n + 1

the 1-cycle σei contains the edge ei, and for j , i, the 1-cycle σej does not
contain the edge ei, since the only edge outside of T which it contains is
ej , ei. This implies that the 1-cycles σe1 , . . . , σem−n+1

are independent,
because in any linear combination of σe1 , . . . , σem−n+1

, the contributions of
the edges ei cannot cancel each other.

Finally, we can show that Z1(K) is generated by these 1-cycles. Indeed,
pick an arbitrary 1-cycle σ ∈ Z1(K). We can write

σ = c1σe1 + · · ·+ cm−n+1σem−n+1
+ τ,

where τ is a 1-chain which only has edges from T .
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We now note that on one hand, the 1-chain τ is again a 1-cycle, since it
is a linear combination of 1-cycles. On the other hand, it contains only the
edges from T . This means that τ can be seen as a 1-cycle of T . Lemma 2.32
implies that τ = 0, hence we have σ = c1σe1 + · · ·+ cm−n+1σem−n+1

, and the
proof is finished. �

2.7.4. Cones. Let us now look at a construction which is ubiquitous in
topology.

Definition 2.34. A finite abstract simplicial complex K is called a cone if
there exists a vertex v ∈ K(0), satisfying the following property: if σ ∈ K,
then σ ∪ v ∈ K.

Such a vertex v is called an apex of the cone. Note that lk K(v) = dlK(v),
and we call this subcomplex the base of the cone. Note, that a cone is always
non-empty.

The homology groups of any cone are the same as those of a point.

Proposition 2.35. If the finite abstract simplicial complex K is a cone, then
H0(K) ≈ Z, and Hn(K) = 0, for all n , 0.

Proof. Let v denote the apex of K, and let B denote its base.
By Theorem 2.27 we will not loose any generality by assuming that v is

the minimal vertex of K. So K(0) = {v0, v1, . . . , vt}, and v0 = v.
Furthermore, note that the 1-skeleton of a cone is clearly a connected

graph, since any vertex of the base is connected by an edge to the apex. This
means that H0(K) ≈ Z, and we can consider the groups Hn(K), for n > 1,
from now on.

Since K is a cone, for any simplex σ ∈ K, we also have v ∪ σ ∈ K. We
extend this notation as follows: for any non-zero n-chain α in the base,
where n > 0, we let v ∪ α denote the (n + 1)-chain in K obtained from α

by adding the vertex v to each simplex in α. Note, that v ∪ α , 0. A direct
calculation shows that for any α ∈ Cn(B), α , 0, we have

(2.16) ∂n+1(v ∪ α) =

{
α− v ∪ ∂nα, for n > 1;
α− cv, for n = 0.

The integer c in the second case of Equation (2.16) is calculated as follows:
for α = c1v1 + · · · + cpvp, where v1, . . . , vp are vertices of the base, we have
c = c1 + · · ·+ cp.

Let n > 1 and pick an arbitrary cycle γ ∈ Zn(K), γ , 0. Assume first that
no simplices involved in γ contain the vertex v. Consider the (n+ 1)-chain
v∪γ. By Equation (2.16), we have ∂n+1(v∪γ) = γ−v∪∂nγ = γ. This shows
that γ ∈ Bn(K), in other words [γ] = 0, where [γ] ∈ Hn(K).
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In the general case, let us sort the simplices involved in γ into those
which contain v and those which do not, we can write

(2.17) γ = τ+ v ∪ µ,

where µ ∈ Cn−1(B), µ , 0, and τ ∈ Cn(B).
First we consider the case n > 2. Taking the boundary of both sides

in Equation (2.17), and applying Equation (2.16) to v ∪ µ, we obtain

∂nγ = ∂nτ+ µ− v ∪ ∂n−1µ.

Since ∂nγ = 0, this in turn implies that ∂nτ = −µ and ∂n−1µ = 0, where the
latter follows from the first one anyway.

If n = 1, Equation (2.16) implies that ∂1γ = ∂1τ+µ−cv, where c is some
integer. Also in this case we must have ∂1τ = −µ.

Consider again the (n + 1)-chain v ∪ τ. Equation (2.16) combined with
the equality ∂nτ = −µ yields

∂n+1(v ∪ τ) = τ− v ∪ ∂nτ = τ− v ∪ (−µ) = τ+ v ∪ µ = γ.

Again, we conclude that [γ] = 0.
Since this is shown for any γ ∈ Zn(K), and any n > 1, it follows that

Hn(K) = 0, for all n > 1. �

2.7.5. Suspension. Let us define a useful operation on simplicial complexes
which will allow us to shift homology groups to higher dimensions.

Definition 2.36. Let K be a non-empty finite abstract simplicial complex,
and consider another finite abstract simplicial complex, denoted suspK,
which is obtained from K by adding two new vertices v and w and then
taking as a set of simplices the union

{σ |σ ∈ K} ∪ {σ ∪ v |σ ∈ K} ∪ {σ ∪w |σ ∈ K}.

The simplicial complex suspK is called the suspension of K.

Phrased colloquially, the set of simplices of suspK is obtained as follows:
in addition to the simplices which already exist in K, we take those obtained
from a simplex in K by adding a vertex v, or a vertex w, but not both. Note
the special case when we take the empty simplex in K, showing that vertices
v and w are simplices of susp K.

Another way to see how suspension of K is constructed is to start with
two cones, both having K as a base, but with different apexes, and then take
the union of those copies over that common base. The complex K ends up
being suspended between those apexes.

The following proposition says that the effect of taking the suspension
on the homology of the underlying complex is a shift in dimension.
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Proposition 2.37. Assume K is a non-empty finite abstract simplicial complex,
then we have 

H0(susp K) ≈ Z,
H1(susp K)⊕Z ≈ H0(K),

Hn+1(susp K) = Hn(K), for all n > 1.

Proof. The fact that H0(susp K) ≈ Z is immediate, since for non-empty K,
the graph sk1susp K is connected.

Let us now show that Hn+1(susp K) = Hn(K), for all n > 1. By Theo-
rem 2.27 we can assume that w is the maximal vertex of susp K, and v is
the next maximal one. In other words, the vertices of suspK are {v0, . . . , vt},
with vt = w and vt−1 = v.

This is a slightly different assumption than the one we have had in
Proposition 2.35, but the signs in our calculation will work out better this
way. Accordingly, we adopt adjusted notations from Proposition 2.35, so
for any chain α ∈ Cn(K), n > 0, we let α ∪w and α ∪ v denote the (n + 1)-
chains in susp K, which are obtained by adding the vertices w, or v to each
simplex in the linear combination α. Due to the ordering, these are added
at the end of the ordered simplices.

Consider the map ϕ : Cn(K)→ Cn+1(susp K), defined by

(2.18) α 7→ α ∪ v− α ∪w.

Obviously, ϕ is a linear map.
Assume now that n > 1. In analogy with Equation (2.16), we have the

following calculation:

∂n+1(ϕ(α)) = ∂n+1(α ∪ v− α ∪w)

= (∂nα ∪ v+ (−1)n+1α) − (∂nα ∪w+ (−1)n+1α)

= ∂nα ∪ v− ∂nα ∪w = ϕ(∂nα).

This means that ϕ(Zn(K)) ⊆ Zn+1(suspK), and ϕ(Bn(K)) ⊆ Bn+1(suspK).
Hence we have an induced map ϕ̃ : Hn(K)→ Hn+1(susp K).

Note that for any σ ∈ Cn+1(suspK), we can write σ = α+β∪ v+ γ∪w,
where α ∈ Cn+1(K), β, γ ∈ Cn(K). We then have

(2.19) ∂n+1σ = ∂n+1α+ (−1)n+1β+ (−1)n+1γ+ ∂nβ ∪ v+ ∂nγ ∪w.

Let us show that the map ϕ̃ : Hn(K) → Hn+1(susp K) is surjective.
Take σ ∈ Zn+1(susp K), i.e., ∂n+1σ = 0, and take the representation σ =

α+ β ∪ v+ γ ∪w as above. Equation (2.19) implies that

∂n+1α+ (−1)n+1β+ (−1)n+1γ = 0,
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or, equivalently, we have γ = (−1)n∂n+1α− β. We substitute this back into
our representation for σ to obtain

σ = α+ β ∪ v+ (−1)n∂n+1α ∪w− β ∪w = ϕ(β) + (−1)n∂n+2(α ∪w).

This means that any homology class of susp K has a representative of the
form ϕ(β), which is the same as to say that ϕ̃ is surjective.

To see that ϕ̃ is injective, take σ ∈ Zn(K), such that [ϕ(σ)] = ϕ̃([σ]) = 0.
In other words, [σ∪v−σ∪w] = 0. This means that there exists α ∈ Cn+2(K),
and β, γ ∈ Cn+1(K), such that σ ∪ v − σ ∪ w = ∂n+2(α + β ∪ v + γ ∪ w).
It follows from Equation (2.19) that σ = ∂n+1β. Hence [σ] = 0 and ϕ̃ is
injective.

The proof of the remaining statement that H1(susp K) ⊕Z ≈ H0(K) is
similar, with a small twist. We leave it as an exercise for the interested
reader, see Exercise (8). �

2.7.6. Simplicial join. The coning operation has a clear geometric conno-
tation: given a geometric simplicial complex K, add a new generic vertex
a and span a cone over K. Of course there are many situations where this
will not work directly, as it will produce many self-intersections. What one
can do instead is to add another dimension and choose a outside of the
hyperplane containing K.

This line of thought can be pursued further by starting with two sim-
plicial complexes K1 and K2, placing them in complimentary Euclidean
spaces and then taking the convex hull. This is known as the join of the
simplicial complexes. The next definition describes the obtained simplicial
structure.

Definition 2.38. Let K1 and K2 be two finite ordered simplicial complexes,
whose vertices are indexed by disjoint sets. The join of K1 and K2, denoted
K1 ∗K2, is the finite ordered simplicial complex K1 ∗K2 defined as follows:

• the set of vertices of K1 ∗K2 is a disjoint union K1(0)∪K2(0), where
we can choose a new order by making all vertices of K1 preceed all
the vertices of K2, and otherwise inheriting the order from K1(0)

and K2(0);
• the set of simplices is given by

K1 ∗K2 = {σ ⊆ K1(0) ∪K2(0) |σ ∩K1(0) ∈ K1, and σ ∩K2(0) ∈ K2}

= {σ ∪ τ |σ ∈ K1, τ ∈ K2} .

As an example, the simplicial join of a 1-simplex and the boundary of
a 2-simplex is a union of three tetrahedra, see Figure 2.17.

In a certain sense we have commutativity: for arbitrary finite ordered
simplicial complexesK1 andK2 the joinsK1∗K2 andK2∗K1 can be obtained
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from each other by a straightforward permutation of vertices. The join is
also associative, namely, for arbitrary abstract simplicial complexes K1, K2,
and K3, the joins (K1 ∗K2) ∗K3 and K1 ∗ (K2 ∗K3) are equal.

Figure 2.17. Simplicial join of a 1-simplex and the boundary of a 2-simplex.

Another important property of the join is that for any finite abstract sim-
plicial complex K and any simplex τ ∈ K, the abstract simplicial complexes
lkK(τ) ∗ τ and st(τ) are isomorphic.

As indicated above, joining with the finite ordered simplicial complex
consisting of a single vertex is the same as coning. Joining with the simplicial
complex consisting of two vertices is the same as suspension. In general,
one can take a join with the finite ordered simplicial complex withn vertices
and no simplices of dimension 1 and higher. This is the n-coning, giving
the same result as taking the union of n single conings over a common base
space.

2.7.7. Stellar subdivision. The simplest possible subdivision of a simplicial
complex is obtained as follows. Pick a maximal simplex σ, star it by

• putting a new vertex σ̂ somewhere inside of σ, for instance, at its
barycenter,

• coning over the boundary of σ, using σ̂ as an apex.

More generally, one can pick any simplex, not necessarily the maximal one
and then star it in a similar way. The next definition makes this idea formal.

Definition 2.39. Let K be a finite ordered simplicial complex, and let σ be
a simplex of K. The stellar subdivision of K at σ is the abstract simplicial
complex SdK(σ) defined by the following.

• For the set of vertices we have SdK(σ)(0) = K(0) ∪ {σ̂}, where σ̂
denotes the new vertex indexed by σ.

• The simplex τ ∈ K is a simplex of SdK(σ) if and only if τ does not
contain σ as a subset. Additionally, the abstract simplicial complex
SdK(σ) has simplices of the form τ ∪ {σ̂}, where τ ∈ K, such that
τ ∪ σ ∈ K and τ does not contain σ as a subset.
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Note, that in case σ itself is a vertex, we have σ̂ = σ, hence no new vertex
is introduced, and in fact the subdivision does not change the simplicial
complex K.

An example of a stellar subdivision is shown in Figure 2.2. For those
familiar with convex geometry, we remark that the stellar subdivision of
a n-simplex is the Schlegel diagram of a (n+ 1)-simplex.

Proposition 2.40. The stellar subdivision of a simplicial complex at an arbitrary
simplex does not change the homology groups of that complex.

The proof of Proposition 2.40 is a bit technical and is best done when
we have more tools at our disposal.

2.7.8. Barycentric subdivision. Perhaps the most important subdivision
operation on simplicial complexes is the so-called barycentric subdivision.
The name comes from the fact that one adds a new vertex at the barycen-
ter of each simplex. The next definition describes the obtained simplicial
structure.

Definition 2.41. LetKbe a finite ordered simplicial complex. The barycentric
subdivision of K is also a finite ordered simplicial complex, which is denoted
by BdK. For each n > 0, the set of n-simplices of BdK is given by

BdK(n) := {{σ0, . . . , σn} |σ0 ⊃ σ1 ⊃ · · · ⊃ σn, σi ∈ K \ ∅}.

Note, that in particular, the set of vertices of BdK is indexed by the
non-empty simplices of K. For the definition ordered simplicial complex,
we actually need to choose an order on the vertices of BdK, although
homology calculations will yield the same result. There are many ways to
choose such an order. Let us say that we first sort all the vertices according
to the dimension t of the simplices indexing them, with smaller values of t
coming first, and then sort the vertices with the same t lexicographically.

Figure 2.18. Barycentric subdivision as a sequence of stellar ones.

A simplex sequence (σ0, . . . , σn), such that σ0 ⊃ · · · ⊃ σn is also called
a flag of simplices. So the barycentric subdivision is composed of flags of
the old simplices.
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Note, that if we forget the order of the vertices, Definitions 2.39 and 2.41
describe the constructions of stellar and barycentric subdivisions for an ar-
bitrary finite abstract simplicial complex.

Theorem 2.42. Barycentric subdivision of a finite abstract simplicial complex K

can be represented as a sequence of stellar subdivisions. In particular, it does not
change homology of K.

Proof. Assume K has dimension d. The barycentric subdivision of K is
obtained by the following process:

(1) take the stellar subdivision of all the d-simplices of K,
(2) take the stellar subdivisions of those (d − 1)-simplices of the ob-

tained complex which were (d − 1)-simplices in the original com-
plex K,

(3) repeat this for dimensions d− 2 through 1.

The obtained abstract simplicial complex is the same as BdK. The homology
claim now follows from Proposition 2.40, together with the independence
on the order of the vertices. �

2.8. Simplicial maps

As usual, it is important to consider the structure-preserving maps between
simplicial complexes.

Definition 2.43. Assume K is an abstract simplicial complex with vertex
set S, and M is an abstract simplicial complex with vertex set T . A map
f : S → T is called a simplicial map if it maps simplices of K to simplices of
M. In other words, if σ ∈ K, then f(σ) ∈M.

It is easy to see that composition of simplicial maps is again a simplicial
map, and also the identity map is simplicial. This means we may consider
the category of all abstract simplicial complexes and simplicial maps, called
SCpx.

Assume σ is a geometric simplex with the set of vertices A and τ is a
geometric simplex with the set of vertices B. A simplicial map f : A → B

induces a continuous map from σ to τ: simply apply f to the barycentric
coordinates. Gluing these maps together, a simplicial map between K and
M will clearly induce a continuous map between geometric realizations |K|

and |M|.
Let n be a nonnegative integer. The chain groups Cn(K) and Cn(M)

are generated by the sets of n-simplices K(n) and M(d). Since f maps n-
simplices to n-simplices, it induces group homomorphisms f]n : Cn(K) →
Cn(M). We have the following important proposition.



52 2. Simplicial Homology

Proposition 2.44. In the situation above, the maps {f]n}n∈Z induce group homo-
morphisms on the homology groups f∗n : Hn(K)→ Hn(M).

Furthermore, if N is another abstract simplicial complex, and g : M → N is
a simplicial map, then these homomorphisms satisfy the property g∗n◦f∗n = (g◦f)∗n.

We leave the proof of Proposition 2.44 as an exercise, see Exercise (12).

Exercises

(1) Assume G is a graph. The neighborhood complex of G is a simplicial
complex N(G) defined as follows
• the set of vertices of N(G) coincides with the set of vertices of G;
• the simplices of N(G) are all the sets of vertices which have a com-

mon neighbor.11

(a) Calculate the homology of N(Cn), where Cn is a cycle with n ver-
tices, where n > 3.

(b) Calculate the homology of N(Kn), where Kn is the complete graph
with n vertices, where n > 2.

(c) Calculate the homology of the neighborhood complex of the Pe-
tersen graph.

(2) AssumeG is a graph. The flag complex ofG, also called the clique complex
of G, is the simplicial complex F(G) defined as follows:
• the vertices of F(G) are the vertices of G;
• the simplices of F(G) are the complete subgraphs of G.

A simplicial complex K is called flag if there exists a graph G such
that K = F(G). In fact, if it exists, the graph G must be the 1-skeleton
of K. For each n > 1 give an explicit example of the simplicial complex
which is flag, but which has non-trivial homology in dimension n.

(3) Assume we are given a positive integer d, and consider the simplicial
complex Xd defined as follows:
• the vertices of Xd are indexed by all proper subsets of [d];
• then-simplices ofXd are the collection of vertices {S0, . . . , Sn}which

can be arranged so that S0 ⊂ S1 ⊂ · · · ⊂ Sn.
Calculate the homology groups of Xd.

(4) Assume we are given an integer n > 1, and consider the simplicial
complex Xn defined as follows:

11A set of vertices S is said to have a common neighbor if there exists a vertex adjacent to all the
vertices in S.
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• the vertices of Xn are indexed by all proper partitions of the set
{1, . . . , n}, where the partition is called proper if it has at least two
blocks and does not entirely consist of singletons;
• the simplices of Xn are the collections of vertices {π1, . . . , πt} which

can be arranged so that π1 refines π2, π2 refines π3, and so on for
the entire string.

Calculate the homology groups of X4 and X5.

(5) Let n and d be nonnegative integers, such that n > d. Consider the
simplicial complex skd∆n defined by

skd∆n := {σ ⊆ [n] | |σ| 6 d+ 1} .

The simplicial complex skd∆n is called the dth skeleton of the n-simplex.
(a) Give a basis for the homology groups H0(skd∆n) and H1(skd∆n).
(b) Give a basis for the homology group H2(skd∆n).
(c) Calculate the homology groupHn(skd∆n), for all n and d. Can you

give a basis?

(6) Given a graph G, its independence complex Ind(G) is defined as follows:
• the vertices of Ind(G) are the vertices of G;
• the simplices of Ind(G) are all possible independent12 sets of ver-

tices.
(a) Show that the independence complex of a graph G is the same as

the clique complex of the complement of G.
(b) Let Ln be graph with the set of vertices {1, . . . , n}, and the set of

edges {(1, 2), (2, 3), . . . , (n − 1, n)}. Calculate the homology of the
independence complex of the graph Ln.

(7) Assume K is an abstract simplicial complex, which can be represented
as a union of simplices σ1, . . . , σn (and their boundary simplices), such
that for some integer d > 2 we have
• dimσi > d, for all i;
• for every 1 6 i < j 6 n the intersection σi ∩ σj has dimension at

most d− 2.
Show that the homology of K vanishes in dimension d and above.

(8) Let K be a simplicial complex. Consider the subset S ofC0(K) consisting
of all linear combinations c1v1 + · · ·+ cqvq, such that c1 + · · ·+ cq = 0.
(a) Show that S is a subgroup of C0(K).
(b) Show that S is a disjoint union of cosets of the boundary group

B0(K), and that the corresponding homology classes form a sub-
group of H0(K).

12A set of vertices is called independent if no two vertices are connected by an edge.
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(c) Let T denote the subgroup of H0(K), which is described in (b).
Finish the proof of Proposition 2.37 by showing that T is isomorphic
to H1(suspK).

(9) Assume K is an abstract simplicial complex of dimension d, d <∞. The
complex K is called a pseudomanifold if the following two conditions are
satisfied:
• each (d − 1)-simplex of K is contained in exactly one or in exactly

two d-simplices of K;
• for any two d-simplices σ1, σ2 ∈ K(d), there exists a sequence of
d-simplices τ1, . . . , τk ∈ K(d), such that τ1 = σ1, τk = σ2, and
for all 1 6 i 6 k − 1 the d-simplices τi and τi+1 share a common
(d− 1)-simplex.

Assume now that K is such a pseudomanifold of dimension d.
(a) Calculate Hd(K;Z2).
(b) What are the possibilities for Hd(K;Z)? Give a combinatorial cri-

terion determining this group.
(10) Investigate what happens to homology when we add a single simplex

to a given simplicial complex. Differentiate between the cases of Z2
and integer coefficients.

(11) Let K be an abstract simplicial complex, and let t be a positive integer.
Definition 2.36 can be generalized as follows. We construct a new
abstract simplicial complex L, as obtained from K by adding n new
vertices v1, . . . , vn and then taking as a set of simplices the union

{σ |σ ∈ K} ∪
n⋃
i=1

{σ ∪ vi |σ ∈ K}.

The abstract simplicial complex L is called the n-coning of K.
Which constructions do we recover for n = 1 and n = 2? In general,
investigate what happens to homology when we perform an n-coning.

(12) Prove Proposition 2.44.



Chapter 3

Beyond the Simplicial
Setting

Simplicial complexes constitute a major tool in algebraic topology. How-
ever, in several situations other structures will arise in a natural way. We
use this short chapter to give the reader a glimpse into some of these frame-
works. In order to avoid slowing down too much, we choose that in this
chapter some of the proofs are left as sketches, others are left as exercises.
We will resume more rigorous treatment starting with the next chapter.

3.1. Polyhedral homology

3.1.1. Cubical homology. In many instances in practice, for example in
vision recognition, the topological space is rendered in a rectangular grid.
On the plane it is known as the pixel representation, whereas one speaks
about voxels in the 3-dimensional space.

In general, this can be formalized as follows. Fix the dimension d and
consider the integer grid Zd in Rd.

Definition 3.1. Assume p = (p1, . . . , pd) is a vector with integer coordinates,
and l = (l1, . . . , ld) is a vector with 0/1 entries, i.e., p ∈ Zd, and l ∈ {0, 1}d.
The set c(p, l) := [p1, p1 + l1]× · · · × [pd, pd + ld] is called the grid cube in Rd

associated to the vectors p and l.

The integer grid pointp is called the base point of c(p, l). The dimension of
c(p, l) is equal to the number of 1’s in the vector l, i.e., dim c(p, l) = l1+· · ·+ld.
So the 0-dimensional grid cubes have l = (0, . . . , 0) and correspond to the

55
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integer grid points themselves, and the d-dimensional grid cubes have
l = (1, . . . , 1)︸       ︷︷       ︸

d

.

Definition 3.2. A collection of grid cubes X is called a grid cubical complex
if whenever c ∈ X, also all the grid cubes contained as subsets in c belong
to X.

Given such a grid cubical complex X, the geometric union of all of its
grid cubes is called geometric realization of X, and is denoted by |X|.

The cubical homology of X can then be defined as follows. For each n >
0, let Qn(X) denote the free abelian group generated by the n-dimensional
grid cubes in X. We define the nth boundary operator of X by setting

(3.1) ∂nc(p, l) :=

d∑
m=1

(−1)l1+···+lm([p1, p1 + l1]× · · · × {pm}× · · · × [pd, pd + ld]

− [p1, p1 + l1]× · · · × {pm + lm}× · · · × [pd, pd + ld]),

where n = dim c(p, l) = l1 + · · ·+ ld.
We leave it to the reader to verify that (3.1) gives us maps which satisfy

necessary conditions for being a boundary operator, see Exercise (1).

Definition 3.3. Let X be a grid cubical complex. Its cubical homology groups
QHn(X) are defined by setting QHn(X) := Ker∂n/Im∂n+1, for all n ∈ Z.

Of course, as an alternative, we can subdivide each grid cube in a grid
cubical complex into simplices, and then compute the resulting simplicial
homology. The obtained homology groups will be the same, or to be more
precise, they will be isomorphic, to the cubical homology, which we just
described. While true, this statement is rather difficult to prove. We suggest
that the reader simply knows and trusts it at that point, including the general
fact that the simplicial homology is independent of the triangulation.

3.1.2. General Polyhedra. While sufficient for many specific purposes,
considering only grid cubical complexes is too restrictive in general. The fol-
lowing definition allows us to get rid of the grid and to allow more general
shapes.

Definition 3.4. A polyhedral complexX consists of a finite set of closed convex
polytopes in a Euclidean space, such that

(1) whenever a polytope P is contained in X, so are all its faces;
(2) the intersection of any two polytopes in X is either empty or is

a face of each of them.
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Accordingly, the geometric realization of X is just the union of all the
polytopes in X.

AssumeH is a hyperplane in a Euclidean space. Of course it divides the
total space into two half-spaces. Assume furthermore, that we have chosen
an orientation in H, say by fixing an order of a certain basis of H. Then one
of the half-spaces is called the positive half-space and is denoted by H+,
the other one is then the negative half-space. For any vector v outside of
H, compute the sign of the determinant of the matrix whose columns are
the basis vectors of H and v. H+ consists of all the vectors for which this
determinant is positive.

Assume now that K is a polytope of dimension m in a Euclidean space
Rd, and M is one of its boundary polytopes of dimension m − 1. Assume
furthermore, we have chosen an orientation on M. Then using the linear
algebra fact above, we can define a sign [K :M] as follows: let S be the linear
span of K and letH be the linear span ofM, thenH is a hyperplane in S, and
the orientation on M gives an orientation on H. We now set [K : M] := 1 if
K lies in the positive half-space with respect to H, and set [K :M] := −1 if it
lies in the negative half-space.

We can define polyhedral homology as follows. We let Pn(X) be the free
abelian group generated by alln-dimensional polytopes inX. The boundary
operator is defined by

∂nK :=
∑
M

[K :M]M,

where the sum is taken over all (n − 1)-dimensional boundary polytopes
of K.

The polyhedral homology groups are then simply defined by setting
PHn(X) = Ker∂n/Im∂n+1.

3.2. Chain complexes of free abelian groups

Valiant as they are, the attempts from the previous section quickly reach
their limits. To start with, the geometric realization of a polyhedral complex
is by definition embedded in a Euclidean space. For various reasons, one
often would like to avoid such specific embeddings.

It is possible, to generalize the direct definition of polyhedral complexes
which have been previously given, by describing polyhedral gluing schemes,
where the complex is given as an abstract set of disjoint polyhedra, equipped
with an intricate system of identifying boundary subpolyhedra by means of
various isometries. Though certainly doable, it is hardly practical. Instead,
it is time to switch to abstract algebra altogether. This will both reduce the
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technical side of the arguments dramatically, as well as deliver a much more
satisfactory generality.

We begin by considering the simplest, but also the most important
instance: the chain complexes of free abelian groups. These will also be our
default gadgets unless explicitely stated otherwise.

3.2.1. Chain complexes of free abelian groups and their homology.

Definition 3.5. A chain complex of free abelian groups C consists of a family
of free abelian groups (Cn)n∈Z, together with a family of group homomor-
phisms

(
∂Cn
)
n∈Z, ∂Cn : Cn → Cn−1, such that ∂Cn−1 ◦ ∂Cn = 0, for all n.

C : . . . Cn+1 Cn Cn−1 . . .
∂Cn+2 ∂Cn+1 ∂Cn ∂Cn−1

The short-hand notation, which we shall use for such a chain complex
will be C =

(
C∗, ∂

C
∗
)
. As mentioned earlier, the identity ∂Cn−1 ◦ ∂Cn = 0 often

gets trivialized to the succinct statement ∂C ◦ ∂C = 0. Informally, one says
that

a chain complex is a sequence of groups, connected by the bound-
ary operator, whose square is 0.

Inextricably connected to the concept of a chain complex is the concept of
its homology.

Definition 3.6. Assume we are given a chain complex of free abelian groups
C =

(
C∗, ∂

C
∗
)
. For every integer n, we define the nth homology group of C to

be the quotient group

(3.2) Hn(C) := Ker∂Cn
/

Im∂Cn+1.

We shall also writeH∗(C) to denote the totality of all homology groups of C.

As mentioned in a previous chapter, the classification theorem of finitely
generated abelian groups can be used to define the torsion part and the
Betti numbers of the simplicial complexes. Since the statement is purely
algebraic, we can do exactly the same for the homology groups of chain
complexes, so we extend the use of these notions to that general framework.

For future reference we fix the following general notion.

Definition 3.7. A chain complex is called acyclic if all its homology groups
are trivial.

Assume now we have two chain complexes of free abelian groups.
Denote them C =

(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)
. The following definition

provides an analog of simplicial maps in the context of chain complexes.



3.2. Chain complexes of free abelian groups 59

Definition 3.8. A chain map between C and D is a collection of group homo-
morphisms (ϕn)n∈Z, ϕn : Cn → Dn, such that ϕn−1 ◦ ∂Cn = ∂Dn ◦ ϕn for all
n ∈ Z. In other words, the following diagram commutes:

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

∂Cn+2 ∂Cn+1

ϕn+1

∂Cn

ϕn

∂Cn−1

ϕn−1

∂Dn+2 ∂Dn+1 ∂Dn ∂Dn−1

Clearly, when allϕn are identity maps, the resulting collection is a chain
map. Furthermore, the chain maps can be composed by setting (ψn◦ϕn)n∈Z
to be the composition of the chain maps (ψn)n∈Z and (ϕn)n∈Z. The result
is again a chain map.

Finally, to define the analog of reduced homology, assume C =
(
C∗, ∂

C
∗
)

is a chain complex of free abelian groups, such that Cn = 0, whenever n is
negative. Assume furthermore that S is some fixed basis of C0. Define a
new chain complex C̃ =

(
C̃∗, ∂

C̃
∗

)
as follows. We set

C̃n :=

{
Cn, if n , −1,

Z, if n = −1.

The boundary maps of C̃ are defined by

∂C̃n :=


∂Cn, if n , 0,−1,
ε, if n = 0,

0-map, if n = −1,

where ε : C0 → Z is uniquely defined by setting ε(s) := 1, for all s ∈ S.

C̃ : . . . C1 C0 Z 0 . . .
∂C2 ∂C1 ε

The homology of C̃ is called the reduced homology of C.

3.2.2. First examples. The simplest possible chain complex is the one where
Cn = 0, for all n ∈ Z. The homology groups of this complex are all 0. The
next simplest case would be where exactly one of the groups is non-trivial,
say C0 , 0, and Cn = 0, for all n ∈ Z, n , 0:

C : . . . 0 C0 0 . . .
∂C2 ∂C1 ∂C0 ∂C−1

In this case, we have Ker∂C0 = C0, Ker∂Cn = 0, for all n , 0, and Im∂Cn = 0,
for all n. It follows that H0(C) = C0, and Hn(C) = 0, for n , 0.
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Let us now consider a different chain complex C, where C0 = C1 = Z,
and Cn = 0, for n , 0, 1. The only potentially non-trivial boundary map is
∂C1 : Z→ Z, and this map must be a multiplication with some integer m:

(3.3) . . . 0 Z Z 0 . . .
∂C3 ∂C2 ∂C1

x 7→mx
∂C0 ∂C−1

The only non-trivial kernels of boundary operators are Ker ∂C0 = Z, and,
if m = 0, also Ker ∂C1 = Z. The only potentially non-trivial image of
a boundary operator is Im∂C1 = |m| ·Z. We thus have Hn(C) = 0, whenever
n , 0, 1, and

H0(C) ≈


Z, m = 0,

Zm, |m| > 2,

0, m = ±1;
H1(C) ≈

{
Z, m = 0,

0, m , 0.

So there are three options for the pair of homology groups (H0(C), H1(C)),
namely (Z,Z), (Zm, 0), or (0, 0). The chain complex (3.3) will play a role
later on.

More general examples of chain complexes of free groups are provided
by taking simplicial complexes, letting the chain groups be freely generated
by simplices, and taking the usual simplicial boundary operator. The ho-
mology groups of this chain complex coincide with the simplicial homology
groups.

It is also possible to arrive at the chain complexes directly from an ar-
bitrary topological space X, bypassing any simplicial considerations. To
do that, one will need to define the concept of a singular simplex, and then
let these singular simplices freely generate the chain groups. The singular
boundary operator will have to be defined in a separate way. This will
result in the so-called singular chain complex of X, which will be treated in
Chapter 7. The homology groups of that complex are called the singular
homology groups of X, and we shall see that they are isomorphic to simplicial
homology groups, whenever the latter are defined. Even though the result-
ing chain complex is huge, it has the theoretical advantage of being defined
for arbitrary topological spaces.

3.3. Cell complexes

Finally, we would like to take the polyhedral complex construction yet one
step further and learn how to construct spaces by gluing topological balls
using arbitrary continuous maps. There are three things which we need to
learn in this context. First, we need to learn how to glue spaces together.
Second, we need to fix what gluing schemes of balls we allow. Third, we
need to define something called cellular homology. Unfortunately, the last
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concept requires quite a bit of technical development: either we need the
notion of a connecting homomorphism, or we need to learn how to compute
singular homology of spheres. Either way, it is best to postpone this until
Part II. For now, we will be simply satisfied with being able to construct the
spaces. We start by learning how the attaching procedure works.

3.3.1. Attaching spaces. The next definition from point-set topology for-
malizes the intuitive notion of gluing.

Definition 3.9. Assume X and Y are topological spaces,A is a subspace of X,
and f is a continuous map from A to Y. We define a new topological space
Z as the quotient space Z := (X

∐
Y)/ ∼, where

• X
∐
Y is the disjoint union of X and Y,

• ∼ is the equivalence relation generated by a ∼ f(a), for all a ∈ A.

One says that the topologicial space Z is obtained by attaching the space X to
the space Y over the function f. A standard notation is Z := Y ∪f X, and the
space Z is called the adjunction space.1

��
��
��
��

Klein Bottle

f(A)Y

Y

f

X

Figure 3.1. Examples of adjunction spaces: sphere, Klein bottle, and
a mapping cone.

Many examples of spaces and general constructions in topology can
be viewed through the prism of adjunction spaces. Figure 3.1 contains
some examples. In the simplest one on the upper left of this figure, the

1Another frequently used name is attaching space.
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space X is a 2-dimensional disc, A its boundary, and Y is a one-point space,
which of course defines the map f uniquely. This yields Y ∪f X � S2. In
the example in the upper right of this figure the space X is a cylinder, the
space Y is a circle, the space A consists of the two circles constituting the
boundary of the cylinder, and the map f is the identity on each boundary
circle, preserving the orientation that we see in the figure. The resulting
adjunction space Y ∪f X is a Klein bottle (choosing different orientations
in the definition of the map f would have produced a torus). Finally,
the bottom of the figure shows the construction for arbitrary topological
spaces A and Y, and an arbitrary continuous map f : A → Y. Here X is the
cone over A and the adjunction space is obtained by gluing the cone onto Y
over its base using the map f. We recognize the mapping cone construction:
Y ∪f X is the mapping cone of f.

3.3.2. CW complexes. Let us now learn how to organize space attachment
in a scheme which will produce spaces, known as CW complexes.

To start with, hereXwill always be a closed ball, say of dimension d. It is
customary to call such balls d-cells, and use the notation ed. The subspace
A ⊆ ed will always be the boundary of this ball, so A is homeomorphic
to Sd−1, and we shall denote it by ∂ed. The space Y will be the result of
attaching a certain number of cells of dimension at most d− 1 to each other.
In this case, we just need to specify the continuous map f : ∂ed → Y, and the
resulting space Y ∪f ed is said to be obtained from Y by attaching a d-cell.

While the quotient topology definition for Y ∪f ed is mathematically
precise, that topology can also be understood intiutively as follows:

• the small neighborhoods of points of Y which do not belong to the
image of f are not influenced by the cell attachment;

• the small neighborhoods of an internal point of ed are just d-balls;
here locally the space Y ∪f ed looks like a d-dimensional manifold;

• for a point x in the image of f, the small neighborhoods of x inside
Y ∪f ed are just unions of the small neighborhoods of x inside Y
with small neighborhoods of preimages of x inside ed.

We can now consider all spaces obtained by successive attachments of
cells. These are almost the CW complexes. The only further condition is that
each attachment is done over lower dimensional cells. In other words, the
image of each f lies in the result of gluings of cells of dimensions at most
d− 1.

The technically easiest way to phrase this condition is to require that
all cells of the same dimension are glued at once. This means that the
space X is not just one d-cell, but rather a disjoint union of d-cells, i.e.,
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X =
∐
i e
d
i . We then have A =

∐
i ∂e

d
i , and clearly we have a continuous

map f :
∐
i ∂e

d
i → Y. We then say that Y ∪f X is obtained from Y by

simultaneous attachment of a collection of d-cells.
We are now ready for the formal definition, which we phrase in a con-

structive way.

Definition 3.10. The notion of CW complex is defined by the following three
points.

• A 0-dimensional CW complex is any non-empty collection of points,
equipped with the discrete topology.
• For d > 1, all d-dimensional CW complexes are obtained by a si-

multaneous attachment of a non-empty collection of d-cells to an
arbitrary m-dimensional CW complex, where 0 6 m < d.
• Assume we have an infinite nested sequence of topological spaces
Xd0 ⊂ Xd1 ⊂ Xd2 ⊂ . . . , such that

– we have 0 = d0 < d1 < d2 < . . . ;
– the space X0 is a 0-dimensional CW complex;
– for each k > 1, the space Xdk is obtained from Xdk−1 by simul-

taneous attachment of a non-empty collection of dk-cells.
Then the union ∪k>0Xdk is called the infinite dimensional CW com-
plex.

For each d, the intermediate space Xd from Definition 3.10 is called the
d-th skeleton of X.

Usually, the empty space is also considered a CW complex.

Definition 3.11. A CW-complex is said to be regular if all its attaching maps
are topological embeddings, i.e., homeomorphisms onto their images.

Regular CW-complexes are natural generalizations of polyhedral com-
plexes.

In principle it is possible to define the so-called cellular homology starting
from the structure of a CW complex. The cellular chain groups of dimension
d are simply the free abelian groups generated by all the d-cells, just the
same as in the simplicial case. Unfortunately, the definition of the boundary
operator requires quite a bit more development, so we postpone it until
Chapter 8.

For now however, we remark that no matter how the boundary operator
is defined, we can still make some conclusions about the cellular homology,
based on the cell decomposition alone. This is because, different from the
simplicial case, we may not have any cells at all in certain dimensions.
There is an easy rule here:
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if there are no cells in a certain dimension, then there is no
homology in that dimension either.

For example, a d-sphere can be represented as a CW complex with one
0-cell and one d-cell. Therefore, for d > 2, we immediately see that the d-th
cellular homology of Sd is Z. The same considerations will also work for
a wedge of d-spheres. Later, we shall also see that for any triangulation of
a CW complex its cellular and simplicial homologies are isomorphic.

3.4. Infinite abstract simplicial complexes

Next, we remove the requirement that the set of vertices of the simplicial
complex is finite.

3.4.1. Removing the finiteness condition.

Definition 3.12. Assume that S is an arbitrary ordered set, and K is a collec-
tion of non-empty finite subsets of S. Then K is called an abstract simplicial
complex if the following two conditions are satisfied:

• {x} ∈ K, for all x ∈ S;

• if τ ⊆ σ, and σ ∈ K, then τ ∈ K.

The definition of the boundary of a simplex is unchanged, and it can linearly
be extended to arbitrary chains, since these are finite linear combinations
of simplices. All our calculations take place in this “finite setting”, so
everything we did goes through just the same, just make sure that we are
working with finite linear combinations all the time.

Let us look at some examples which demonstrate possible occuring
phenomena.

3.4.2. Infinite wedge of spheres. LetWS be the abstract simplicial complex
defined as follows. For all integers n > 0 we set Vn := {xni | 0 6 i 6 n}, in
particular, |Vn| = n+ 1.

• The set of vertices of WS is V := V0 ∪ V1 ∪ V2 ∪ . . . .
• A subset σ ⊂ V is a simplex of WS if and only if there exists n > 1

such that σ is a proper subset of V0 ∪ Vn.

The complexWS has infinitely many homology groups which are not 0,
as the next proposition specifies. We leave the proof as an exercise.

Proposition 3.13. We have Hn(WS) ≈ Z, for all n > 0.

Proof. See Exercise (5). �
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3.4.3. Infinite dimensional sphere. Let S∞ be the abstract simplicial com-
plex defined as follows.

• The set of vertices of S∞ is V := {xn, yn |n > 0}.

• A finite subset σ ⊂ V is a simplex of S∞ if and only if {xn, yn} * σ,
for all n.

Proposition 3.14. We have Hn(S∞) ≈ 0, for all n > 1, and H0(S∞) ≈ Z.

Proof. Consider an arbitrary cycle σ, and let T be the union of the sets of
the vertices of all simplices in the support of σ, that is the simplices which
occur with a non-zero coefficient when σ is viewed as a linear combination
of simplices. Since that linear combination is required to be finite, the set
T is finite as well. Set I := {i | xi ∈ T or yi ∈ T }, and take k < I. Consider
the subcomplex KI consisting of all simplices of S∞, whose vertex set is
contained in the set ∪i∈I{xi, yi}.

The chain σ is, of course, a cycle inside the cone with apex xk and
base KI. Since the homology of the cone is trivial, the chain σ must be
a boundary inside this cone. Clearly, then it is also a boundary in S∞, so
it must represent the trivial homology element. Since σ was chosen to be
arbitrary the proposition is proved. �

3.5. Semisimplicial sets

3.5.1. Direct definition. When considering non-simple graphs, we have re-
alized that having simplicial complexes is not enough: both multiple edges
as well as loops make simplicial structure, without further subdivision, im-
possible. Instead, we have seen that it is possible to define the boundary
operator, and hence also homology, by specifying for each edge its initial
and terminal vertices. These vertices are allowed to be the same, giving
loops, and two edges can also have the same set of initial and terminal
vertices, giving multiple edges.

Semisimplicial sets provide the formal context to describe such infor-
mation for non-simple graphs, as well as their higher dimensional analogs.
Instead of having just two sets: the vertices and the edges, one has poten-
tially infinitely many sets, one for each dimension. Furthermore, for each
n-simplex, we need to specify who its boundary simplices are. Boundary
simplices are indexed by subsets of the vertex sets of the simplex. For func-
torial reasons it is more elegant to replace the consideration of subsets by
the equivalent concept of the order-preserving injection.

Definition 3.15. A semisimplicial set consists of the following data:

• a sequence of sets S = (S0, S1, . . . ),



66 3. Beyond the Simplicial Setting

• for every order-preserving injection f : [m] ↪→ [n] we have a set
map Bf : Sn → Sm.

The maps Bf are subject to the following two conditions:

(1) for the identity map id [n] : [n] ↪→ [n] we have

(3.4) Bid [n]
= idSn ,

(2) for the composition of order-preserving injections f : [k] ↪→ [m] and
g : [m] ↪→ [n], we have

(3.5) Bf ◦ Bg = Bg◦f.

Following the intuition given before Definition 3.15, for each n, we shall
call the elements of the set Sn, the n-simplices. An order-preserving injection
f : [m] ↪→ [n] should equivalently be thought of as choosing a subset with
m + 1 elements from a subset with n + 1 elements, which is the same
as choosing an m-simplex on the boundary of an n-simplex. The value
Bf(σ) then specifies which of the simplices in Sm is the chosen boundary
simplex of σ. Condition (3.4) simply says that when we choose the simplex
itself as its degenerate boundary, the map Bf will give you your simplex
back. Condition (3.5) says that the boundary simplex specifications are
consistent with taking a subset of a subset, or, which is the same, taking the
composition of order-preserving injections.

Definition 3.16. For a non-empty semisimplicial set Λ, the dimension of Λ
is the maximal index n such that Sn , ∅. If no such n exists, we say that Λ
has infinite dimension.

Note that for any 0 6 t 6 dimΛ we must have St , ∅, in other words,
we must have some t-simplices. This is because if we have St = ∅ and Sk , ∅
for some k > t then no map Bf : St → Sk, where f : [k] ↪→ [t] is an order-
preserving injection, can exist, as there are no set maps from a non-empty
set to the empty one.

Definition 3.17. A finite-dimensional semisimplicial set Λ is called pure if
for any k < dimΛ and any σ ∈ Sk, there exists an order-preserving injection
f : [k] ↪→ [k+ 1], and τ ∈ Sk+1, such that Bf(τ) = σ.

Geometrically thinking, in a pure semisimplicial set, any simplex which
is not in the top dimension is contained in a higher dimensional one.

Another concept which generalizes easily from the simplicial context is
that of a skeleton.

Definition 3.18. Assume a semisimplicial setΛ is given by the data (Sk)k>0,
{Bf}f. The d-skeleton of Λ is the semisimplicial set skdΛ given by the data
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(S ′k)k>0, {B ′f}f, where

S ′k =

{
Sk, if 0 6 k 6 d;
∅, otherwise.

For an arbitrary order-preserving injection f : [l] ↪→ [m] we have B ′f = Bf, if
0 6 l 6 m 6 d, and B ′f is the unique map from the empty set otherwise.

Finally, we have the following notion of maps between semisimplicial
sets.

Definition 3.19. Assume we have two semisimplicial setsΛ andΛ ′ given by
the data (Sk)k>0, {Bf}f and (S ′k)k>0, {B ′f}f. A semisimplicial set homomorphism
between Λ and Λ ′ is a family of set maps {ϕk}k>0, where ϕk : Sk → S ′k,
such that for any k < l and any order-preserving injection f : [k] ↪→ [l] the
following diagram commutes:

(3.6)

Sl Sk

S ′l S ′k

ϕl

Bf

ϕk

B ′f

It is easy to construct an identity semisimplicial set homomorphism
of a semisimplicial set onto itself, and also to show that a composition
of two semisimplicial set homomorphisms is again a semisimplicial set
homomorphism.

The objects described in Definition 3.15 have been known under differ-
ent names. For example they are called triangulated spaces by Gelfand and
Manin, see [GM03], trisps by this author, see [Ko08], and ∆-complexes by
Hatcher, see [Hat02].

3.5.2. Semisimplicial sets as functors. A structural way to think about
semisimplicial sets is as follows. Consider the category ∆-Inj such that

• the objects of ∆-Inj are the sets [0], [1], [2], and so on;

• the morpishms between [k] and [m] are indexed by order-preserving
injections from [k] into [m];

• the composition of morphisms is given by the composition of
the corresponding maps, which is itself of course also an order-
preserving injection.

We can use the category ∆-Inj to give an alternative definition of semisim-
plicial sets.
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Definition 3.20. A semisimplicial set is a contravariant2 functor from ∆-Inj
to Sets.3

Let us make three remarks illustrating advantages of the abstract ap-
proach used in Definition 3.20. First, we see that the semisimplicial sets
themselves form a category, as a special case of the general notion of functor
category. We call this category ssSets.

Second, there is no immediate reason to restrict ourselves in Defini-
tion 3.20 to only considering the category Sets. One can also look for
example at the category of groups, obtaining simplicial groups, or any other
category one finds interesting. There is also another category, closely re-
lated to ∆-Inj, where the injectivity condition is dropped. This will allow
one to define simplicial sets, and in general other simplical objects. This is
a very interesting subject, which however lies beyond the boundaries of the
present text, and we refer the interested reader to the foundational text of
May, [May92].

Third, the rather involved Definition 3.19 of maps between semisim-
plicial sets turns out to be an instance of a so-called natural transformation
between the functors associated to the semisimplicial sets. Natural transfor-
mations are canonical tools to compare functors between given categories.

3.5.3. Examples. It is possible to associate a topological space to each
semisimplicial complex, which, in line with the terminology for the simpli-
cial complexes, is called its geometric realization. A rigorous definition using
quotient topology can be given. We do not do this here, limiting ourselves
to saying that each element of Sn will give an n-simplex, and the maps Bf
are encoding the gluing data, telling precisely how the boundary simplices
are to be glued to each other.

The simplest case of a non-empty semisimplicial set is the one consisting
of just one 0-simplex, which we also call a point. In this semisimplicial set
we have |S0| = 1, and Sn = ∅ for all n , 0. All the maps Bf are of course
uniquely determined since either the origin set is empty, or the origin and
the target sets each have one element.

In general, when Sn = ∅ for all n , 0 (and all the maps Bf are trivial) we
have a semisimplicial set corresponding to a set of isolated points. These
are all the semisimplicial sets of dimension 0.

Passing on to the semisimplicial sets of dimension 1we can see that these
are precisely all directed graphs with loops and multiple edges allowed.
Indeed, there exist two order-preserving injections from [0] = {0} to [1] =

2Recall that the word contravariant means that all the arrows change directions.
3Sets denotes the category of sets.
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{0, 1}. Let us call them f0 and f1, and let us say f0(0) = 1 and f1(0) = 0.
Assume we are given a semisimplicial set of dimension 1. Construct a di-
rected graph by taking the set S0 to be the set of vertices, and set S1 as the set
of the edges. The map Bf1 : C1 → C0 maps each edge to its endpoint, while
the map Bf0 : C1 → C0 maps each edge to its initial point. This way we get
all possible directed graphs. Forgetting the edge orientation produces the
geometric realization of that semisimplicial set.

One can use this point of view to define the notion of connectedness
in the context of semisimplicial sets. Simply call a semisimplicial set Λ
connected in case the directed graph corresponding to the 1-skeleton sk1Λ
is connected. Up to isomorphism, all pure connected semisimplicial sets of
dimension 1 with two 1-simplices are shown in Figure 3.2.
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Figure 3.2. All pure connected semisimplicial sets of dimension 1 with
two 1-simplices.

More interesting examples can be obtained starting from dimension 2.
Even if we only have one 2-simplex, there are many options, see Figure 3.3,
which up to isomorphism depicts all of them.

In higher dimensions, an interesting example is provided by the family
of semisimplicial sets {D0,D1,D2, . . . }, where each Dn has exactly one sim-
plex in each dimension between 0 and n, which defines it uniquely. These
are the so-called generalized Dunce hats.

3.5.4. Simplicial homology of a semisimplicial set. For 0 6 i 6 n, the
order-preserving injection fn,i : [n− 1]→ [n] is uniquely defined by requir-
ing Imfn,i = [n] \ {i}. The precise formula is as follows:

fn,i(j) =

{
j, if j < i;
j+ 1, if j > i.
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Figure 3.3. All pure semisimplicial sets of dimension 2 with one 2-simplex.

Definition 3.21. Assume we are given a semisimplicial set Λ, with the
simplex sets (Sn)n>0, and the attachment maps {Bf}f.

(1) For all n, we define the chain groups of Λ by setting Cn(Λ) := 〈Sn〉.

(2) For all n > 1, we define the boundary operator ∂n : Sn → Sn−1 by
setting

∂n(σ) =

n∑
i=0

(−1)iBfn,i(σ),

where the order-preserving injections fn,i’s are defined above.

Proposition 3.22. We have ∂n−1 ◦ ∂n = 0, for all n > 1.

Proof. For brevity, let us set fi := fn,i, for all i, and gj := fn−1,j, for all j.
Furthermore, for all i < j let hi,j denote the order-preserving injection
hi,j : [n− 2] ↪→ [n] uniquely determined by the condition Imhi,j = [n] \ {i, j}.

We have the following formula

(3.7) fi ◦ gj =

{
hj,i, if j < i;
hi,j+1, otherwise.
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Pick an arbitrary σ ∈ Sn, we have the following calculation.

∂n−1(∂nσ) = ∂n−1
( n∑
i=0

(−1)iBfi(σ)
)
=

n∑
i=0

(−1)i∂n−1(Bfi(σ))

=

n∑
i=0

(−1)i
n−1∑
j=0

(−1)jBgj(Bfi(σ))

=
∑
06i6n
06j6n−1

(−1)i+jBfi◦gj(σ)

=
∑

06j<i6n

(−1)i+jBhj,i(σ) +
∑

06i6j6n−1

(−1)i+jBhi,j+1(σ),

(3.8)

where the last equality follows from Equation (3.7). Now replacing j + 1
with k in the last term yields∑

06i6j6n−1

(−1)i+jBhi,j+1(σ) = −
∑

06i<k6n

(−1)i+kBhi,k(σ).

Substituting this into the last line of Equation (3.8) yields the desired identity
∂n−1 ◦ ∂n = 0. �

0 . . . n

0

n− 1

. . .

j

i

i 6 j

j < i

Figure 3.4. The index domain split in Equation (3.8).

Proposition 3.22 shows the crucial property of a boundary operator
which allows to define homology.

Definition 3.23. The nth homology of a semisimplicial set Λ is given by

Hn(Λ) = Ker∂n/Im∂n+1.

In the case of an ordered simplicial complex, Definition 3.23 specializes
to the previously given homology definition.

In general, we know that Hn(Λ) is an abelian group, and it is free when
n = dimΛ. The argument virtually identical to the previous one will show
that H0(Λ) is again a free abelian group whose dimension is equal to the
number of connected components of Λ.
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3.5.5. Using semisimplicial sets for calculation. One of the main advan-
tages of the semisimplicial sets is that they are excellent for explicit calcula-
tions. This is because all the input data is discrete and does not need general
continuous maps.

Let us calculate the homology groups for a couple of examples. To start
with, consider the semisimplicial set D shown as the last one in Figure 3.3.
Topologically it corresponds to the space known as the Dunce hat. Assum-
ing that S0(D) = {x}, S1(D) = {a}, and S2(D) = {t}, the chain groups and
boundary operators are as follows:

C0(D) = 〈x〉 ∂1 : 〈a〉 → 〈x〉
C1(D) = 〈a〉 a 7→ x− x = 0

C2(D) = 〈t〉 ∂2 : 〈t〉 → 〈a〉
t 7→ a− a+ a = a

This allows us to compute the homology groups

H0(D) =
Ker∂0
Im∂1

=
〈x〉
0
≈ 〈x〉 ≈ Z,

H1(D) =
Ker∂1
Im∂2

=
〈a〉
〈a〉

≈ 0,

H2(D) =
Ker∂2
Im∂3

=
0

0
≈ 0.

confirming the topological fact that the Dunce hat is actually contractible.
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Figure 3.5. A semisimplicial set presentation of a Klein bottle.

As another example, consider the 2-dimensional semisimplicial set K
shown schematically in Figure 3.5. Topologically it corresponds to the Klein
bottle. We compute the homology of K, although to conclude that this in
some sense computes the homology of the Klein bottle, one would need to
show that the result is independent of the representation of the topological
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space as a semisimplicial set. For the chain groups and boundary operators
we get:

C0(K) = 〈v〉 ∂1 : 〈a, b, c〉 → 〈v〉
C1(K) = 〈a, b, c〉 a 7→ v− v = 0

b 7→ v− v = 0

c 7→ v− v = 0

C2(K) = 〈q, t〉 ∂2 : 〈q, t〉 → 〈a, b, c〉
q 7→ a+ b− c

t 7→ a− b+ c

This allows us to compute the homology groups

H0(K) =
Ker∂0
Im∂1

=
〈v〉
0
≈ 〈v〉 ≈ Z,

H1(K) =
Ker∂1
Im∂2

=
〈a, b, c〉

〈a+ b− c, a− b+ c〉
≈ Z⊕Z2,

H2(K) =
Ker∂2
Im∂3

=
0

0
≈ 0.

The second line deserves a little more attention. We have

H1(K) =
〈a, b, c〉

〈a+ b− c, a− b+ c〉
= 〈a, b, c | c = a+ b, a+ c = b〉

≈ 〈a, b | 2a〉 ≈ Z⊕Z2,

where for the sake of explanation we deviate a bit from our regular notation
by writing the relations as actual equations, rather than group elements.

3.6. Arbitrary finitely generated abelian groups as homology
groups

Let us return to considering a simplicial complex K. We have seen that
no torsion can occur in dimension 0 or in dimension dimK. So the first
possibility for the torsion to appear would be in dimension 1, and we
would need to require that dimK > 2. Curiously, it turns out that an
arbitrary finitely generated abelian group can occur as the first homology
group of a finite simplicial complex.

Theorem 3.24. Let G be any finitely generated abelian group. Then there exists
a 2-dimensional simplicial complex Y, such that H1(Y) ≈ G.

Proof. Let Ck be a cyclic group of order k, k > 2. We construct a simplicial
complex Yk, which satisfies H1(Yk) = Ck. Start with a regular 3k-gon with
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Figure 3.6. A simplicial complex Y3 with H1(Y3) ≈ C3.

vertices labeled u1, v1,w1, . . . , uk, vk,wk. Add a center point r and connect
r radially with all the vertices of this 3k-gon. Draw another regular 3k-gon
centered at r, whose vertices are labeled ũ1, ṽ1, w̃1, . . . , ũk, ṽk, w̃k, where
ũi is a middle point of the edge (r, ui), ṽi is a middle point of the edge
(r, vi), and w̃i is a middle point of the edge (r,wi). Subdivide each of the 3k
quadrangles by placing a vertex in the middle. We now identify the edges
(ui, vi), for all i = 1, . . . , k to make one edge, which we call a, identify the
edges (vi, wi), for all i = 1, . . . , k to make one edge called b, and finally,
identify the edges (wi, ui), for all i = 1, . . . , k to make one edge called c.
Note that all the vertices ui are now identified to a single vertex u, and the
same is true for the vertices vi and wi, producing vertices v and w.

The resulting simplicial complex Yk will have 7k+ 1 vertices, 22k edges
and 15k 2-dimensional simplices. The example for k = 3 is shown in Fig-
ure 3.6.

We leave it as Exercise (7) to show that H1(Yk) = Ck.
Furthermore, the complete graph on 3 vertices, or in fact any cycle,

has the first homology group equal to Z. By Theorem 2.29, taking dis-
joint unions of such complexes will yield complexes whose first homology
groups range through all possible direct sums of cyclic groups. By the
fundamental theorem mentioned above, this yields all finitely generated
abelian groups. �

We remark, that there are certainly complexes with the desired proper-
ties which have fewer simplices than Yk.

The following is the immediate consequence of Proposition 2.37, to-
gether with Theorem 3.24.
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Corollary 3.25. Let G be any finitely generated abelian group, and d any positive
integer. There exists a plain (d + 1)-dimensional simplicial complex Y, such that
Hd(Y) ≈ G.

Proof. Choose an abstract simplicial complex as prescribed by Theorem 3.24
and suspend d− 1 times. �

Exercises

(1) Verify that the cubical boundary operator defined in Equation (3.1)
squares to 0.

(2) Calculate the cubical homology of the boundary of an n-dimensional
cube.

(3) (a) Find a CW decomposition of the direct product S2×S2, which does
not have any cells in dimensions 1 and 3.

(b) In general, for any d > 2, find a CW decomposition of the direct
product Sd × · · · × Sd, which only has cells in dimensions, which
are divisible by d.

(4) Find a CW decomposition of the complex projective space CPn, which
does not have any cells in odd dimensions.

(5) (a) Compute the homology groups of the boundary complex of a d-
simplex, for any d > 1. Find explicit generators.

(b) Let WS be the simplicial complex defined in Subsection 3.4.2. Use
(a) to prove Proposition 3.13 by a direct analysis of the cycles in
WS.

(6) Find a semisimplicial set presentation of the 2-dimensional torus, simi-
lar to the one for the Klein bottle, shown in Figure 3.5. Use this presen-
tation to compute the homology of the torus.

(7) Complete the proof of Theorem 3.24 by showing that H1(Yk) = Ck.

(8) Find a 2-dimensional simplicial complex whose first homology group
is isomorphic to Z3, and which has fewer triangles than 45. How low
can one go?

(9) Assume we have t integers 1 6 d1 < · · · < dt and arbitrary abelian
groupsG1, . . . , Gt. Show that there exists an abstract simplicial complex
K such that for all 1 6 i 6 t, we have Hdi(K) ≈ Gi .
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(10) Consider an infinite 2-dimensional abstract simplicial complex K de-
fined by the following:
K(0) = {(a, b) |a, b ∈ Z} ,

K(1) = {{(a, b), (a+ 1, b)} |a, b ∈ Z} ∪ {{(a, b), (a, b+ 1)} |a, b ∈ Z}

∪ {{(a, b), (a+ 1, b+ 1)} |a, b ∈ Z} ,

K(2) = {{(a, b), (a+ 1, b), (a+ 1, b+ 1)} |a, b ∈ Z}

∪ {{(a, b), (a, b+ 1), (a+ 1, b+ 1)} |a, b ∈ Z} .

Calculate the homology of K.
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Further Aspects of
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Chapter 4

Category of Chain
Complexes

As mentioned in Chapter 3, chain complexes provide a fairly general al-
gebraic framework in which homology groups can be defined. Being a bit
more abstract than the simplicial complexes, they avoid technical pitfalls,
such as having to choose orientations, and are often more convenient to
work with. We shall now look at the chain complexes in some detail. Fol-
lowing the functorial way of thinking, we shall actually consider the category
of chain complexes, emphasizing the invaluable role the chain maps play
in homology theory.

4.1. Chain complexes of modules over a ring

Our first step is to note, that we can replace free abelian groups in the
definition of chain complexes with vector spaces over a fixed field k, or,
taking the abstraction one step further, with modules over any commutative
ring R with a unit. The definition of the corresponding chain complex is
virtually identical to Definition 3.5.

4.1.1. Definition of chain complexes of modules.

Definition 4.1. Let R be an arbitrary commutative ring with a unit. A
chain complex of R-modules is a family (Cn)n∈Z of R-modules, together with
a family of module maps (∂n)n∈Z, ∂n : Cn → Cn−1, such that ∂n−1 ◦ ∂n = 0

for all n ∈ Z.

Letting R be a field provides an important special case. It is customary
to call this field k. The chain groups are then clearly vector spaces over k.

79
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Hence, also the homology groups are vector spaces over k. This means that
there can be no torsion in homology, and, when the homology groups are
finitely generated, the Betti numbers provide us with complete information.
The two most important choices of the field k will be the field of real
numbers R and the 2-element field Z2.

In general, however, the structure of homology groups can be quite
complicated.

4.1.2. Tensor product of a chain complex of abelian groups with a com-
mutative ring.
The next definition provides a way of turning a given chain complex of
abelian groups into a complex of modules over the chosen ring.

Definition 4.2. Let C =
(
C∗, ∂

C
∗
)

be a chain complex of abelian groups, and
let R be a ring. We define the tensor product C⊗R to be the chain complex

. . . Cn+1 ⊗ R Cn ⊗ R Cn−1 ⊗ R . . . ,
∂Cn+2⊗R ∂Cn+1⊗R ∂Cn⊗R ∂Cn−1⊗R

where ∂Cn ⊗ R is our abbreviated way to write ∂Cn ⊗ id . We shall write
C⊗ R =

(
C∗ ⊗ R, ∂C∗ ⊗ R

)
.

Tensoring the chain complex with a ring allows us to define homology
groups with coefficients in that ring. Note that the tensor products Ci ⊗ R

are all R-modules, and the boundary operators ∂Cn⊗R are R-module maps.

Definition 4.3. Let C be an arbitrary chain complex of abelian groups, and
let R be arbitrary commutative ring with a unit. The homology groups
H∗(C⊗ R) are called the homology groups of C with coefficients in R.

As an example, let us again consider the chain complex from Subsec-
tion 3.2.2 with m = 2.

C : . . . 0 Z Z 0 . . .
∂3 ∂2 ∂1

x 7→2x
∂0 ∂−1

Recall that H0(C) ≈ Z2, H1(C) = 0, and all other homology groups are 0 as
well. Let us tensor it with Z2 and with Q, and then compare the homology
groups of the resulting chain complexes.

First, tensoring with Z2 yields the chain complex

C⊗Z2 : . . . 0 Z2 Z2 0 . . . ,
∂3 ∂2 ∂1

x 7→0
∂0 ∂−1

so we get H0(C⊗Z2) ≈ H1(C⊗Z2) ≈ Z2.
On the other hand, tensoring with Q yields the chain complex

C⊗Q : . . . 0 Q Q 0 . . .
∂3 ∂2 ∂1

x 7→2x
∂0 ∂−1

.
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Here, the boundary map ∂1 is an isomorphism, so we get H0(C ⊗ Q) =

H1(C⊗Q) = 0.

4.2. Constructions with chain complexes

For technical simplicity we shall work with chain complexes of (not neces-
sarily free) abelian groups for now.

Definition 4.4. A chain complex of abelian groups C =
(
C∗, ∂

C
∗
)

is called free
if Cn is free for all n ∈ Z.

Let us look at a few constructions involving chain complexes. The
simplest one is the so-called shift.

Definition 4.5. Let C =
(
C∗, ∂

C
∗
)

be a chain complex of abelian groups, and
let t be an arbitrary integer. The new chain complex C[t], called shift or
translation of C by t, is defined by C[t]n := Cn−t and ∂C[t]n := ∂Cn−t, for all
n ∈ Z.

If C is free, then so is C[t], for any t. Also, when a chain complex is
shifted by t, then so is its homology.

Proposition 4.6. For an arbitrary chain complex C of abelian groups, and any
integer t, we have isomorphisms Hn(C[t]) ≈ Hn−t(C), for all n ∈ Z.

Another operation which comes to mind is truncating the chain complex
at a certain index. In order not to ruin the homology information, one has
to be a little gentle at the point of truncation.

Definition 4.7. Let C =
(
C∗, ∂

C
∗
)

be a chain complex of abelian groups, and
let t be an arbitrary integer. The chain complex τtC, called truncation of C
at t, is defined as follows:

(τtC)n :=


Cn, if n < t.
Coker∂Cn+1 = Cn/Im∂Cn+1, if n = t.

0, if n > t.

Note that a truncation of a free chain complex, may not in general be free.
The truncation which we consider here is sometimes called the canonical
truncation. There is also the direct, also known as the stupid, truncation,
where one simply zeroes out all the chain groups above a certain index. The
direct truncation of a free complex is clearly free again, however, it destroys
the homology group at the truncation point, which is the reason why we
do not consider it here. On the contrary, the canonical truncation behaves
well, as the next proposition shows.
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Proposition 4.8. Let C be a chain complex of abelian groups, and let t be an
arbitrary integer. The homology groups of the truncated complex τtC are given by
the following formula:

Hn(τtC) ≈

{
Hn(C), if n 6 t;
0, otherwise.

The truncation in Definition 4.7 is done from above. We relegate the
truncation from below to the exercises.

The reader will recognize the next few definitions as the standard ones
in many categories.

Definition 4.9. Assume C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)

are two chain com-
plexes of abelian groups. We define a new chain complex E =

(
E∗, ∂

E
∗
)
, by

setting

En := Cn ⊕Dn and ∂En(σ⊕ τ) := ∂Cn(σ)⊕ ∂Dn (τ), for all n ∈ Z.

This chain complex is called the direct sum of the chain complexes C and D and
is denoted by C⊕D.

When the complexes C and D are free, then so is their direct sum C⊕D.
Just as in the case of simplicial complexes, it is easy to calculate the homology
groups of direct sums.

Proposition 4.10. Assume C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)

are two chain com-
plexes of abelian groups. Then, the abelian groupsHn(C⊕D) andHn(C)⊕Hn(D)

are isomorphic for all integers n.

Proof. Assume C⊕D =
(
E∗, ∂

E
∗
)
. Clearly, we have Ker∂En = Ker∂Cn⊕Ker∂Dn ,

and Im∂En = Im∂Cn ⊕ Im∂Dn . We can then derive

Hn(C⊕D) =
Ker∂En

Im∂En+1
=

Ker∂Cn ⊕Ker∂Dn
Im∂Cn+1 ⊕ Im∂Dn+1

≈ Ker∂Cn
Im∂Cn+1

⊕ Ker∂Dn
Im∂Dn+1

= Hn(C)⊕Hn(D),

where the existence of a group isomorphism in between the third and the
fourth term is a standard fact from group theory. �

The concept of a simplicial subcomplex has its analog in the context of
chain complexes as well.

Definition 4.11. Assume C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)

are two chain
complexes of abelian groups. The chain complex D is called the chain
subcomplex of C if, for every n ∈ Z, the groupDn is a subgroup of the group
Cn, and the boundary homomorphism ∂Dn : Dn → Dn−1 is well-defined
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as the restriction of the boundary homomorphism ∂Cn : Cn → Cn−1 to the
subgroup Dn, that is, ∂Dn = ∂Cn

∣∣
Dn

.

If C is free, then so is D, since any subgroup of a free abelian group is
itself free abelian.

Definition 4.12. Assume C =
(
C∗, ∂

C
∗
)

is a chain complex of abelian groups,
and D =

(
D∗, ∂

D
∗
)

is a subcomplex of C. Then the quotient chain complex is
the complex Q = (Q∗, ∂

Q
∗ ) defined as follows:

• Qn := Cn/Dn, for all n ∈ Z,
• ∂Qn : Cn/Dn → Cn−1/Dn−1 is given by α +Dn 7→ ∂Cnα +Dn−1, for

all n ∈ Z.

We shall denote Q by C/D. The boundary operator ∂C/D∗ is well-defined,
since∂Cn(Dn) ⊆ Dn−1. However, even ifC is free, the quotient chain complex
C/D may not be free.

Definition 4.13. LetG be a free abelian group, and letH be a subgroup ofG.
The subset A of G is called the basis complement of H in G if for any basis B
of H, the union A ∪ B is a basis of G.

Assume now that in Definition 4.12 the chain complex C is free, and
the following additional condition is satisfied: for each n there is a set An,
which is a basis complement of Dn in Cn. In that case it is easy to see that
the chain complex C/D is also free.

4.3. Cones and cylinders based at chain complexes

Next, we look at the chain complex analogs of the geometric constructions
of the cone and the cylinder.

Definition 4.14. Assume C is an arbitrary chain complex of abelian groups.
We define a new chain complex of free abelian groups, which is denoted by
Cone(C) =

(
Cone∗, ∂Cone∗

)
,

. . . Conen+1 Conen Conen−1 . . .
∂Conen+2 ∂Conen+1 ∂Conen

∂Conen−1

as follows: the chain groups Conen are the abelian groups given by

Conen := Cn−1 ⊕ Cn, for all n ∈ Z,

and the boundary operator ∂Conen : Conen → Conen−1 is given by the
formula

(4.1) ∂Conen (τ⊕ ρ) =
(
−∂Cn−1τ

)
⊕
(
∂Cnρ+ τ

)
.

We call the chain complex Cone(C) the cone with the base C.
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If C is free, then so is Cone(C).

Definition 4.15. Let againCbe an arbitrary chain complex of abelian groups.
We define a new chain complex of abelian groups Cyl(C) =

(
Cyl∗, ∂Cyl∗

)
. . . Cyln+1 Cyln Cyln−1 . . .

∂
Cyl
n+2 ∂

Cyl
n+1 ∂

Cyl
n

∂
Cyl
n−1

as follows: the chain groups Cyln are the abelian groups given by

Cyln := Cn ⊕ Cn−1 ⊕ Cn, for all n,

and the boundary operator ∂Cyln : Cyln → Cyln−1 is given by the formula

∂Cyln (σ⊕ τ⊕ ρ) =
(
∂Cnσ− τ

)
⊕
(
−∂Cn−1τ

)
⊕
(
∂Cnρ+ τ

)
.

We call the chain complex Cyl(C) the cylinder with base C.

The intuitive picture for the cylinder is clear: there are two copies of C,
symbolizing the top and the bottom of the cylinder, and one more shifted
copy of C, symbolizing the stretched cells in between. For the intuition for
the cone the reader should imagine forgetting about one of the copies of C,
which corresponds to considering the relative chain complex.

It easy to see that both Cyl(C) and Cone(C) are well-defined chain com-
plexes, and that the chain groups are free abelian. To do that, we need
to check that the boundary operators are actually differentials, that is, the
composition of two subsequent maps is 0. In the case of the cone Cone(C)

we have the computation

(4.2) ∂Conen−1

(
∂Conen (τ⊕ ρ)

)
= ∂Conen−1

((
−∂Cn−1τ

)
⊕
(
∂Cnρ+ τ

))
=
(
−∂Cn−2

(
−∂Cn−1τ

))
⊕
(
∂Cn−1

(
∂Cnρ+ τ

)
+
(
−∂Cn−1τ

))
= 0⊕ 0 = 0.

In the case of the cylinder Cyl(C) we have the computation

(4.3) ∂
Cyl
n−1

(
∂Cyln (σ⊕ τ⊕ ρ)

)
= ∂Cyln−1

((
∂Cnσ− τ

)
⊕
(
−∂Cn−1τ

)
⊕
(
∂Cnρ+ τ

))
=
(
∂Cn−1

(
∂Cnσ− τ

)
−
(
−∂Cn−1τ

))
⊕
(
−∂Cn−2

(
−∂Cn−1τ

))
⊕
(
∂Cn−1

(
∂Cnρ+ τ

)
+
(
−∂Cn−1τ

))
= 0⊕ 0⊕ 0 = 0.

Let us now show the chain complex analog of Proposition 2.35.

Proposition 4.16. For an arbitrary chain complex C of abelian groups, the cone
Cone(C) has trivial homology groups.
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Proof. Let us take an arbitrary cycle τ⊕ ρ, where τ ∈ Cn−1 and ρ ∈ Cn. We
have

0 = ∂Conen (τ⊕ ρ) =
(
−∂Cn−1τ

)
⊕
(
∂Cnρ+ τ

)
⇐⇒

{
−∂Cn−1τ = 0

∂Cnρ+ τ = 0
⇐⇒ τ = −∂Cnρ.

Now take the element ρ⊕ 0 ∈ Conen+1. We have

∂Conen+1 (ρ⊕ 0) =
(
−∂Cnρ

)
⊕ ρ = τ⊕ ρ.

It follows that [τ ⊕ ρ] = 0. Since the choice of the cycle was arbitrary, we
conclude that Hn(Cone(C)) = 0, for all n. �

Comparing our proof to that of Proposition 2.35 we observe the fre-
quent and characteristic phenomenon that passing on to the more abstract
framework actually makes the proofs easier. They become more structural
and the abstraction provides us with a handy language for writing them
down.

4.4. Chain maps

As mentioned above, bringing the maps between the chain complexes, the
so-called chain maps, into the picture does not only provide aesthetically
pleasing abstraction, but actually allows the consideration of the structures
which help to understand the chain complexes themselves.

4.4.1. The category of chain complexes.
We generalize the notion of maps which we have seen for simplicial com-
plexes.

Definition 4.17. Assume C = (C∗, ∂
C
∗ ) and D = (D∗, ∂

D
∗ ) are two chain com-

plexes. A chain map f from C to D is a collection of group homomorphisms
(fn)n∈Z, fn : Cn → Dn, such that

(4.4) ∂Dn ◦ fn = fn−1 ◦ ∂Cn, for all n ∈ Z.

A graphical way to describe the identities (4.4) all at once is to present
them as a commutative diagram (4.5). The identities then simply say that in
each square of this diagram either of the two dashed arrows produces the
same answer, which is just another way of saying that the squares commute.
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(4.5)

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

∂Cn+2 ∂Cn+1

fn+1

∂Cn

fn

∂Cn−1

fn−1

∂Dn+2

∂Dn+1 ∂Dn

∂Dn−1

If the upper and the lower indices are dropped from the Equation (4.4), it
will simply say ∂ ◦ f = f ◦ ∂. For this reason, one often describes chain maps
as those which commute with the boundary operator.

It is easy to show, that the identity map is a chain map, and a composition
of two chain maps is again a chain map. Thus, the chain complexes (of R-
modules), together with the chain maps form a category.

Just as in the topological context, the cone over a chain complex comes
equipped with the canonical inclusion map ι : C → Cone(C), defined by
ιn : ρ 7→ (0, ρ), for each ρ ∈ Cn. Examining Equation (4.1) shows that ι is
a chain map.

Similarly, for the cylinder we have two maps t, b : C → Cyl(C), defined
by tn : σ 7→ (σ, 0, 0) and bn : ρ 7→ (0, 0, ρ), for each σ, ρ ∈ Cn. These
correspond to the embeddings as a top or a bottom copy into the cylinder,
as described above. Again, it is immediate that both t and b are well-defined
chain maps.

The next simple, but very important proposition tells us that chain maps
induce maps between homology groups.

Proposition 4.18. Assume C = (C∗, ∂
C
∗ ) and D = (D∗, ∂

D
∗ ) are two chain com-

plexes, and assume f = (fn)n∈Z is a chain map from C to D. For each n ∈ Z,
the map f∗n which takes [α] to [fn(α)], whenever α ∈ Cn, such that ∂Cnα = 0, is
a well-defined group homomorphism from Hn(C) to Hn(D).

Furthermore, we have id∗n = idHn(C), and (f ◦ g)∗n = f∗n ◦ g∗n.

Proof. Assume α is an n-cycle. Then ∂Dn (fn(α)) = fn−1(∂Cnα) = fn−1(0) = 0,
so fn(α) is an n-cycle as well. This means that [fn(α)] is a well-defined
homology class. Let us see that it only depends on [α], and not on the
choice of the actual representative α. If [α] = [β], then α = β + ∂Cn+1δ, for
some δ. Applying fn to both sides of the last equality, we obtain

fn(α) = fn(β) + fn(∂
C
n+1δ) = fn(β) + ∂

D
n+1(fn+1(δ)).

This of course implies that [f(α)] = [f(β)].
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It is completely straightforward to see that fn is a group homomorphism,
since

f∗n([α] + [β]) = f∗n([α+ β]) = [fn(α+ β)] = [fn(α) + fn(β)]

= [fn(α)] + [fn(β)] = f
∗
n([α]) + f

∗
n([β]).

Furthermore, we have id∗n([α]) = [idn(α)] = [α], so id∗n = idHn(C). Finally,

(f ◦ g)∗n([α]) = [(f ◦ g)n(α)] = [fn(gn(α))] = f
∗
n([gn(α)]) = f

∗
n(g
∗
n([α])),

which shows that (f ◦ g)∗n = f∗n ◦ g∗n, and finishes the proof. �

Definition 4.19. A chain map f between the chain complexes C and D is
called a quasi-isomorphism if the induced maps f∗n : Hn(C) → Hn(D) are
group isomorphisms for all n ∈ Z.

Note, that an identity map is a quasi-isomorphism, and a composition
of two quasi-isomorphisms is again a quasi-isomorphism.

4.4.2. Kernels and images of chain maps.
The notions of the kernel and the image of chain maps generalize those for
linear maps defined in linear algebra.

Definition 4.20. Assume we are given two chain complexes, C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)
, and a chain map f : C → D, f = (fn)n∈Z. The chain

complex Ker(f) =
(

Ker(f)∗, ∂
Ker(f)
∗

)
is defined by Ker(f)n := Ker(fn), 1 and

the differential map ∂Ker(f)
n : Ker(f)n → Ker(f)n−1 is the restriction of ∂Cn to

Ker(fn).

. . . Ker(f)n+1 Ker(f)n Ker(f)n−1 . . .
∂

Ker(f)
n+2 ∂

Ker(f)
n+1 ∂

Ker(f)
n

∂
Ker(f)
n−1

Furthermore, the chain complex Im (f) =
(

Im(f)∗, ∂
Im(f)
∗

)
is defined by

Im (f)n := Im (fn), 2 and the differential map ∂Im(f)
n : Im (f)n → Im (f)n−1 is

the restriction of ∂Dn to Im(fn).

. . . Im(f)n+1 Im(f)n Im(f)n−1 . . .
∂

Im(f)
n+2 ∂

Im(f)
n+1 ∂

Im(f)
n

∂
Im(f)
n−1

Proposition 4.21. For any chain complexes C and D, and an arbitrary chain map
f : C→ D, the following statements are true.

(1) The chain complexes Ker(f) and Im(f) are well-defined.
(2) If C is a chain complex of free abelian groups, then so is Ker(f).
(3) If D is a chain complex of free abelian groups, then so is Im(f).

1Note that Ker(fn) ⊆ Cn.
2Note that Im(fn) ⊆Dn.
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Proof. Let us say, we have C =
(
C∗, ∂

C
∗
)
, D =

(
D∗, ∂

D
∗
)
, and f = (fn)n∈Z.

Take α ∈ Ker (f)n = Ker (fn). Then fn−1(∂α) = ∂(fn(α)) = ∂(0) = 0, hence
∂α ∈ Ker(f)n−1, which means that the chain complex Ker(f) is well-defined.

On the other hand, pick a chain β ∈ Im (f)n = Im (fn). There exists
α ∈ Cn such that fn(α) = β. Then, we have ∂β = ∂(fn(α)) = fn−1(∂α),
which implies that ∂β ∈ Im (fn−1) = Im (f)n−1. Hence, also the chain
complex Im(f) is well-defined, and the verification of (1) is finished.

Finally, Ker (fn) ⊆ Cn and Im (fn) ⊆ Dn, and since any subgroup
of a free abelian group is itself free abelian, the statements (2) and (3)
follow. �

4.4.3. Mapping cylinder and mapping cone for chain complexes.
Next, we would like to generalize Definitions 4.14 and 4.15, and to derive
notions of cylinders and cones which depend on a given chain map.

Definition 4.22. Assume C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)

are chain com-
plexes, and f = (fn)n∈Z is a chain map from C to D. We define a new
chain complex Cyl(f) =

(
Cyl(f)∗, ∂

Cyl(f)
∗

)
, called the mapping cylinder of f,

as follows:

• we set Cyl(f)n := Cn ⊕ Cn−1 ⊕Dn, for all integers n;

• the boundary maps ∂Cyl(f)n : Cyl(f)n → Cyl(f)n−1, or stated more
specifically ∂Cyl(f)n : Cn ⊕ Cn−1 ⊕Dn → Cn−1 ⊕ Cn−2 ⊕Dn−1, are
given by

∂
Cyl(f)
n (σ⊕ τ⊕ ρ) =

(
∂Cnσ− τ

)
⊕
(
−∂Cn−1τ

)
⊕
(
∂Dn ρ+ fn−1(τ)

)
.

Furthermore, we define a new chain complexCone(f) = (Cone(f)∗, ∂
Cone(f)
∗ ),

which we call the mapping cone of f, as follows:

• we set Cone(f)n := Cn−1 ⊕Dn, for all integers n;

• the boundary maps ∂Cone(f)n : Cone(f)n → Cone(f)n−1, in alter-
native notations ∂Cone(f)n : Cn−1 ⊕Dn → Cn−2 ⊕Dn−1, are given
by

∂
Cone(f)
n (τ⊕ ρ) =

(
−∂Cn−1τ

)
⊕
(
∂Dn ρ+ fn−1(τ)

)
.

When f : C → D is the identity map, the constructions of the mapping
cone and the mapping cylinder of f coincide with the constructions of the
cone and the cylinder over the base C, as defined in Section 4.3.

In general, whenC andD are chain complexes of free abelian groups, and
f : C→ D is a chain map, then also Cyl(f) and Cone(f) are chain complexes
of free abelian groups. The verification that the boundary operator squares
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to 0 is almost verbatim to Equation (4.2) and Equation (4.3). For the mapping
cone, we have the computation

∂
Cone(f)
n−1

(
∂
Cone(f)
n (τ⊕ ρ)

)
= ∂

Cone(f)
n−1

((
−∂Cn−1τ

)
⊕
(
∂Dn ρ+ fn−1(τ)

))
=
(
−∂Cn−2

(
−∂Cn−1τ

))
⊕
(
∂Dn−1

(
∂Dn ρ+ fn−1(τ)

)
+ fn−2

(
−∂Cn−1τ

))
= 0⊕

(
∂Dn−1 ◦ fn−1 − fn−2 ◦ ∂Cn−1

)
(τ) = 0⊕ 0 = 0;

and for the mapping cylinder, we have the computation

∂
Cyl(f)
n−1

(
∂
Cyl(f)
n (σ⊕ τ⊕ ρ)

)
= ∂

Cyl(f)
n−1

((
∂Cnσ− τ

)
⊕
(
−∂Cn−1τ

)
⊕
(
∂Dn ρ+ fn−1(τ)

))
=
(
∂Cn−1

(
∂Cnσ− τ

)
−
(
−∂Cn−1τ

))
⊕
(
−∂Cn−2

(
−∂Cn−1τ

))
⊕
(
∂Dn−1

(
∂Dn ρ+ fn−1(τ)

)
+ fn−2

(
−∂Cn−1τ

))
= 0⊕ 0⊕

(
∂Dn−1 ◦ fn−1 − fn−2 ◦ ∂Cn−1

)
(τ) = 0⊕ 0⊕ 0 = 0.

One can show directly that Cyl(f) has the same homology as D and also
that when f is the inclusion map, the chain complex Cone(f) has the same
homology asD/Im(f). However, the best way to do this is by using a special
tool called chain homotopy.

Exercises

(1) Show that the cylinder construction in Definition 4.15 is a special case
of the mapping cylinder of chain complexes. Show the same statement
concerning the cone construction in Definition 4.14.

(2) Show, that the identity map is a chain map, and a composition of two
chain maps is again a chain map.

(3) Fill in the proofs of Propositions 4.6 and 4.8.

(4) Define the mirror version of Definition 4.7, where the truncation is done
below a certain index, instead of above a certain index, and prove the
analog of Proposition 4.8.

(5) Assume that we are given a free chain complex C = (C∗, ∂
C
∗ ), and a sub-

complex of C, called D = (D∗, ∂
D
∗ ), such that for each n there is a set An,

which is a basis complement ofDn in Cn. Show that the chain complex
C/D is also free.
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(6) Find a chain complex C of abelian groups such that Hn(C) , 0, for
infinitely many values of n, and still Hn(C⊗Z2) = 0, for all n.

(7) Let C and D be two arbitrary chain complexes, and let f : C → D be
a chain map. Assuming f is a 0-map, compute the homology groups of
its mapping cone, in terms of the homology groups of C and D.

(8) Let C = (C∗, ∂
C
∗ ) be the chain complex, whose chain groups are given by

Cn =

{
Z, if n = 0 or 1,
0, otherwise,

and, for all n ∈ Z, the boundary map ∂Cn is the 0-map. Assume further-
more, that D is a chain complex, which is isomorphic to C, and assume
f : C→ D is a chain map.

Describe the mapping cone of f and calculate its homology, if the
following is known.
(a) The map f0 : C0 → D0 is the identity map, and the map f1 : C1 → D1

is the multiplication by m, for some integer m.
(b) The map f0 : C0 → D0 is the multiplication by k, and the map

f1 : C1 → D1 is the multiplication bym, for some integers k andm.
(9) Prove that the relation C ∼ D if and only if there is a quasi-isomorphism from

C to D is reflexive and transitive, but not symmetric.



Chapter 5

Chain Homotopy

Chain homotopy is the right homotopy in the category of chain complexes.
Defined in a purely algebraic way, it constitutes a very convenient tool to
prove that two chain maps f and g between chain complexes C and D induce
the same maps between the homology groups.

The general idea is to map each chain σ from C to a chain from D of
dimension one higher. Intuitively, this should give an algebraic analog of
a cylinder, whose two bases are the images of σ under the maps f and g,
and whose other sides constitute the homotopy on the boundary of σ.

5.1. Chain homotopy

Let us now be more specific. Given two chain complexes C and D, and two
chain maps f and g between them, a chain homotopy Φ is a sequence of
maps, each map takes a chain of C to a chain of D of dimension one higher.
This new chain is supposed to embody the topological homotopy. It turns
out, that for the actual homology computation, we do not need to define
the chain homotopy on all the chains, but in fact it suffices to define Φ for
the cycles only. We shall accordingly deviate from the standard literature
on the subject, and define what we call an abridged chain homotopy on par
with the regular one.

5.1.1. Abridged and unabridged. Before we give the first definition let us
recall the previously introduced piece of notations. Whenever C =

(
C∗, ∂

C
∗
)

is a chain complex, we let ZC
n denote the kernel of the boundary map ∂Cn,

and let BC
n denote the image of the boundary map ∂Cn+1. Clearly, ZC

n ⊇ BC
n,

since C is a chain complex.

91
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Definition 5.1. Assume that we have two chain complexes C =
(
C∗, ∂

C
∗
)

and
D =

(
D∗, ∂

D
∗
)

and chain maps f = (fn)n∈Z and g = (gn)n∈Z from C to D.
An abridged chain homotopy between the chain maps f and g is a family

of maps (Ψn : ZC
n → Dn+1)n∈Z, such that

(5.1) ∂Dn+1 ◦ Ψn = fn − gn.

. . . ZC
n+1 ZC

n ZC
n−1 . . .

. . . Dn+1 Dn Dn−1 . . .

gn+1fn+1 Ψn gnfn Ψn−1 gn−1fn−1

∂Dn+2 ∂Dn+1 ∂Dn ∂Dn−1

The intuitive idea behind the abridged chain homotopy is that we want
to construct a certificate of the fact that the difference between f and g

evaluated on cycles is a boundary of some chain, cf. Equation (5.1). Defining
the maps Ψ = (Ψn)n∈Z allows us to do that in an organized manner.

More classically, we have the following definition.

Definition 5.2. Assume that C, D, f, and g are the same as in Definition 5.1.
A chain homotopy between f and g is a family of maps (Φn : Cn → Dn+1)n∈Z,
such that

(5.2) ∂Dn+1 ◦Φn +Φn−1 ◦ ∂Cn = fn − gn.

. . . Cn+1 Cn Cn−1 . . .

. . . Dn+1 Dn Dn−1 . . .

∂Cn+2 ∂Cn+1

gn+1fn+1

∂Cn

Φn gnfn

∂Cn−1

Φn−1 gn−1fn−1

∂Dn+2 ∂Dn+1 ∂Dn ∂Dn−1

The chain maps f and g are said to be chain homotopic if there exists
a chain homotopy between them.

5.1.2. Chain homotopy is an equivalence relation. Assume we are given
chain complexes C and D, and let M(C,D) denote the set of all chain maps
from C to D.

Proposition 5.3. Being chain homotopic is an equivalence relation on M(C,D).

Proof. Let us simply check the three axioms of equivalence relations.
Reflexivity. For any chain map f : C → D, the map Φ = 0 is a chain
homotopy between f and f; so f ∼ f.
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Symmetry. IfΦ = (Φn)n∈Z is a chain homotopy between chain maps f and
g, for some f, g : C → D, then Ψ = (Ψn)n∈Z, defined by Ψn = −Φn, for all
n ∈ Z, is a chain homotopy between g and f; since for all n ∈ Z we have:

∂Dn+1 ◦ Ψn + Ψn−1 ◦ ∂Cn = ∂Dn+1 ◦ (−Φn) + (−Φn−1) ◦ ∂Cn

= −
(
∂Dn+1 ◦Φn +Φn−1 ◦ ∂Cn

)
= −(fn − gn) = gn − fn.

So f ∼ g implies g ∼ f.
Transitivity. Assume that for some chain maps f, g, and h, where f, g, h :

C → D, we have a chain homotopy between f and g, called Φ = (Φn)n∈Z,
and a chain homotopy between g and h, called Ψ = (Ψn)n∈Z. Consider the
family of maps Ω = (Ωn)n∈Z, given by Ωn = Φn + Ψn, for all n ∈ Z. The
following direct computation verifies that it is a chain homotopy between f
and h:

∂Dn+1 ◦Ωn +Ωn−1 ◦ ∂Cn = ∂Dn+1 ◦ (Φn + Ψn) + (Φn−1 + Ψn) ◦ ∂Cn
= ∂Dn+1 ◦Φn + ∂Dn+1 ◦ Ψn +Φn−1 ◦ ∂Cn + Ψn ◦ ∂Cn

=
(
∂Dn+1 ◦Φn +Φn−1 ◦ ∂Cn

)
+
(
∂Dn+1 ◦ Ψn + Ψn ◦ ∂Cn

)
= (fn − gn) + (gn − hn) = fn − hn.

So f ∼ g, together with g ∼ h, implies that f ∼ h. We have therefore verified
the last equivalence relation axiom. �

5.1.3. Chain homotopy and homology. Obviously, the restriction of an
arbitrary chain homotopy to the subgroups of cycles is an abridged chain
homotopy, since the term (Φn−1 ◦ ∂Cn)(σ) vanishes when σ is a cycle. On
the other hand, as Theorem 5.4 and Corollary 5.5 show, having an abridged
chain homotopy is just the right tool to show that the chain maps induce
the same maps between the homology groups of free chain complexes.

Theorem 5.4. Assume C and D are chain complexes of abelian groups, such that
C is free. For an arbitrary chain map f : C→ D the following three statements are
equivalent:

(1) f induces trivial maps on the homology groups of C, that is, we have
f∗ = 0, which is shorthand notation for f∗n = 0, for all n;

(2) f maps each cycle in C to a boundary of D, that is, for all n we have
f
(
ZC
n

)
⊆ BD

n ;
(3) there exists an abridged chain homotopy between the chain map f and the

0-map.

Proof. Let α ∈ ZC
n, represent a homology class [α] ∈ Hn(C). By definition of

f∗n, we have f∗n([α]) = [fn(α)]. Thus, for all α ∈ ZC
n, we have the following



94 5. Chain Homotopy

chain of equivalences:

f∗n([α]) = 0 ⇐⇒ [fn(α)] = 0 ⇐⇒ fn(α) ∈ BD
n .

This shows the equivalence of (1) and (2).
Assume now that there exists an abridged chain equivalence Ψ between

the map f and the 0-map. This means, that for all n, there exist Ψn : ZC
n →

Dn+1, such that ∂Dn+1 ◦ Ψn = f̃n, where f̃n is the restriction of fn to ZC
n.

Clearly, this implies Im f̃n ⊆ Im∂Dn+1, and so (3) implies (2).
Finally, assume the condition (2) holds, and let us construct an abridged

chain equivalence Ψ between the map f and the 0-map. All subgroups of
free abelian groups are free abelian, so there exists a basisAwhich generates
ZC
n freely. For each a ∈ A, choose b ∈ Dn+1, such that ∂Dn+1b = fn(a). Such

an element must exist, since fn
(
ZC
n

)
⊆ BD

n . We now set Ψ(a) := b and
extend uniquely by linearity to the entire subgroup ZC

n. Since the identity
∂Dn+1 ◦ Ψn = fn is true for the basis elements of ZC

n, it must hold for the
entire group ZC

n. �

Note that the freeness of C was only used to prove the implication
(2)⇒ (3). The implication (3)⇒ (2) is valid for all chain complexes.

Corollary 5.5. Assume C and D are chain complexes, C is free, and f, g : C → D

are chain maps. Then f and g induce the same homomorphisms on the homology
groups if and only if there exists an abridged chain homotopy between them.

Proof. If we have two chain maps f and g then f∗ = g∗ if and only if
(f − g)∗ = 0. We can therefore use Theorem 5.4 to conclude that f∗ = g∗ if
and only if there exists an abridged chain homotopy between f− g and the
0-map. This is, of course, the same as an abridged chain homotopy between
f and g. �

Corollary 5.6. Assume C and D are arbitrary chain complexes of abelian groups,
and f, g : C→ D are chain maps, which are chain homotopic. Then f and g induce
the same maps on the homology groups.

Proof. Since the restriction of a chain homotopy yields an abridged chain
homotopy, this follows from Corollary 5.5, together with the previous ob-
servation that the implication (3)⇒ (2) in Theorem 5.4 is valid for all chain
complexes. �

Let us now consider an example of two chain complexes and chain maps
between them such that no chain homotopy exists, whereas an abridged
chain homotopy does exist. Let C =

(
C∗, ∂

C
∗
)

be the chain complex defined
by saying that the only non-trivial chain groups and maps are: C1 = Z,
C0 = Z2, and ∂C1 : x 7→ x mod 2. Let furthermore D =

(
D∗, ∂

D
∗
)

be the chain
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complex whose only non-trivial chain groups and maps are: D2 = D1 = Z,
and ∂D2 : x → 2x. Consider the chain maps f = (fn)n∈Z and g = (gn)n∈Z
from C to D, such that f1 = id , and all other fi’s and gi’s are 0. The situation
is depicted in Figure 5.1. We leave it as an exercise to show that f and g are
not chain homotopic, but there does exist an abridged chain homotopy.

For the interested reader we note that the only non-trivial homology
groups of C and D areH1(C) ≈ Z andH1(D) ≈ Z2. Looking at representing
chains, one can see that the chain map f induces a 0-map on the homology
groups. This cannot be certified by presenting a chain homotopy, but it can,
by presenting an abridged chain homotopy!

. . . 0 0 Z Z2 0 . . .

. . . 0 Z Z 0 0 . . .

mod 2

id

x 7→2x

Figure 5.1. Diagram of chain complexes and chain maps where the chain
homotopy does not exist, but the abridged one does.

5.2. Some applications of chain homotopy

We would now like to make our first foray into the vast field of applications
of chain homotopy. The topological homotopy has deep connections with
mapping cones and mapping cylinders. The same turns out to be true for
the chain homotopy.

5.2.1. Null homotopy and maps from mapping cones.

Definition 5.7. A chain map f is called null-homotopic if there exists a chain
homotopy between f and the 0-map.

Intuitively, one might think that it should somehow be possible to con-
tract a null-homotopic map. That intuition is made formal by the following
proposition.

Proposition 5.8. Let C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)

be two chain complexes of
abelian groups, and let f = (fn)n∈Z be a chain map from C to D. The chain map
f is null-homotopic if and only if it can be extended to a chain map from the cone
over C to D.

Formally, this means that there exists a chain map g : Cone(C)→ D, such that
g ◦ ι = f, where ι : C → Cone(C) is the canonical inclusion map of C into the base
of Cone(C).
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Proof. Recall, that the canonical inclusion map ιofC into the base of Cone(C)
is defined by ιn : Cn → Cn−1 ⊕ Cn, σ 7→ 0⊕ σ.

Assume first, that Φ = (Φn)n∈Z is a chain homotopy between f and 0-
map, that is,Φn−1 ◦∂Cn+∂Dn+1 ◦Φn = fn, for all n. Define gn : Cn−1⊕Cn →
Dn, by setting

gn(τ⊕ σ) := Φn−1(τ) + fn(σ).
Clearly, this is a group homomorphism. The next calculation verifies that it
commutes with the differentials:

∂Dn (gn(τ⊕ σ)) − gn−1(∂
Cone(C)
n (τ⊕ σ))

= ∂Dn (Φn−1(τ) + fn(σ)) − gn−1((−∂
C
n−1τ)⊕ (∂Cnσ+ τ))

= ∂Dn (Φn−1(τ)) + ∂
D
n (fn(σ)) −Φn−2(−∂

C
n−1τ) − fn−1(∂

C
nσ+ τ)

= (∂Dn ◦Φn−1 +Φn−2 ◦ ∂Cn−1 − fn−1)(τ) + (∂Dn ◦ fn − fn−1 ◦ ∂Cn)(σ) = 0

Furthermore, we have

(gn ◦ ιn)(σ) = gn(ιn(σ)) = gn(0⊕ σ) = fn(σ),

hence g ◦ ι = f as chain maps.
Reversely, assume that there exists a chain map g : Cone(C) → D, such

that g ◦ ι = f. For each n ∈ Z, define the map Φn : Cn → Dn+1, by sending
τ 7→ gn(τ ⊕ 0). Clearly, these maps are group homomorphisms. The fact
that Φ = (Φn)n∈Z is a chain homotopy between f and the 0-map is verified
by the following calculation, where for brevity we skip the indices:

∂(Φ(τ)) +Φ(∂τ) = ∂(g(τ⊕ 0)) + g(∂τ⊕ 0) = g(∂(τ⊕ 0)) + g(∂τ⊕ 0)
= g((−∂τ)⊕ τ) + g(∂τ⊕ 0) = g((−∂τ)⊕ τ+ ∂τ⊕ 0) = g(0⊕ τ) = f(τ).

This finishes the proof. �

5.2.2. Chain homotopy of mapping cylinders.

Proposition 5.9. Let C =
(
C∗, ∂

C
∗
)

and D =
(
D∗, ∂

D
∗
)

be two chain complexes
of abelian groups, and let f = (fn)n∈Z be a chain map from C to D. Then, the
homology groups of the chain complexCyl(f) are isomorphic to the homology groups
of D. Specifically, this isomorphism is induced by the chain map ϕ : D→ Cyl(f),
given by ρ 7→ (0⊕ 0⊕ ρ).

Proof. In addition to the chain mapϕ, which is described in the formulation
of the proposition, we consider the chain map ψ : Cyl(f)→ D, defined by

ψn : σ⊕ τ⊕ ρ 7→ fn(σ) + ρ.

First, we clearly have ψn ◦ ϕn : ρ 7→ ρ, i.e., the chain map ψ ◦ ϕ : D → D is
simply the identity map. For the induced maps on the homology groups,
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this means that ψ∗ ◦ ϕ∗ = id H∗(D), since ψ∗ ◦ ϕ∗ = (ψ ◦ ϕ)∗ = (idD)∗ =

idH∗(D).
Let us investigate the chain map ϕ ◦ ψ : Cyl(f) → Cyl(f). We consider

the family of homomorphisms Φ = (Φn)n∈Z, with each Φn : Cyl(f)n →
Cyl(f)n+1 given by

Φn : σ⊕ τ⊕ ρ 7→ 0⊕ σ⊕ 0.

We claim thatΦ is a chain homotopy between the identity map idCyl(f) and
the map ϕ ◦ψ. This is verified by the following computation:

(5.3)
(
∂
Cyl(f)
n+1 ◦Φn +Φn−1 ◦ ∂

Cyl(f)
n

)
(σ⊕ τ⊕ ρ)

= ∂
Cyl(f)
n+1 (0⊕ σ⊕ 0) +Φn−1

((
∂Cnσ− τ

)
⊕
(
−∂Cn−1τ

)
⊕
(
∂Dn ρ+ fn−1(τ)

))
= (−σ)⊕

(
−∂Cnσ

)
⊕ fn(σ) + 0⊕

(
∂Cnσ− τ

)
⊕ 0 = (−σ)⊕ (−τ)⊕ fn(σ)

= 0⊕ 0⊕ (fn(σ) + ρ) − σ⊕ τ⊕ ρ = (ϕn ◦ψn − id)(σ⊕ τ⊕ ρ).

Since ϕ ◦ ψ is chain homotopic to the identity map, both maps induce the
same map on homology groups. This means that ϕ∗ ◦ ψ∗ = (ϕ ◦ ψ)∗ =(
idCyl(f)

)∗
= idH∗(Cyl(f)). Combined with the identity ψ∗ ◦ ϕ∗ = idH∗(D)

this tells us that ψ∗ and ϕ∗ are isomorphisms, which finishes the proof. �

Note, how the computation Equation (5.3) would have been much sim-
pler, if we restricted ourselves to verifying that Φ is an abridged chain
homotopy. In this case, we would have taken an element σ⊕ τ⊕ρ, which is
a cycle. This, in particular, means we would have ∂Cnσ = τ. Then we could
replace Equation (5.3) with(

∂
Cyl(f)
n+1 ◦Φn

)
(σ⊕ τ⊕ ρ) = ∂Cyl(f)n+1 (0⊕ σ⊕ 0) = (−σ)⊕

(
−∂Cnσ

)
⊕ fn(σ)

= (−σ)⊕(−τ)⊕fn(σ) = 0⊕0⊕(fn(σ)+ρ)−σ⊕τ⊕ρ = (ϕn◦ψn−id)(σ⊕τ⊕ρ).

5.3. Alternative definition of chain homotopy via chain maps of
cylinders

We find it instructive, rather than defining the chain homotopy ad hoc, to
derive this concept by combining the notion of the cylinder of the chain
complex with the topological intuition of homotopies of maps.

Recall, that in point-set topology two continuous maps f and g between
topological spaces X and Y are called homotopic if there exists a family
of continuous maps which continuously deforms f to g. The concept of a
continuous family is formalized by requiring the existence of a continous
map F : X× I→ Y, where I is the closed interval [0, 1] and the space X× I is
equipped with the standard direct product topology.
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Clearly, X× I is nothing but the cylinder with the base X. To mimic this
topological definition in the chain complex setting we can do the following:

• replace the topological spaces X and Y with chain complexes C

and D;

• replace the continuous maps f and g with chain maps;

• replace the direct product space X× I with the cylinder over C.

Furthermore, recall at this time that we have structural embedding maps
b, t : C → Cyl(C) mimicking the inclusion as the top or bottom copy in the
cylinder.

As a result, we obtain the following alternative definition of a chain
homotopy.

Theorem 5.10. Assume C and D are chain complexes, and f, g : C→ D are chain
maps. The maps f and g are chain homotopic if and only if there exists a chain map
F : Cyl(C)→ D, such that F ◦ b = f and F ◦ t = g.

Proof. Indeed, a chain map F : Cyl(C) → D consists of group homomor-
phisms Fn : Cn ⊕Cn−1 ⊕Cn → Dn. Each such homomorphism can be split
into three homomorphisms f̃n, g̃n : Cn → Dn, and ϕn−1 : Cn−1 → Dn, so
that Fn(σ⊕ τ⊕ ρ) = g̃n(σ) +ϕn−1(τ) + f̃n(ρ).

Clearly, the conditions F◦b = f and F◦t = g translate into f = f̃ and g = g̃.
Let us now write out the meaning of the condition ∂ ◦ F = F ◦∂, where again
for brevity we shall skip the indices. First, we have

(5.4) (∂ ◦ F)(σ⊕ τ⊕ ρ) = ∂(g(σ) +ϕ(τ) + f(ρ)) = ∂g(σ) + ∂ϕ(τ) + ∂f(ρ)
= f(∂ρ) + g(∂σ) + ∂ϕ(τ),

where the last equality used the fact that f and g are chain maps. On the
other hand, we get

(5.5) (F ◦ ∂)(σ⊕ τ⊕ ρ) = F((∂σ− τ)⊕ (−∂τ)⊕ (∂ρ+ τ))

= g(∂σ− τ) +ϕ(−∂τ) + f(∂ρ+ τ) = g(∂σ) − g(τ) −ϕ(∂τ) + f(∂ρ) + f(τ)

= f(∂ρ) + g(∂σ) + f(τ) − g(τ) −ϕ(∂τ).

The left hand sides of Equations (5.4) and (5.5) must be equal. Comparing
the right hand sides of these equations yields precisely the identity ∂ϕ(τ) =
f(τ)−g(τ)−ϕ(∂τ)which is used to define the concept of chain homotopy. �
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Exercises

(1) Let C, D, and E, be chain complexes. Assume we are given chain maps
f, g : C → D and h, k : D → E, such that f is chain homotopic to g and h
is chain homotopic to k. Show that the compositions h ◦ f and k ◦ g are
chain homotopic.

(2) Show that in the example on Figure 5.1 there can be no chain homo-
topy between the chain maps f and g. Contrast that by presenting an
abridged chain homotopy between the two maps.
Hint: make use of the different domains of an abridged and unabridged
homotopy.

(3) Assume C = (C∗, ∂∗) is a chain complex of free abelian groups, such that
Ci = 0, for all i < 0. Show that C is acyclic (see Definition 3.7) if and
only if the identity map idC is null-homotopic.





Chapter 6

Connecting
Homomorphism

6.1. Homology map induced by inclusion

Assume that our goal is to calculate homology groups of a certain chain
complex of abelian groups X =

(
X∗, ∂

X
∗
)
. Assume furthermore, that A =(

A∗, ∂
A
∗
)

is some given chain subcomplex of X. Recall, that being a chain
subcomplex can be phrased as two conditions:

• for each n ∈ Z, the group An is a subgroup of Xn;

• each boundary operator ∂An : An → An−1 is well-defined as the
restriction of ∂Xn : Xn → Xn−1 to An.

Because of that second property, we will mostly drop the letters A and
X from ∂A∗ and from ∂X∗ , and just use ∂∗ in our notations. We also say that
we have a pair of chain complexes (X,A).

We would like to investigate in what way, having the information about
the homology groups of the subcomplex A, and, importantly, about how
these groups sit inside the homology groups of the complex X, would help
us to gain some understanding of the groups H∗(X).

6.1.1. Replacing chain subcomplexes by inclusion chain maps, and the
associated subgroups.

Following the functorial way of thinking, it is natural to supplant saying
that A is a chain subcomplex of X, by considering the chain map ι : A → X

defined by the inclusion. This, in turn, means that we have induced maps
ιn : Hn(A)→ Hn(X), ∀n, on the homology groups. The next task which we

101
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undertake is to study this map ι∗n.

A : . . . An+1 An An−1 . . .

X : . . . Xn+1 Xn Xn−1 . . .

∂An+2 ∂An+1

ιn+1

∂An

ιn

∂An−1

ιn−1

∂Xn+2 ∂Xn+1 ∂Xn ∂Xn−1

To start with, note that just the fact that the map ι is an inclusion, does not
by itself mean anything - the induced maps ι∗n certainly do not need to be
injective. This is because cycles in A, which are not boundaries of some
chain in A, may just happen to be boundaries of some chain in X instead.
The kernel of ι∗n will essentially consist of such cycles.

To phrase the relation precisely, we need to have notations for the
plethora of the groups involved in this situation. To start with, we al-
ready have An and Xn denote the chain groups of the chain complexes A

and X, and we know that An ⊆ Xn, ∂n(Xn) ⊆ Xn−1 and ∂n(An) ⊆ An−1.
We then set

Zn := Ker ∂n, Bn := ∂n+1(Xn+1),

ZA
n := Ker (∂n|An) , and BA

n := ∂n+1(An+1),

where ∂n|An denotes the restriction of the boundary operator ∂n to the
subgroup An.

As far as the inclusions are concerned, we certainly have both Xn ⊇
Zn ⊇ Bn and An ⊇ ZA

n ⊇ BA
n . In fact, by the definition of homology, we

have

Hn(X) = Zn
/
Bn, and Hn(A) = ZA

n

/
BA
n .

Furthermore, the group ZA
n consists of those chains from Xn, whose bound-

ary is 0, and which are at the same time chains of A. In other words, we
have ZA

n = Zn ∩An. Crucially, and notwithstanding the formal temptation,
we do not have the identity BA

n = Bn ∩ An. Instead, we can only claim the
inclusion BA

n ⊆ Bn ∩An. That motivates the need for further notations, and
we set

BA←X
n := Bn ∩An.

This is the subgroup of those chains in An, which are boundaries of some
chain from Xn+1. Clearly, the boundary of a chain from Xn+1 is automati-
cally a cycle, so we have BA←X

n = ZA
n ∩ Bn.

The collection of subgroups of Xn which arises in our simple construc-
tion is illustrated in Figure 6.1.
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Xn
An

Zn

ZA
n

Bn

BA←X
n

BA
n

Figure 6.1. Cycle and boundary subgroups.

6.1.2. The kernel and the image of the induced homology map. Utilizing
the notations, which we have introduced, the group homomorphism ι∗n :

Hn(A)→ Hn(X) is given by

ι∗n : α+ BA
n 7−→ α+ Bn.

It is not difficult to find the kernel of the map ι∗n. Indeed, for any cycle
α ∈ ZA

n , we have α + BA
n ∈ Ker ι∗n if and only if α ∈ Bn; or, equivalently, if

and only if α ∈ ZA
n ∩ Bn = BA←X

n . Hence, we can write

(6.1) Ker ι∗n = BA←X
n

/
BA
n .

This is our formal way of saying that the kernel of ι∗n consists of cycles in A

which happen to be boundaries in X. The set of elements of Xn contained
in these cosets is BA←X

n = An ∩ ∂n+1(Xn+1).
Let us now turn to describing the image of the homomorphism ι∗n.

Clearly, the subgroup Im ι∗n consists of all homology classes h ∈ Hn(X), for
which there exists a cycle α ∈ ZA

n , such that [α] = h. To spell this out: these
are precisely the homology classes of X, which can be represented by a cycle
from A. Here is a formal way to express this fact:

(6.2) Im ι∗n =
(
ZA
n + Bn

)/
Bn.

The set of all elements of Xn that represent these cosets can be written as

ZA
n + Bn = Ker ∂An + ∂n+1(Xn+1).

It follows from the Second Isomorphism Theorem for abelian groups that(
ZA
n + Bn

)/
Bn ≈ ZA

n

/(
ZA
n ∩ Bn

)
= ZA

n

/
BA←X
n .

In other words, the following two procedures will yield isomorphic groups:

• take all the cycles in A, add to them all the boundaries in X, and
then divide by the boundaries in X;
• take all the cycles of A and then divide by those which are also

boundaries in X.
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This gives us another group, which is isomorphic to Im ι∗n.

6.2. Relative homology

With all the new notations of the previous section, one might start to be
getting the feeling that, to phrase the relation between homology of a chain
complex and homology of its subcomplex, a succinct mathematical lan-
guage would be imperative. Such a language can be provided by the con-
cepts of relative homology, and the associated, so-called long exact sequence.

6.2.1. Calculating modulo a subcomplex. Assume as above, that we are
given a chain complex X = (X∗, ∂∗), and its chain subcomplex A = (A∗, ∂∗).
Consider the quotient complex X/A. Recall that by definition the n-th
chain group of X/A is Xn/An. So, a typical n-chain of X/A is a coset
α + An, where α ∈ Xn. Furthermore, recall that the boundary operator
∂
X/A
n : Xn/An → Xn−1/An−1, is given by the formula

∂
X/A
n : α+An 7−→ ∂nα+An−1.

In the context of relative homology one typically uses a slightly differ-
ent terminology to which we shall now revert. Namely, the chain complex
X/A =

(
X∗/A∗, ∂

X/A
∗

)
is called the chain complex of X relative to A. Its ho-

mology groups H∗(X/A) are called the homology groups of X relative to A or
simply the relative homology groups. Accordingly, one can talk about relative
cycles, relative boundaries and relative homology classes.

To simplify notations, we shall drop the upper index from ∂
X/A
n most

of the time, as it is clear from the context which boundary operator we are
using.

By definition, a relative n-cycle is an element α + An ∈ Xn/An, whose
relative boundary is 0, that is, ∂n(α + An) = 0. Untangling the notations,
we get

α+An is a relative n-cycle if and only if ∂nα ∈ An−1.

We let ZX/A
n ⊆ Xn/An denote the subgroup of all relative n-cycles.

A relative n-boundary, again by definition, is an element α + An ∈
Xn/An, for which there exists β + An+1 ∈ Xn+1/An+1, such that ∂n+1β +

An = α+An. This is the same as to say α− ∂n+1β ∈ An. Thus:

α+An is a relative n-boundary if and only if α ∈ An+Bn,
where Bn is the subgroup of all n-boundaries.
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We let BX/A
n ⊆ Xn/An denote the subgroup of all relative n-boundaries.

Clearly, we have Hn(X/A) = Z
X/A
n

/
B
X/A
n .

By comparison, the relative homology classes are more interesting crea-
tures. These are obtained by a double quotient process, where we first
take the quotient by An, and then by BX/A

n . Therefore, the full and correct
name for [α] ∈ Hn(X/A) should be (α + An) + B

X/A
n , where BX/A

n itself is
a group consisting of cosets of An. Viewing the union of these cosets as
a subset of Xn, we obtain the set α+An + Bn. When practical, we shall use
this alternative notation, and view the relative homology class as a coset of
An+Bn, with the latter perceived as a subgroup of Xn. Figure 6.2 provides
the summary of various names for [α], which we use.

[α] ∈ Hn(X/A)

(α+An) + B
X/A
n

α+An + Bn

Figure 6.2. Different names of the same relative homology class, where
α ∈ Xn, ∂nα ∈ An−1.

6.2.2. Examples of relative homology. The two simplest cases of relative
homology are found when one sets X := A or A := 0. Indeed, if X = A, then
X/A is simply the trivial complex, that is, the chain complex where all the
chain groups are trivial. So the relative homology in this case is also trivial
in all dimensions.

If A = 0, then X ≈ X/A, so the relative homology is the same as the
homology of X.

If we have a direct sum decomposition X = A ⊕ B, then one can prove
that the chain complex X/A is isomorphic to B. In particular, the relative
homology is simply the homology of B.

We remark, that often the relative homology arises in the case when
X is the chain complex of some simplicial complex K, and A is the chain
complex associated to some simplicial subcomplex of K.

6.2.3. Mapping cones, mapping cylinders, and the quotient construc-
tion. Let C = (C∗, ∂∗) be an arbitrary chain complex of abelian groups.
In Section 4.3 we have defined chain complexes Cyl(C) = (Cyl∗, ∂Cyl∗ ) and
Cone(C) = (Cone∗, ∂Cone∗ ) as algebraic analogs of the cylinder and the cone
based at C.

Let us start with the cylinder. Recall that Cyln = Cn ⊕ Cn−1 ⊕ Cn, and
∂
Cyl
n (σ⊕τ⊕ρ) = (∂σ−τ)⊕(−∂τ)⊕(∂ρ+τ). In particular, ∂(σ⊕0⊕0) = ∂σ⊕0⊕0

and ∂(0 ⊕ 0 ⊕ ρ) = 0 ⊕ 0 ⊕ ∂ρ. This means that the first and the third
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coordinates correspond to chain subcomplexes B and B ′ isomorphic to C.
Let us set D := Cyl(C)/B and D ′ := Cyl(C)/B ′. Assume D = (D∗, ∂

D
∗ ).

By definition of the quotient complex, we have Dn = Cn−1 ⊕ Cn, and
∂Dn (τ⊕ ρ) = (−∂τ)⊕ (∂ρ+ τ). Furthermore, we have D ′n = Cn ⊕ Cn−1, and
∂D

′
n (σ⊕ τ) = (∂σ− τ)⊕ (−∂τ).

Recall that Conen = Cn−1⊕Cn, and ∂Conen (τ⊕ρ) = (−∂τ)⊕ (∂ρ+τ). We
immediately see that D is evidently isomorphic to Cone(C). Furthermore,
swapping the terms and changing the sign shows that D ′ is also isomorphic
to Cone(C). This is the algebraic analog of the topological fact that the
quotient of a cylinder by its base is homeomorphic to the cone over that
base.

Let us now consider the quotient of the cone by its base. Formally, the
chain complex Cone(C) has the following subcomplex D = (D∗, ∂

D
∗ ): for all

n, the subgroup Dn consists of all elements 0⊕ ρ. Note that ∂Cone∗ (0⊕ ρ) =
0 ⊕ ∂ρ, so this is indeed a subcomplex, which is isomorphic to C. The
quotient complex Cone(C)/D = E = (E∗, ∂

E
∗ ) is given by: En ≈ {τ | τ ∈ Cn−1}

and ∂En(τ) = −∂Cn−1τ. This complex is isomorphic to the shifted complex
C[1]. The isomorphism is given by changing the sign in every second chain
group.

6.2.4. Homology map induced by the quotient. For every n ∈ Z we have
a standard quotient map qn : Xn → Xn/An, which maps each element
α ∈ Xn to its coset α + An. This is of course a group homomorphism. On
the level of the chain complexes we have the following proposition.

Proposition 6.1. The family of group homomorphisms q = {qn}n∈Z is a well-
defined chain map q : X→ X/A.

Proof. For an arbitrary chain α ∈ Xn we have the following calculation:

qn−1(∂
X
nα) = ∂

X
nα+An−1 = ∂

X/A
n (α+An) = ∂

X/A
n

(
qn(α)

)
.

This shows that qn−1 ◦ ∂Xn = ∂
X/A
n ◦qn, for all n ∈ Z, and hence q is a chain

map. �

The chain map q induces maps on homology groups, q∗ : H∗(X) →
H∗(X/A), q∗ = {q∗n}n, given by

q∗n : Hn(X) −→ Hn(X/A),

α+ Bn 7−→ α+An + Bn.

The kernel of q∗n consists of all α + Bn, for which α ∈ Zn and α + An +

Bn = An + Bn. In other words, α ∈ Zn ∩ (An + Bn) = ZA
n + Bn, and so,

using Equation (6.2) we get

(6.3) Ker q∗n =
(
ZA
n + Bn

)/
Bn = Im ι∗n.
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The image of q∗n consists of all α+An+Bn, such that α ∈ Zn. The elements
from such cosets constitute the subsetZn+An+Bn = Zn+An. We therefore
obtain

(6.4) Im q∗n = (Zn +An)
/
(An + Bn).

We now have the formulae for kernels and images of the maps ι∗n and q∗n.

6.3. Connecting homomorphism

While it is simple to find a map from the homology of A to the homology
of X - it is induced by inclusion, and it is simple to find the map from
the homology of X to the homology of X/A - it is induced by the quotient
map, it is not as straightforward to connect the homology of X/A with the
homology of A. It turns out that there is a canonical way to map H∗(X/A)

to H∗(A), but not in the same dimension. In fact, as this map is induced by
the boundary operator, the homology index will shift down by one.

6.3.1. The definition and the first examples.

Definition 6.2. Assume X is a chain complex, and A is a subcomplex of X.
For any integer n, the connecting homomorphism is a map

∂cn : Hn(X/A)→ Hn−1(A)

given by

(6.5) ∂cn : α+An + Bn 7−→ ∂nα+ BA
n−1.

One often uses the short-hand notation ∂c∗ : H∗(X/A) → H∗−1(A) to denote
the collection of connecting homomorphisms for all indices.

The map (6.5) can be viewed as follows. Take the set on the left hand
side of (6.5) and apply the regular boundary operator to it. The boundary
operator takes α to ∂nα, it takes An to BA

n−1, and it takes Bn to 0. As the
result we obtain the set on the right hand side of (6.5).

By definition, the kernel of the connecting homomorphism ∂cn consists
of all α + An + Bn, such that ∂nα ∈ BA

n−1. In other words, α ∈ ∂−1n
(
BA
n−1

)
.

On the other hand, we note that

∂−1n
(
BA
n−1

)
= ∂−1n

(
∂n(An)

)
= Zn +An.

This is because the set of all n-chains of X, whose boundary is equal to the
boundary of some n-chain of A, is the same as the set of all n-chains of X
which differ from some n-chain of A by a cycle. Indeed, two chains have
the same boundary if and only if they differ by a cycle.

Comparing with Equation (6.4), we can thus conclude that

(6.6) Ker ∂cn = (Zn +An)
/
(An + Bn) = Im q∗n.
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Finally, again directly from (6.5), we see that the image of the connecting
homomorphism consists of all β+ BA

n−1, such that

(1) β ∈ An−1,

(2) there exists α ∈ Xn, such that β = ∂nα.

We conclude from Equation (6.1) that

(6.7) Im ∂cn = BA←X
n−1

/
BA
n−1 = Ker ι∗n−1.

6.3.2. Recalling the formalism of exact sequences. Let us take a brief step
back into the realm of abstract algebra and recall the concept of exact se-
quences.

Definition 6.3. Assume we have a set of abelian groups {Ai}i∈Z together
with a set of group homomorphisms {ϕi}i∈Z, with each ϕi : Ai → Ai−1, so
that these can conveniently be arranged into a sequence:

(6.8) · · · An+1 An An−1 · · ·
ϕn+2 ϕn+1 ϕn ϕn−1

Such a sequence is called exact if Imϕn+1 = Kerϕn, for all n ∈ Z.

We stress that the abelian groups in Definition 6.3 do not necessarily
have to be free.

When we have a sequence as in (6.8) and the condition Im ϕn+1 =

Ker ϕn is satisfied for some specific n, we say that this sequence is exact
at An.

Definition 6.4. A sequence (6.8) is called short if all but three consequent
entries in the sequence are trivial.

Consider a short exact sequence

(6.9) 0 A B C 0
ϕ ψ

The exactness condition breaks down into the following three statements:

(1) the map ϕ is injective;

(2) the map ψ is surjective;

(3) we have Imϕ = Kerψ.

It is easy to show that C is always isomorphic to the quotient group
B/Im ϕ. However, in general, it does not have to be the case that B is
isomorphic to the direct sum A⊕C. A notable exception is provided by the
case of free groups, see the exercises for this chapter.
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6.3.3. Long Exact Sequence of a pair of chain complexes.
A succinct way to summarize these findings is provided by the helpful
formalism of the associated long exact sequence

(6.10)

. . . Hn(X) Hn(X/A)

Hn−1(A) Hn−1(X) . . .

ι∗n q∗n

∂cn

ι∗n−1 q∗n−1

This can be depicted by a spiral diagram.

Xn+1 Xn+1/An+1 Hn+1(X) Hn+1(X/A)

An+1 Hn+1(A)

Xn Xn/An Hn(X) Hn(X/A)

An Hn(A)

Xn−1 Xn−1/An−1 Hn−1(X) Hn−1(X/A)

An−1 Hn−1(A)

qn+1

∂n+1 ∂n+1

q∗n+1

ιn+1 ι∗n+1

qn

∂n ∂n

q∗n

ιn

∂n+1

ι∗n

∂cn+1

qn−1 q∗n−1

ιn−1

∂n

ι∗n−1

∂cn

Figure 6.3. The diagram of chain complexes associated to the quotient
construction turns into a spiral-shaped long exact sequence.

The long exact sequence (6.10) can be used to confirm some of the
facts, which we already know, as well as to make quick conclusions in
various special cases. For instance, if the chain complex A is acyclic, that
is, Hn(A) = 0, for all n ∈ Z, then Hn(X) ≈ Hn(X/A), and the maps q∗n
give the necessary isomorphisms. This is of course hardly surprising as it
simply says that dividing by a homology-trivial complex will not change
homology.

Similarly, if the quotient complex X/A is acyclic, we getHn(X) ≈ Hn(A),
and the maps ι∗n, which are induced by the inclusion, are isomorphisms.
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This is also intuitively rather clear, as it simply means that when the quotient
is “trivial” then the chain complexes X and A have the same homology.

More interesting is the special case when the chain complex X is the
acyclic one. In this case, the homology groups of the quotient complex X/A

and the chain complex A are nearly the same, just the index gets shifted.
Formally, we have Hn(X/A) ≈ Hn−1(A), for all n ∈ Z, and the connecting
homomorphism provides a canonical isomorphism.

The next level of complexity is reached when we start assuming that the
maps, rather than the groups, are trivial. For example, we can consider the
natural question: what happens when the homology maps ι∗n : Hn(A) →
Hn(X), induced by inclusion, are trivial? In this case, the long exact sequence
(6.10) splits into a multitute of short ones. Namely, for all n ∈ Z we have
the short exact sequence

(6.11) 0 Hn(X) Hn(X/A) Hn−1(A) 0.
q∗n ∂cn

As mentioned above, this does not automatically mean that Hn(X/A) ≈
Hn(X) ⊕ Hn−1(A), as things can become entangled in the middle of the
sequence (6.11). To make this conclusion we would need to have additional
conditions, such as requiring that Hn−1(A) should be free. Still there are
many cases when this is true, for example if we consider homology with
field coefficients.

6.4. Maps between pairs and connecting homomorphism

The long exact sequence of a pair of chain complexes is frequently a rather
efficient tool for computing homology. However, in many situations, its
true power first unfolds when put in the functorial context of maps between
pairs of chain complexes, and hence maps between the associated long exact
sequences.

6.4.1. Functorial properties of relative homology. We recall that chain
maps between chain complexes induce families of group homomorphisms
between their homology groups. The same is true for pairs, each consisting
of a chain complex and its subcomplex. The concept of a chain map is then
replaced by a map between pairs.

Assume that in addition to the chain complex X and its subcomplex A

we have a chain complex Y =
(
Y∗, ∂

Y
∗
)

and its subcomplex D =
(
D∗, ∂

D
∗
)
.

Furthermore, assume we are given a chain map ϕ : X → Y, ϕ = {ϕn}n,
ϕn : Xn → Yn, such that for each n ∈ Zwe have an inclusionϕn(An) ⊆ Dn.
For brevity, we shall phrase that condition as ϕ(A) ⊆ D.
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Definition 6.5. Given pairs of chain complexes (X,A) and (Y,D). A chain
map ϕ : X → Y is called a chain map between pairs (X,A) and (Y,D) if
ϕ(A) ⊆ D.

As expected, chain maps between pairs induce maps between appro-
priate homology groups, and these maps behave in a functorially nice way.

Proposition 6.6. Any chain map between pairs of complexes ϕ : (X,A)→ (Y,D)

induces a family of group homomorphisms on the relative homology

ϕ∗ : H∗(X,A)→ H∗(Y,D), ϕ∗ = {ϕ∗n}n∈Z, ϕ
∗
n : Hn(X,A)→ Hn(Y,D).

These homomorphisms are given by the formulaϕ∗n([α]) := [ϕn(α)], for allα ∈ Xn,
such that ∂Xnα ∈ An−1.

Proof. Assume we have α ∈ Xn, such that ∂Xnα ∈ An−1. Since we have
the inclusion ϕn−1(An−1) ⊆ Dn−1, and ∂Yn ◦ ϕn = ϕn−1 ◦ ∂Xn , we have
∂Yn(ϕn(α)) = ϕn−1

(
∂Xnα

)
∈ Dn−1, so the homology class [ϕn(α)] is well-

defined.
Let us see that [ϕn(α)] depends only on the choice of the homology

class [α], and is independent of the choice of the actual α. Pick an arbitrary
β ∈ An and γ ∈ Xn+1. We need to show that [ϕn(α)] = [ϕn(α+β+∂n+1γ)].
We have

[ϕn(α+ β+ ∂n+1γ)] = [ϕn(α) +ϕn(β) +ϕn(∂n+1γ)]

= [ϕn(α) +ϕn(β) + ∂n+1(ϕn+1(γ))] = [ϕn(α)],

where the last equality follows from the fact that ϕn(β) and ∂n+1(ϕn+1(γ))
both belong to Dn.

The fact that ϕ∗n is a group homomorphism follows from the following
two calculations:

ϕ∗n(k[α]) = ϕ
∗
n([kα]) = [ϕn(kα)] = [kϕn(α)] = k[ϕn(α)] = kϕ

∗
n([α]),

ϕ∗n([α] + [β]) = ϕ∗n([α+ β]) = [ϕn(α+ β)] = [ϕn(α) +ϕn(β)]

= [ϕn(α)] + [ϕn(β)] = ϕ
∗
n([α]) +ϕ

∗
n([β]),

for all α,β ∈ Xn, and k ∈ Z. �

6.4.2. Naturality of the connecting homomorphism. The property stated
in the next theorem is often refered to as naturality of the connected homomor-
phism; alternative phrasing is to say that the connecting homomorphism is
natural.

Theorem 6.7. Assume we are given chain complexes X and Y, their respective
subcomplexes A and D, and a chain map ϕ between pairs (X,A) and (Y,D). Let
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ϕ∗ denote the map induced on homology. Then, for all n, the following diagram
commutes:

(6.12)

Hn(X/A) Hn−1(A)

Hn(Y/D) Hn−1(D)

∂cn[X,A]

ϕ∗n ϕ∗n−1

∂cn[Y,D]

where ∂cn[X,A] and ∂cn[Y,D] are connecting homomorphisms from the long exact
sequence of the pairs (X,A) and (Y,D).

Proof. The verification is completely straightforward. Take any α ∈ Xn,
such that ∂nα ∈ An−1, the two-way calculation in the diagram (6.12) yields

∂(ϕ∗(α+An + BX
n)) = ∂(ϕ

∗(α) +Dn + BY
n) = ∂(ϕ

∗(α) +Dn)

ϕ∗(∂(α+An + BX
n)) = ϕ

∗(∂(α+An)) = ϕ
∗(∂(α) +An−1).

The two final expressions are equal by Proposition 6.6. This confirms the
commutativity of the diagram (6.12). �

The commutative diagram (6.12) can be extended to maps of long exact
sequences.

The naturality of the connecting homomorphism is also very useful for
concrete calculations.

6.5. Zig-Zag Lemma

The crucial feature of the connecting homomorphism is that it allows to
translate the statement about exact sequences of chain complexes to the
statements about exact sequences of homology groups. In its full generality,
the corresponding algebraic statement is known as the Zig-Zag Lemma. Its
verbal meta-formulation is as follows:

a short exact sequence of chain complexes induces a long exact
sequence of the corresponding homology groups.

Before we can formulate the precise formal statement, we need to define
short exact sequences of chain complexes.

Definition 6.8. A short exact sequence of chain complexes is a sequence of chain
complexes and chain maps

(6.13) 0 C D E 0,
ϕ ψ

such that for each n, the corresponding short sequence

0 Cn Dn En 0
ϕn ψn
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is exact.

We are now ready for a short exact sequence version of what we did in
Section 6.3. The proof is essentially the same as the derivation in the section,
just formulated in a more abstract language. We choose to include it here
for the purposes of providing an exercise in the frequently used algebraic
technique known as diagram chasing.

Theorem 6.9. (Zig-Zag Lemma)
Assume we have a short exact sequence of chain complexes (6.13), then we have a
long exact sequence

. . . Hn(C) Hn(D) Hn(E) Hn−1(C) . . . ,
∂cn−1 ϕ∗n ψ∗n ∂cn ϕ∗n−1

whereϕ∗ andψ∗ are induced byϕ andψ, and ∂c∗ is the connecting homomorphism.

Proof. We shall define ∂cn : Hn(E) → Hn−1(C), which we do in two steps.
We start by constructing an auxiliary map ζ : Zn(E) → Hn−1(C), where we
recall that Zn(E) = Ker∂En. After that we combine it with the usual quotient
map Zn(E)→ Zn(E)

/
Bn(E) = Hn(E).

Take γ ∈ En, such that ∂nγ = 0. Since ψn is surjective, there exists
β ∈ Dn, such that ψn(β) = γ. Since ψ∗ is a chain map, we have ∂n ◦ ψn =

ψn−1 ◦ ∂n. We have chosen γ, so that ∂nγ = 0, and ψn(β) = γ. We get that
ψn−1(∂nβ) = ∂n(ψn(β)) = 0. However, we know that Kerψn−1 = Imϕn−1,
so there must exist α ∈ Cn−1, such that ϕn−1(α) = ∂nβ. We now define
ζ([γ]) := [α].

To see that homology class [α] is well-defined, we need to show that
∂nα = 0. Since ϕ is a chain map and ϕn(α) = ∂n+1β, we have

ϕn−2(∂nα) = ∂n−1
(
ϕn(α)

)
= ∂n(∂n+1β) = 0.

The map ϕn−2 is injective, hence ∂nα = 0.
Let us show that [α] is independent of the choice of α and β. Assume we

haveβ1, β2 ∈ Dn, such thatψn(β1) = ψn(β2) = γ. We haveψn(β1−β2) = 0.
Since Kerψn = Imϕn, there exists α̃ ∈ Cn, such that ϕn(α̃) = β1−β2. Then

∂nβ1 − ∂nβ2 = ∂n(β1 − β2) = ∂n
(
ϕ(α̃)

)
= ϕn−1(∂nα̃).

Pick α1, α2 ∈ Cn−1, such that ϕn−1(α1) = ∂nβ1 and ϕn−1(α2) = ∂nβ2. We
then have ϕn−1(α1 − α2) = ∂nβ1 − ∂nβ2. Since ϕ is injective, we conclude
that α1 − α2 = ∂nα̃. It follows that [α1] = [α2].

It is easy to see that ζ is a group homomorphism. Indeed, take γ1, γ2 ∈
En, such that ∂nγ1 = ∂nγ2 = 0, and take k1, k2 ∈ Z. Set γ := k1γ1 + k2γ2.
Assume we have chosen β1, β2 ∈ Dn, such that ψn(β1) = γ1 and ψn(β2) =
γ2. Take α1, α2 ∈ Cn−1, such that ϕn−1(α1) = ∂nβ1 and ϕn−1(α2) = ∂nβ2.
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Cn+1 Dn+1 En+1 Cn+1 Dn+1 En+1

Cn Dn En Cn Dn En

Cn−1 Dn−1 En−1 Cn−1 Dn−1 En−1

∂n+2 ∂n+2 ∂n+2 ∂n+2 ∂n+2 ∂n+2

ϕn+1

∂n+1

ψn+1

∂n+1

∂n+1

ϕn+1

∂n+1

ψn+1

∂n+1 ∂n+1

∂c

ϕn

∂n

ψn

∂n

∂n

ϕn

∂n

ψn

∂n ∂n

∂c

ϕn−1

∂n−1

ψn−1

∂n−1 ∂n−1

ϕn−1

∂n−1

ψn−1

∂n−1 ∂n−1

Figure 6.4. The two most frequently used graphic depictions of the con-
necting homomorphisms.

Set β := k1β1 + k2β2, and α := k1α1 + k2α2. On one hand, we have
ψn(β) = γ. On the other hand, we have ϕn−1(α) = ∂nβ. It follows that
ζ(γ) = [α], and hence ζ is a group homomorphism.

Assume now that γ ∈ En, such that γ = ∂n+1γ̃, for some γ̃ ∈ En+1.
Since ψn+1 is surjective, we can find β̃ ∈ Dn+1, such that ψn+1(β̃) = γ̃. But
then

ψn(∂n+1β̃) = ∂n+1
(
ψn+1(β̃)

)
= ∂n+1(γ̃) = γ.

Since ζ(γ) is independent of the choice of β, we might as well choose ∂n+1β̃.
Of course, we have ∂n(∂n+1β̃) = 0, which implies that ζ(γ) = 0.

We have shown that BE
n ⊆ Ker ζ, hence, passing on to the quotient,

we have a well-defined group homomorphism ∂cn from Hn(E) = Z
E
n

/
Bn to

Hn−1(C).
Let us now determine Ker∂cn. First, take [γ] ∈ Hn(E), such that ∂cn([γ]) =

0. Assumeβ ∈ Dn, such thatψn(β) = γ, andα ∈ Cn−1, such thatϕn−1(α) =
∂nβ. We have ∂cn([γ]) = [α]. Since ∂cn([γ]) = 0, there must exist α̃ ∈ Cn, such
that α = ∂nα̃. Using the fact that ϕ is a chain map, we have

∂n
(
ϕn(α̃)

)
= ϕn−1(∂nα̃) = ϕn−1(α) = ∂nβ.

In particular, ∂n
(
β − ϕn(α̃)

)
= 0; in other words, β − ϕn(α̃) ∈ ZD

n . On the
other hand, we have

ψn
(
β−ϕn(α̃)

)
= ψn(β) −ψn

(
ϕn(α̃)

)
= ψn(β) = γ.
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This means that [γ] ∈ Imψ∗n, where ψ∗n is the induced map ψ∗n : Hn(D) →
Hn(E), and we conclude that Ker∂cn ⊆ Imψ∗n.

On the other hand, take γ ∈ En, such that [γ] ∈ Im ψ∗n. This means,
there exists β ∈ ZD

n , such that ψn(β) = γ. Use this β when defining ∂cn([γ]).
Since ∂nβ = 0, we immediately obtain ∂cn([γ]) = 0, and hence the reverse
inclusion Ker∂cn ⊇ Imψ∗n. In total, we get Ker∂cn = Imψ∗n.

Finally, let us show that Im∂cn = Kerϕ∗n−1, where ϕ∗n−1 is the induced
map ϕ∗n−1 : Hn−1(C) → Hn−1(D). Take γ ∈ ZE

n, β ∈ ψ−1
n (γ), and α =

ϕ−1
n−1(∂nβ), so ∂cn([γ]) = [α]. We have

ϕ∗n−1([α]) = [ϕn−1(α)] = [∂nβ] = 0,

and hence Im∂cn ⊆ Kerϕ∗n−1.
On the other hand, take [α] ∈ Ker ϕ∗n−1. We have 0 = ϕ∗n−1([α]) =

[ϕn−1(α)], hence there exists β ∈ Dn, such that ∂nβ = ϕn−1(α). Set γ :=

ψn(β). We have

∂nγ = ∂n
(
ψn(β)

)
= ψn−1(∂nβ) = ψn−1

(
ϕn−1(α)

)
= 0,

and so γ ∈ ZE
n. By construction, ∂cn([γ]) = [α], and we obtain the reverse

inclusion Im∂cn ⊇ Kerϕ∗n−1. This finishes the entire proof. �

Exercises

(1) Let C and D be chain complexes, and let f : C→ D be a chain map.
(a) Show that a quotient of the mapping cylinder Cyl(f) by its top copy

of C gives the mapping cone Cone(f).
(b) Show furthermore that the quotient of Cyl(f) by the bottom copy

of D gives the shifted complex C[1].

(2) Show that when f is the inclusion map of chain complexes f : C ↪→ D,
the chain complex Cone(f) has the same homology as D/Im(f).

(3) Assume we are given a short exact sequence of abelian groups

(6.14) 0 A B C 0
ϕ ψ

(a) Show that C is isomorphic to B/Imϕ.
(b) Show that if the group C is free, then B is isomorphic to the direct

sum A⊕ C.

(4) Given a short exact sequence

0 Z Z B 0,

what are the possibilities for B?





Chapter 7

Singular Homology

7.1. Definition of singular homology

Singular homology is easy to define formally and it is extremely useful
when we want to talk about homology directly associated to topological
spaces, as opposed to various combinatorial gluing schemes. Many difficult
questions associated to the combinatorial constructions in Chapter 2, such
as independence on the specific triangulation, are rendered irrelevant by
virtue of the definition itself.

Furthermore, singular homology is the tool of choice, whenever formal
succinct proofs are required. On the other hand, the biggest disadvantage of
using singular homology is that we can virtually never compute anything
directly from the chain complex. This is why in applied topology one uses
combinatorial homology theories, such as simplicial or cubical ones.

Definition 7.1. Let X be an arbitrary topological space. A singular simplex
of dimension n is simply a continuous map σ : ∆n → X from the standard
n-simplex to our space.

We let Csing
n (X) denote the free abelian group generated by the set of all

singular n-simplices. This group is called the nth singular chain group of X.

A singular n-chain in X is any element of Csing
n (X). By definition of the

free abelian group generated by a set, a singular n-chain is a finite linear
combination of singular n-simplices with integer coefficients.

The singular homology is now defined in exactly the same way as
the simplicial homology, albeit with the singular simplices replacing the
simplicial ones.

117
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Definition 7.2. Assume X is a topological space, we define the singular
boundary operator ∂sing

n : C
sing
n (X)→ C

sing
n−1(X) as follows. When σ : ∆n → X is

a singular n-simplex, we set

∂
sing
n (σ) :=

n∑
i=0

(−1)iσi,

where σi is the restriction of σ to the (n−1)-dimensional boundary simplex
of ∆n obtained by deleting the ith vertex. We then extend ∂sing

n to the entire
group Csing

n (X) by linearity.

Assuming the vertices of ∆n are v0, . . . , vn (in that order), we have
σi = σ|[v0,...,v̂i,...,vn]. Furthermore, the linearity means that for an arbitrary
singular n-chain σ = c1α1 + · · ·+ ctαt we set

∂
sing
n (σ) := c1∂

sing
n (α1) + · · ·+ ct∂

sing
n (αt).

Proposition 7.3. Let X be an arbitrary topological space X, and let (∂sing
n )n∈Z be

the associated family of singular boundary operators. Then, for all n, we have

(7.1) ∂
sing
n ◦ ∂sing

n+1 = 0.

The proof of Proposition 7.3 is an elementary exercise, see Exercise (1).
Just as before, Equation (7.1) can equivalently be reformulated as saying
that Im ∂

sing
n+1 ⊆ Ker ∂sing

n , for all n. This fact paves the way for the next
definition.

Definition 7.4. For an arbitrary topological space X, we set

H
sing
n (X) := Ker∂sing

n /Im∂
sing
n+1,

where ∂sing
n and ∂sing

n+1 are the singular boundary operators associated to X.
The group Hsing

n (X) is called the nth singular homology group of X.

Equation (7.1) means that we have a chain complex of free abelian
groups

. . . C
sing
n+1(X) C

sing
n (X) C

sing
n−1(X) . . . ,

∂
sing
n+2 ∂

sing
n+1 ∂

sing
n

∂
sing
n−1

which is called the singular chain complex of X and is denoted by Csing(X).
The singular homology groups of the topological space X are precisely the
homology groups this chain complex.

Calculating singular homology using its definition directly is in general
a daunting task, and so can be done for relatively few topological spaces,
see Exercise (2). The only dimension in which it can be done efficiently is
the dimension 0, see Exercise (3).
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7.2. Singular homology as a functor

Assume now we are given topological spaces X and Y, and a continuous
map f : X→ Y.

Definition 7.5. Given a singular n-simplex σ : ∆n → X, we set

f]n(σ) := f ◦ σ : ∆n → X→ Y.

This is a continuous map from ∆n to Y, so it can be interpreted as a singular
n-simplex in Y. Extending linearly to the whole free abelian group Csing

n (X)

we obtain group homomorphisms f]n : C
sing
n (X)→ C

sing
n (Y), for all n.

The maps f]n which we just defined are said to be induced by f, and
one also writes f] : Csing(X) → Csing(Y) for their collection. The following
properties hold for all n, and are immediate consequences of Definition 7.5:

(1) (f ◦ g)]n = f]n ◦ g]n,

(2) (idX)
]
n = id

C
sing
n (X)

.

Proposition 7.6. Assume X and Y are topological spaces, and f : X → Y is
a continuous map. The induced map f] : Csing(X)→ Csing(Y) is a chain map.

To prove this proposition, we just need to show that the maps f]n com-
mute with the respective boundary operators. We leave this straightforward
verification as an exercise, see Exercise (4). Since we know that any chain
map will induce a map on homology, we have the following corollary.

Corollary 7.7. A continuous map f : X → Y between topological spaces induces
a family of group homomorphisms f∗ = (f∗n)n∈Z, f∗n : H

sing
n (X)→ H

sing
n (Y).

The family f∗ is also said to be induced by f, and for brevity we write
f∗ : H

sing
∗ (X)→ H

sing
∗ (Y). It has the same properties as f]: for all n we have

(1) (f ◦ g)∗n = f∗n ◦ g∗n,
(2) (idX)∗n = id

H
sing
n (X)

.

These imply that a homeomorphism between topological spaces will
induce isomorphisms between their homology groups. It turns out that
this observation can be extended to homotopy equivalences.

Theorem 7.8. Homotopic maps induce equal maps on the singular homology.

Proof. Assume X and Y are topological spaces, and f, g : X→ Y are continu-
ous maps such that f ' g. LetΦ : X× [0, 1]→ Y be some homotopy between
f and g. The full-blown argument would take us too far away from our
goals, so let us stay with a non-technical sketch.
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Take a singular n-simplex σ : ∆n → X. The homotopy Φ yields a map
from the prism ∆n × [0, 1]→ Y. At the top and the bottom base facets of the
prism this map restricts to the singular n-simplices f](σ) and g](σ). Take
some simplicial subdivision of ∆n × [0, 1]. The technical details here are
not important, for instance we could take the canonical subdivision of the
direct product of two simplices, see [Ko08, Subsection 10.5.1]. Mapping
the simplex σ to the sums of appropriately signed (n + 1)-simplices in that
subdivision will yield a chain homotopy between f] and g]. The statement
of our theorem then follows from Corollary 5.6. �

Corollary 7.9. Homotopy equivalent spaces have isomorphic singular homology
groups.

Proof. Assume X and Y are homotopy equivalent topological spaces. Let
f : X→ Y and g : Y → X be some continuous maps such that g ◦ f ' idX and
f ◦ g ' idY . Passing on to homology, for all n, we have

g∗n ◦ f∗n = (g ◦ f)∗n = (idX)∗n = id
H

sing
n (X)

,

and similary f∗n ◦ g∗n = id
H

sing
n (Y)

. It follows that, for all n, f∗n and g∗n are
isomorphisms between the nth singular homology groups of X and Y. �

7.3. Simplicial approximation

While in general not all topological spaces are triangulable, that is, homeo-
morphic to the geometric realization of some simplicial complex, the vast
majority of spaces we are interested in are. So for all ends and purposes we
can restrict ourselves to such spaces. The next natural query which arises
is, whether also the simplicial maps are sufficient to model the full richness
of the family of continuous maps.

This is the main question which concerns us in this section, so assume
thatK andM are simplicial complexes, and f : |K|→ |M| is a continuous map
between their geometric realizations. We then ask whether we can find a
simplicial approximation of f. What we would really want is to guarantee the
existence of a simplicial map ϕ : K→M, such that its geometric realization
|ϕ| is homotopic to f.

As a first step we would like to contemplate the notion of being close
inside a simplicial complex. Let us take a point x ∈ |K|. Let σ be the support
simplex of x, denoted suppKx, or simply supp x. This is the unique minimal
simplex which contains x, in particular, it must contain x in its interior.

We shall then say that x is close to the vertices of σ. In terms of barycen-
tric coordinates: each point y of |K| can be expressed in barycentric coordi-
nates, and it is close to those vertices of |K|, which appear with a non-zero
coefficient in the barycentric coordinate presentation of y.
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Reversely, while each point of |K| is close to the vertices of its support
simplex, there is a formal way to describe all the points close to a fixed
vertex of |K|. Namely, for a vertex v ∈ K, we have defined its open star
sto

Kv as a set of all simplices which contain v as one of their vertices.1 It
is therefore logical to write |sto

Kv| to denote the subset of |K| consisting of
the interiors of the simplices from sto

Kv. These are precisely all the points
of |K|, which are close to v, or, in other words, all the points of |K|, whose
barycentric coordinates contain v with a non-zero coeffient. We shall set

OK(v) := |sto
Kv|,

and call it a standard open neighborhood of the vertex v in |K|.
We now have the technical tools and the intuitive understanding to

define the notion of a simplicial map ϕ approximating a continuous map f.
The basic idea is to require that f maps the standard open neighborhood of
v inside the standard open neighborhood of ϕ(v).

Definition 7.10. AssumeK andM are simplicial complexes, and f : |K|→ |M|

is a continuous map between their geometric realizations. A simplicial map
ϕ : K→M is called a simplicial approximation of f if we have the inclusion

(7.2) f(OK(v)) ⊆ OM(ϕ(v)),

for all vertices v ∈ K(0).

Given a continuous function f : |K| → |M|, we may not be able to find
any simplicial approximation at all, see Figure 7.1.

|K|

|M|

f

Figure 7.1. Continuous map without a simplicial approximation.

A useful way to think about inclusion (7.2) is as follows: if a vertex v
appears with a non-zero coefficient among the barycentric coordinates of
some point x ∈ |K|, then the vertex ϕ(v) appears with a non-zero coefficient
among the barycentric coordinates of the point f(x). For future reference
we formally fix this observation.

Lemma 7.11. Assume K and M are simplicial complexes, f : |K| → |M| is a con-
tinuous map, and ϕ : K(0)→M(0) is a function between the sets of vertices, such
that condition (7.2) holds for all v.

1To aid geometric intuition, one should really think about the interiors of those simplices.



122 7. Singular Homology

For any point x ∈ |K| we have: whenever v is a vertex of supp Kx, its image
ϕ(v) is a vertex of supp Mf(x).

As a result we can see that any vertex map satisfying Equation (7.2) will
yield a simplicial approximation.

Proposition 7.12. Assume K and M are simplicial complexes, and f : |K| → |M|

is a continuous map. There is a one-to-one correspondence, given by restriction,
between simplicial approximations of f, and vertex set functionsϕ : K(0)→M(0),
for which inclusion (7.2) holds for all v.

Proof. All we need to show is that any vertex set function ϕ : K(0)→M(0),
for which inclusion (7.2) holds for all v can be uniquely extended to a
simplicial approximation of f.

Take any simplexσofK, and let xbe its barycenter. Clearly, supp Kx = σ.
Let V denote the set of vertices of σ. By Lemma 7.11, we know that ϕ(V)
is contained in the set of vertices of supp Mf(x). In particular, the set ϕ(V)
forms a simplex in M: it is a subsimplex of supp Mf(x), not necessarily
proper. This shows that ϕ maps simplices of K to simplices of M, so it
extends to a simplicial map. �

Proposition 7.13. Assume K and M are simplicial complexes, f : |K| → |M| is
a continuous map, and ϕ : K → M is a simplicial approximation of f. Then the
maps f and |ϕ| : |K|→ |M| are homotopic.

Proof. Take an arbitrary point x ∈ |K|, and set σ := supp x. The point
|ϕ|(x) is contained in |ϕ|(σ), which by Lemma 7.11 is contained in supp f(x).
Therefore, the geometric realization |M| contains an interval connecting
f(x) with |ϕ|(x). We can therefore define a homotopy by simply letting
f(x) slide along this interval with constant speed towards the point |ϕ|(x).
This is called the linear homotopy and is given by the formula Φ(x, t) =

(1− t)f(x) + t|ϕ|(x). �

We now show that iterated use of barycentric subdivision will force the
existence of a simplicial approximation. In order to keep the presentation
not too technical, we limit ourselves to the finite case.

Theorem 7.14. (The finite simplicial approximation theorem).
Assume K and M are finite simplicial complexes, and f : |K|→ |M| is a continuous
map. Then there exists an integer N, and a simplicial map ψ : BdNK→M, such
that ψ is a simplicial approximation of f : |BdNK|→ |M|.

Proof. Consider the set family A := (f−1(O(v)))v∈M(0). First, since each
O(v) is an open set, and f is continuous, also the sets f−1(O(v)) are open.
Furthermore, |K| is compact, and A provides an open set covering of |K|.
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It is a standard fact of set-theoretic topology, that there exists a number λ,
the so-called Lebesgue number of the coveringA, which satisfies the following
condition: if T ⊆ |K| is an open set, whose diameter is less than λ, then there
exists v such that T ⊆ f−1(O(v)).

It is a well-known fact, see Exercise (6) that repeated use of the barycen-
tric subdivision will let the maximal diameter of a star go to 0. This means
that there exists an integer N such that every star of a vertex of BdNK
has diameter which is smaller than λ. Therefore, whenever w is a vertex
of BdN(K), we have O(w) ⊆ f−1(O(v)), for some v ∈ M(0). Applying f
to this inclusion, we obtain f(O(w)) ⊆ O(v). We now set ψ(w) := v. By
Proposition 7.12 this yields a simplicial approximation of f. �

Corollary 7.15. Any continuous map f between geometric realizations of finite
simplicial complexes K and M can, up to homotopy, be replaced by the continuous
map induced by some simplicial map ϕ : K→M.

Proof. By Theorem 7.14, for some integer N, there exists a simplicial ap-
proximation of the map f : |BdNK| → |M|. This map is homotopic to ϕ, by
Proposition 7.13. �

7.4. The 5-Lemma

In the next section we will sketch the proof of the fact that singular and
simplicial homologies are isomorphic, when both are defined; and as a con-
sequence the fact that simplicial homology does not depend on the specific
triangulation.

Before we proceed with that we do need a certain central result from
homological algebra. Due to its universal utility we present it in a separate
section.

Theorem 7.16. (5-Lemma)
Let (7.3) be a commutative diagram of abelian groups and group homomorphisms.

(7.3)
A B C D E

A ′ B ′ C ′ D ′ E ′

i

α

j

β

k

γ

l

δ ε

i ′ j ′ k ′ l ′

Assume that both rows in (7.3) are exact, and the maps α, β, δ, and ε are isomor-
phisms. Then γ is also an isomorphism.

Proof. The proof is again by the use of the so-called diagram chasing. Roughly
speaking one produces the proof by simply using whatever information is
available at each step. If the statement is theoretical and stripped down to
pure necessities, as this one is, the proof is easy to produce step-by-step.
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Let us first show that γ is injective. Take c ∈ C such that γ(c) = 0.
Then δ(k(c)) = 0. Since δ is an isomorphism, we have k(c) = 0. So c ∈
Ker k = Im j. Take b ∈ B such that j(b) = c. Then j ′(β(b)) = 0. Therefore
β(b) ∈ Ker j ′ = Im i ′. Take a ′ ∈ A ′ such that i ′(a ′) = β(b). The map α is
surjective, so we can find a ∈ α−1(a ′). We have

β(i(a)) = i ′(α(a)) = i ′(a ′) = β(b).

Sinceβ is injective, it follows that b = i(a). We then have c = j(b) = j(i(a)) =
0, which means that γ is injective.

Let us now show that γ is surjective. Pick c ′ ∈ C ′, and set d :=

δ−1(k ′(c ′)). We have ε(l(d)) = l ′(δ(d)) = l ′(k ′(c)) = 0. Since ε is injec-
tive, we have l(d) = 0. Since d ∈ Ker l = Im k, we can choose c ∈ C, such
that k(c) = d. By diagram commutativity, we have k ′(γ(c)) = δ(k(c)) =

δ(d) = k ′(c ′). In particular, k ′(c ′ − γ(c)) = 0, so c ′ − γ(c) ∈ Kerk ′ = Im j ′, so
there exists b ′ ∈ B ′ such that j ′(b ′) = c ′ − γ(c). Set b := β−1(b ′). We have

γ(j(b)) = j ′(β(b)) = j ′(b ′) = c ′ − γ(c).

In particular, we obtain γ(c + j(b)) = γ(c) + (c ′ − γ(c)) = c ′, and so γ is
surjective. �

Note that the proof of Theorem 7.16 has only used that α is surjective
and that ε is injective, so if necessary the assumptions can be weakened
accordingly.

7.5. Independence of simplicial homology of the triangulation

It is now time to show that the homology of a simplicial complex does not
depend on the actual triangulation of the underlying topological space. To
be precise, if some topological space is represented in two different ways
as a geometric realization of a simplicial complex, the simplicial homology
groups of these triangulations will be isomorphic.

The actual fact which we prove is that simplicial homology of a simpli-
cial complex K is isomorphic to the singular homology of the topological
space |K|. In order not to get entangled in set-theoretical technicalities, we
shall only prove this for a finite simplicial complex, and in fact our whole
proof will be just a sketch, with some explicitely stated facts which we shall
accept without a proof.

Specifically, we shall assume that when X is a topological space, Y is its
subspace, and the embedding of Y into X is not too convoluted, the relative
homology coincides with the homology of the quotient space, that is, we
have isomorphisms

(7.4) H̃n(X/Y) ≈ Hn(X, Y), for all n.
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It is rather technical to explain what we mean by the embedding being
not too convoluted. Let us just say that this holds for all the spaces which
we care for here. In particular, it holds if X is a geometrical realizaton of
a CW complex (including the simplicial complex), and Y is the geometric
realization of a subcomplex of X. To do a rigorous proof one needs to show
the so-called excision property, together with some technicalities concerning
the topology of attaching a cell. These facts can be found in most algebraic
topology textbooks, see for example [Hat02].

Assume now K is a simplicial complex, and let K ∪ ed denote the sim-
plicial complex obtained from K by adding a single maximal simplex of
dimension d, whose boundary was in K already. For the simplicial homol-
ogy, we obviously have

(7.5) Hn(K ∪ ed,K) ≈

{
Z, if d = n,

0, otherwise.

The geometric realization |K∪ed| is obtained from the topological space
|K| by attaching a d-cell. Recall that for any index n, there is a natural
map ρ : Cn(K) → C

sing
n (|K|), which takes each simplex σ to the associated

characteristic map χσ : ∆n → |K|. This collection of maps induces maps ρ∗n
on the corresponding homology groups.

We can see that Equation (7.5) holds for the singular homology as well.
Indeed, the quotient space |K ∪ ed|/|K| is homeomorphic to a d-sphere, and
we can use the isomorphism (7.4). With a little bit of work, one can see that
the isomorphismsHn(K∪ed,K) ≈ Hsing

n (|K ∪ ed|, |K|) are induced by ρ∗n, for
all n.

Theorem 7.17. Assume K is a finite simplicial complex. Then the homology map
ρ∗ defined above is an isomorphism.

Proof. We use induction on the number of simplices in K. The base is clear,
since the statemenent obviously holds when K is 0-dimensional.

For the induction step, assume we are adding a simplex ed to the sim-
plicial complex K. We have the commutative diagram in Figure 7.2, where
both columns are exact.

By Equation (7.5) and the induction assumptions, all the horizontal
arrows, except for the middle one, are isomorphisms. Therefore the condi-
tions of Theorem 7.16 are satisfied, and we can conclude that the map ρ is
an isomorphism. �

Corollary 7.18. Two simplicial complexes K and L with homeomorphic geometric
realizations have isomorphic simplicial homology groups.
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Hn+1(K ∪ ed,K) Hn+1(|K ∪ ed|, |K|)

Hn(K) Hn(|K|)

Hn(K ∪ ed) Hn(|K ∪ ed|)

Hn(K ∪ ed,K) Hn−1(|K ∪ ed|, |K|)

Hn−1(K
(d)) Hn(|K|)

ρ∗n+1

∂c ∂c

ρ∗n

i i

ρ∗n

q q

ρ∗n

∂c ∂c

ρ∗n−1

Figure 7.2. Commutative diagram in the proof of Theorem 7.17.

Proof. The singular homology groups of |K| and |L| are isomorphic, since
the spaces are homeomorphic. On the other hand, by Theorem 7.17, we
know that the singular homology of |K| is isomorphic to the simplicial
homology of K, and the same for L. It then follows that the simplicial
homology groups of K and L are isomorphic. �

Exercises

(1) Prove Proposition 7.3.

(2) Use the definition to directly calculate the singular homology groups of
the topological space with finitely many points, equipped with discrete
topology. What about the discrete topological spaces with an arbitrary
number of points?

(3) AssumeX is a topological space, and the set I indexes the path-connected
components of X. Describe the group Hsing

0 (X) in terms of I.

(4) Prove Proposition 7.6.

(5) Show that the composition of simplicial approximations is a simplicial
approximation of the composition.

(6) Let K be a finite simplicial complex of dimension n.
(1) Let d denote the maximal diameter of a simplex of |K|, and let d̃

denote the maximal diameter of a simplex of |BdK|. Show that
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d̃ < αd, where α < 1 is a constant depending only on n and not
on K;

(2) let s denote the maximal diameter of a star of a vertex in |K|, and let
s̃ denote the maximal diameter of a star of a vertex in |BdK|. Show
that s̃ < γs, where again γ < 1 is a constant depending only on n
and not on K.





Chapter 8

Cellular Homology

CW complexes were defined in Subsection 3.3.2. Our task in this chapter
is to give a definition of the homology groups of CW complexes defined
inherently in terms of their cellular structure, the so-called cellular homology.
As usual, the homology is defined using a certain chain complex, the so-
called cellular chain complex.

While it is simple to define the cellular chain groups, defining the cellu-
lar boundary operator is somewhat tricky. There are two basic approaches.
The first one, using the winding numbers carries more geometric intuition
and is more elementary. Its main disadvantage is that it is rather difficult
to adapt for use in formal proofs. The alternative definition uses the con-
necting homomorphism from an appropriate long exact sequence. While
more theoretical in nature, it provides a useful tool for writing rigorous
arguments.

8.1. Winding number

We begin by defining a winding number of a continuous map between
spheres of the same dimension. To start with, imagine we are considering
a closed directed curve γ in the plane, together with a point x ∈ R2 which
does not belong to the curve. We are interested in counting the “number of
times γ winds around x.”

A good way to formalize this question is to view the curve γ as a con-
tinuous map from the circle S1 to the plane, visualized by its image. Draw
a unit circle C with x as the center. For each point y ∈ γ let ry be the ray
starting in x and passing through y. Finally, let sy be the intersection point
of the circle C and the ray ry. As y traces the curve γ, the point sy moves

129
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continuously on the circle, eventually returning to its original position. In-
tuitively the winding number should count the number of ways the point
goes around the circle, and the sign of the winding number should tell us
the direction in which the point is moving. Of course going once around the
circle in one direction and then once in the opposite direction should cancel
out. As a final building stone in this formalization we need the following
definition.

x

γ

C

sy

sy

sy

sy

ry

ryry

ry

y

y

y

y

Figure 8.1. Winding number of a curve in the plane.

Definition 8.1. Assume f : Z → Z is a group homomorphism. Then there
exists unique k ∈ Z, such that f(g) = kg, for all g ∈ Z. This number k is
called the degree of f, and is denoted by deg f.

Note that another way to define deg f is to simply set deg f := f(1). It is
easy to list some elementary properties of deg f.

Proposition 8.2. The degree of an endomorphism of Z satisfies the following
properties:

(1) deg(f ◦ g) = deg f · degg,
(2) deg(idZ) = 1,
(3) f is invertible if and only if deg f = ±1, in which case we have deg(f−1) =

deg f,
(4) f is a 0-map if and only if deg f = 0.

Let us return to our curveγ and the point x. Since a curve is a continuous
map from S1 to the plane, the motion of the point sy around the circle can
be viewed as a continuous map f from a unit circle to itself. We know that
the first homology group of S1 is isomorphic to Z, and that f induces the
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group homomorphism f∗ : H1(S
1) → H1(S

1). The degree of f∗ is defined
and provides us with a formal way to define the number of times the curve
γ winds around the point x.

Producing a geometric picture of the winding number of a surface wind-
ing around a point is not as simple. However, the advantage of having refor-
mulated things homologically is that we do not need to do that, and we can
easily generalize our observations to higher dimension. The crucial point is
that such a higher-dimensional surface, together with a point outside of that
surface will produce a continuous map from a higher-dimensional sphere
to itself, which will suffice for our purposes.

Definition 8.3. Assume n > 1, and we have a continuous map f : Sn → Sn.
The winding number of f is defined to be the degree of the induced group
homomorphism f∗ : Hn(S

n)→ Hn(S
n).

We extend the previous notations and let deg f also denote the winding
number of f. Proposition 8.2 together with the standard facts about the
induced maps imply the following properties of the winding number.

Proposition 8.4. The winding number of a continuous map from the n-sphere to
itself satisfies the following properties:

(1) deg(f ◦ g) = deg f · degg,

(2) deg(idSn) = 1,

(3) if f is homotopic to g, then deg f = degg,

(4) when f is reflection with respect to any hyperplane, we have deg f = −1,

(5) when f is the antipodal map, we have deg f = (−1)n+1.

Proof. The properties (1)− (3) are trivial. Property (4) follows from the fact
that reflection changes the orientation of the homology generator. Property
(5) follows from the fact that an antipodal map in Rn+1 is a composition of
n+ 1 reflections. �

It turns out that having a non-trivial winding number has the following
reasonably strong implication.

Proposition 8.5. If deg f , 0, then f is surjective.

Proof. If f is not surjective, there exists x ∈ Sn \ Im f. Consider the compo-
sition of maps

Sn Sn \ x Sn,
f̃ i
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where f̃ is the restriction of f, and i is the inclusion map. For homology, it
induces the following composition:

Hn(S
n) Hn(S

n \ x) Hn(S
n).

f̃∗ i∗

The space Sn \ x is contractible, so we have Hn(Sn \ x) = 0, which implies
i∗ ◦ f̃∗ = 0. On the other hand, i∗ ◦ f̃∗ = (i ◦ f̃)∗ = f∗. This implies deg f = 0,
yielding a contradiction. �

Definition 8.6. Let X be an arbitrary topological space. A function f : X→ X

is called fixed-point free if f(x) , x, for all x ∈ X.

An antipodal map of an n-sphere is a classical example of a fixed-point
free map. A weaker reverse of this statement also holds.

Proposition 8.7. Any fixed-point free map of an n-sphere to itself is homotopic to
the antipodal map. In particular, the winding number of any fixed-point free map
of Sn to itself is (−1)n+1.

Proof. Pick x ∈ Sn. We know that f(x) , x. This means that there exists
a unique geodesic1 curve γx connecting f(x) with −x. Let αn denote the
antipodal map on Sn. We obtain a homotopy between f and αn by simply
letting the each f(x) slide along γx with a constant speed. �

8.2. Incidence numbers

In order to describe a cellular boundary operator we need to understand
the relation between a d-cell and a (d − 1)-cell on its boundary. In the
simplicial case, that relation is simple. When a (d− 1)-simplex τ belongs to
the boundary of a d-simplex α, their orientations may or may not match.
Accordingly τ is counted in the algebraic formula for the boundary of α
with coefficient 1 or −1.

Unfortunately, the situation is not as simple in the CW case. Even in
dimension d = 1, the 1-cell α can be attached to the same 0-cell τ with both
ends, in which case, τ should count with coefficient 0 in the boundary of α,
or, to say it differently, it should not count at all. For higher dimensions the
situation becomes even more convoluted. Fortunately, there is a formally
clean way to calculate the coefficient of τ in the boundary of α, using the
concept of the winding number.

In what follows, assume X is a CW complex. Let α be a d-cell, and let τ
be a (d − 1)-cell of X. Recall that Xd−1 denotes the (d − 1)th skeleton of X,
which is the part obtained by gluing all the cells of dimension d− 1 or less.
Let ρα : Sd−1 → Xd−1 be the attaching map of the cell α.

1Recall that the geodesic curve is any curve of shortest length between the chosen endpoints.
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Consider the quotient space Xd−1/Xd−2 and the canonical quotient map
q : Xd−1 → Xd−1/Xd−2. Since Xd−1 is obtained from Xd−2 by simultane-
ously attaching a number of (d− 1)-cells, the quotient Xd−1/Xd−2 is home-
omorphic to the wedge of (d− 1)-spheres, indexed by the (d− 1)-cells of X,
i.e.,

Xd−1/Xd−2 �
∨

γ∈X(d−1)

Sd−1γ .

Finally, let sτ : Xd−1/Xd−2 → Sd−1τ denote the projection map which is
equal to identity on the sphere Sd−1τ , corresponding to the cell τ, but which
shrinks every other sphere to a point.

Definition 8.8. Let X, α, and τ be as above, and consider the composition
of the continuous maps

Sd−1 Xd−1 Xd−1/Xd−2 Sd−1τ .
ρα q sτ

We set [τ : α] to be equal to the winding number of sτ ◦ q ◦ ρα, and call this
number the incidence number of α and τ.

In formula, we have [τ : α] := deg(sτ ◦ q ◦ ρα).

8.3. Cellular chain complex

Equipped with the notion of the incidence number, we can now proceed to
define cellular boundary operator.

Definition 8.9. Let X be a CW complex, we define the cellular boundary
operator ∂CWd by setting

(8.1) ∂CWd (α) :=
∑

τ∈X(d−1)

[τ : α]τ,

whenever α is a d-cell of X.

Of course, for ∂CWd to be a real boundary operator, the following prop-
erty needs to be satisfied.

Theorem 8.10. We have ∂CWd ◦ ∂CWd+1 = 0, for all d.

While it possible to prove Theorem 8.10 directly, we prefer to postpone
the proof to the next section, where it will be done using a roundabout
method: show that Definition 8.9 is equivalent to an alternative definition
for which this identity is much easier to prove.

Definition 8.11. Assume X is a CW complex. The cellular chain complex of X
is the sequence of abelian groups and group homomorphisms

· · · CCWd+1(X) CCWd (X) CCWd−1(X) · · · ,
∂CWd+1 ∂CWd
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where, for each d, CCWd (X) is the free abelian group generated by the set of
all d-cells, and ∂CWd is the cellular boundary operator defined above.

We let CCW∗ (X) denote the cellular chain complex of X.

Definition 8.12. For a CW complex X, the cellular homology of X is defined
by setting HCWd (X) := Hd(C

CW
∗ (X)).

8.4. Alternative definition of the cellular boundary operator

To provide an alternative definition of the cellular boundary operator, we
begin with the observation that cellular chain groups are isomorphic to
the corresponding relative homology groups: CCWd (X) ≈ Hd(Xd, Xd−1), for
all d.

Definition 8.13. Let X be a CW complex. The cellular boundary operator
∂̃CWd : CCWd (X)→ CCWd−1(X) is defined as the composition

(8.2) Hd(Xd, Xd−1) Hd−1(Xd−1) Hd−1(Xd−1, Xd−2),
∂cd j∗

where ∂cd is connecting homomorphism, and j∗ is the standard quotient
map.

Proposition 8.14. We have ∂̃CWd ◦ ∂̃CWd+1 = 0, for all d.

Proof. Combining sequences (8.2) for consecutive values of d, we obtain
the sequence

Hd+1(Xd+1, Xd)

Hd(Xd) Hd(Xd, Xd−1) Hd−1(Xd−1)

Hd−1(Xd−1, Xd−2)

∂cd+1

j∗ ∂cd

j∗

The middle two homomorphisms can be embedded into the long exact se-
quence corresponding to the pair (Xd, Xd−1), as the dashed arrows indicate.
Due to exactness, the composition j∗ ◦ ∂cd is a zero map, hence so is the
composition of all four arrows. �

Theorem 8.15. The two definitions of the cellular boundary operator give the same
map.

Proof. Rather than giving a tedious formal proof, let us try to understand
why the two definitions give the same answer. So assume X is a CW
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complex, α is a d-cell and τ is a (d − 1)-cell of X. We need to compare
∂CWd (α) with ∂̃CWd (α).

To start with, both obviously depend on the d-skeleton of X only, so
we can assume that dimX = d, and in fact, we can also assume α is the
only d-cell of X as the other d-cells play no role in either of the definitions.
Furthermore, we can also replace X with the quotient X/Xd−2. Indeed, in
the definition of ∂CWd one takes the quotient with Xd−2 anyway. In the
definition for ∂̃CWd one passes on to Hd−1(Xd−1, Xd−2), which, according to
Equation (7.4), is the same as Hd−1(Xd−1/Xd−2).

All-in-all, we can assume that X is obtained by starting with a wedge
of (d − 1)-spheres, and then attaching a single d-cell α. The connecting ho-
momorphism applied to the homology generator of Hd(Xd, Xd−1) indexed
by α simply takes the boundary sphere of α and maps it to the wedge of
(d−1)-spheres Xd−1. Following the definition of ∂̃CWd we then project to the
(d−1)-sphere indexed by τ. This is of course precisely the map whose wind-
ing number was used to define the incidence number [τ, α]. We conclude
that the definitions yield the same boundary operator. �

Because of Theorem 8.15 we shall no longer use the notation ∂̃CWd ,
writing ∂CWd to denote either one of the cellular boundary operators.

Note, that Theorem 8.10 is now clearly a consequence of Proposition 8.14
and Theorem 8.15.

8.5. Equivalence of singular and cellular homology

We are now ready to show that the singular and the cellular homology
groups of a CW complex coincide.

Theorem 8.16. Let X be a CW complex, we have Hsingd (X) ≈ HCWd (X).

Proof. LetX be a CW complex. For brevity, we shall just writeHd(X) instead
of Hsingd (X). Consider the quotient map jd : Hd(Xd)→ Hd(Xd, Xd−1), while
recalling that Hd(Xd, Xd−1) = CCWd (X). We shall break our proof in four
parts, showing the following four facts.

Fact 1. We have Im jd ⊆ ZCWd (X) = Ker∂CWd .

Combining the map jd with the standard projection map ZCWd (X) →
HCWd (X), we obtain a map j̃d : Hd(Xd)→ HCWd (X).

Fact 2. We have Ker j̃d = Im∂cd+1, where ∂cd+1 : Hd+1(Xd+1, Xd) → Hd(Xd)

is the corresponding connecting homomorphism.

Fact 3. The map j̃d is surjective.



136 8. Cellular Homology

It now follows that HCWd (X) ≈ Hd(Xd)/Im∂cd+1.

Fact 4. We have Hd(Xd)/Im∂cd+1 ≈ Hd(X).

This clearly implies the statement of the theorem. Let us now prove
each of the four facts.

Proof of Fact 1. Consider the following diagram, where the horizontal row
is an extract from the exact sequence of the pair (Xd, Xd−1)

(8.3)

Hd(Xd) Hd(Xd, Xd−1) Hd−1(Xd−1) Hd−1(Xd)

Hd−1(Xd−1, Xd−2)

jd ∂cd

∂CWd
jd−1

id−1

Due to exactness, the composition∂cd◦jd is a 0-map, so∂CWd ◦jd = jd−1◦∂cd◦jd
must be a 0-map as well.

Proof of Fact 2. Let us first show that Ker j̃d ⊇ Im ∂cd+1. Consider the
diagram (8.3) one index higher:

(8.4)

Hd+1(Xd+1) Hd+1(Xd+1, Xd) Hd(Xd) Hd(Xd+1)

Hd(Xd, Xd−1)

jd+1 ∂cd+1

∂CWd+1
jd

id

For α ∈ Hd+1(Xd+1, Xd), we have jd(∂cd+1(α)) = ∂CWd+1(α) ∈ BCWd (X), hence
j̃d(∂

c
d+1(α)) = 0 in HCWd (X), which shows ∂cd+1(α) ∈ Ker j̃d.

Second, let us show that Ker j̃d ⊆ Im ∂cd+1. Take α ∈ Hd(X), such that
j̃d(α) = 0. This means, that [jd(α)] = 0, which in turn means jd(α) ∈ BCWd (X).
Therefore, there exists β ∈ Hd+1(Xd+1, Xd), such that ∂CWd+1(β) = jd(α).
However ∂CWd+1(β) = jd(∂

c
d+1(β)), so jd(α − ∂cd+1(β)) = 0. The injectivity of

jd implies thatα = ∂cd+1(β), which is precisely what was to be demonstrated.

Proof of Fact 3. Take [α] ∈ HCWd (X). We have α ∈ CCWd (X) = Hd(Xd, Xd−1),
such that ∂CWd (α) = 0. We have ∂CWd (α) = jd−1(∂

c
d(α)). Since the map

jd−1 is injective, this implies ∂cd(α) = 0. On the other hand, the horizontal
row in diagram (8.3) is exact at Hd(Xd, Xd−1), so α ∈ Im jd. So there exists
β ∈ Hd(Xd), such that jd(β) = α, which means j̃d(β) = [α], and the statement
is proved.
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Proof of Fact 4. The horizontal row in diagram (8.4) is exact at Hd(Xd).
Furthermore, id is surjective, since Hd(Xd+1, Xd) = 0. This yields an iso-
morphism Hd(Xd+1) ≈ Hd(Xd)/Im ∂cd+1. However, we also have an iso-
morphism Hd(X) ≈ Hd(Xd+1), so the fact is proved. �

Exercises

(1) For an arbitrary continuous map f : X→ Y, let suspf denote the induced
map on the corresponding suspensions susp f : susp X → susp Y. As-
sume f : Sn → Sn is a continuous map. Calculate the winding number
of susp f in terms of deg f.

(2) Fix a positive integer n. Show that any integer can be realized as the
winding number of a map f : Sn → Sn.

(3) Show that in the special case of simplicial complexes, the incidence
numbers are ±1 or 0, depending on mutual orientations of simplices
and whether one belongs to the boundary of the other one.

(4) For the following topological spaces find an explicit CW decomposition
and then use it to calculate cellular homology:
(a) an n-sphere Sn;
(b) real projective space RPn;
(c) complex projective space CPn;
(d) an n-torus Tn.

(5) Use the cellular homology approach to calculate by hand the homology
groups of the infinite dimensional sphere S∞ and the infinite dimen-
sional projective space RP∞.





Suggested further
reading for Parts 1 and 2

In the first eight chapters of this book we have tried to provide the reader
with the motivation and the first impression of algebraic topology. In the
limited space, we could do not do more than to scratch the surface and to
whet his or her appetite for more. Algebraic topology is a deep subject with
many ramifications. In the remainder of the book we will concentrate on
the subject of discrete Morse theory. To do a little bit of justice to the rest and
to assist the reader in the quest of mastering this mathematical discipline
we have chosen to provide a few reading suggestions below. We split our
recommendations in different subareas.

General texts on algebraic topology.
There are many excellent textbook style introductions to algebraic topology.
For the reader primarily interested in homology theory we recommend the
accessible text by Vick, [Vi94], as an entry point. A comprehensive, yet still
equally accessible introduction can also be found in Munkres, [Mu84].

A modern treatment can be found in Hatcher, [Hat02]. This is a won-
derful text, available freely online, whose graphic presentation remains
an inspiration for this author to this day.

A reader, who is looking for a broad approach combined with moti-
vation and appealing intuitive pictures, may find the book by Fomenko,
Fuchs, and Gutenmacher, [FFG86], indespensable.
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The short blue book by May, [May99], is a gem in the rough for anybody
willing to invest time in filling details, having the great benefit of getting
much deeper insight into the subject than from a regular textbook alone.

Furthermore, there is a number of further beautiful texts, ranging from
historically significant textbooks by Greenberg and Harper, [GH81], Spanier,
[Sp95], and Switzer, [Sw02], to modern texts by Fulton, [Fu95], emphasizing
the geometric approach, and Davis and Kirk, [DK01], which really provides
a good introduction to many topics across the board, from obstruction the-
ory to spectral sequences. These texts can each be used as the main source of
study, but at the very least, they will be useful as complimentary literature
in any serious course in algebraic topology.

As far as the specific topics of algebraic topology are concerned, we
recommend Milnor, [Mi63], and Milnor and Stasheff, [MS74], for the clas-
sic introductions to Morse theory, and to theory of characteristic classes.
Finally, in author’s opinion, the book by McCleary, [McC01], still remains
the best introduction to spectral sequences.

Homological algebra.
This author admittedly has a weak point for the amazing book by Gelfand
and Manin, [GM03]. Although terse at times, it provides an unparalleled
intution, combined with stunning vistas across the mathematical landscape.

A more traditional textbook approach can be found in another favourite:
the book by Weibel, [We94]. That, or the book of Gelfand and Manin are our
recommendation for the first foray into the world of homological algebra.

As further quality sources we recommend the historical texts by Hilton
and Stammbach, [HS97], and MacLane, [McL67], as well as more modern
texts by Osborne, [Os00], and Rotman, [Ro09].

Category theory.
While there are many good texts on category theory, in our opinion the
book by MacLane, [McL98], stands out, and we recommend it as an entry
point. Many aspects can also be found in already mentioned [GM03], and,
more humbly, in [Ko08].

Simplicial objects.
The thinking presented in our brief introduction to semisimplicial sets can
be vastly generalized to other categories. For the classical introduction into
all things simplicial we recommend the book by May, [May92].
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Applied topology.
This is a growing subject, where other aspects of the theory, as well as
different types of complexes play a role. We recommend the book by
Kaczynski, Mischaikow, and Mrozek, [KMM04], for computational aspects,
where also the grid cubical complexes can be found.

The reader interested in branching into applications of topological meth-
ods in discrete mathematics and combinatorics may want to look at the first
book by this author, [Ko08].
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Chapter 9

Simplicial Collapses

9.1. Collapses in abstract simplicial complexes

9.1.1. Elementary simplicial collapses. We have now arrived at the point
in time when we would like to start investigating in some detail the notion
of simplicial collapse. The prototypical example of such an operation is the
removal of a leaf from a tree, or more generally, the removal of a vertex of
valency 1 from any graph.

In general, an elementary simplicial collapse is the removal of a simplex
together with one of its boundary simplices in such a way that the remaining
structure is still an abstract simplicial complex. This can be formalized as
follows.

Definition 9.1. Let K be an abstract simplicial complex. Assume the sim-
plices σ, τ ∈ K satisfy the following two conditions

(1) τ is a boundary simplex of σ of codimension 1, in other words,
dim τ = dimσ− 1;

(2) the only simplices of K which contain τ are σ and τ.

The removal of the simplices σ and τ from K is called an elementary simplicial
collapse.

In this text we will mostly abbreviate this to just saying that we have
a simplicial collapse, and reserve the term elementary simplicial collapse for
the situations where it might be unclear what type of collapse we are using.

Note, that the conditions of Definition 9.1 imply that σ must be a maxi-
mal simplex, since any simplex which contains σ would also contain τ.
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Figure 9.1. Examples of elementary simplicial collapses.

Proposition 9.2. Let K be an abstract simplicial complex with the ground set S,
and let σ and τ be simplices of K satisfying the conditions of Definition 9.1, then
the resulting set K \ {σ, τ} is again an abstract simplicial complex.1

Proof. Take an arbitrary simplex γ ∈ K \ {σ, τ}, and pick ρ ⊂ γ. We cannot
have ρ = σ, since σ is a maximal simplex, while ρ is strictly contained
in γ. Furthermore, we cannot have ρ = τ, since the only simplex which
strictly contains τ is σ, so we would have σ = γ, clearly contradicting our
assumptions. We conclude that ρ ∈ K \ {σ, τ}. This verifies that K \ {σ, τ}

is again an abstract simplicial complex, when the ground set is correctly
adjusted. �

In the situation described in Definition 9.1 the simplex τ is called free.
Clearly, if the given simplicial complex does not have any free simplices,
then no simplicial collapses are possible.

As an example, let us consider the simplicial complex in the upper left
corner of Figure 9.2. The free simplices are {1, 2}, {2, 3}, and {1, 3}. Two
possible sequences of simplicial collapses are shown in Figure 9.2. These
sequences lead to simplicial subcomplexes which are not isomorphic and
which do not allow further elementary collapses. Even worse, it may
happen that we start with a collapsible simplicial complex, but by following
the “wrong” collapsing sequence end up with a non-collapsible one. This
shows that the order in which the collapses are performed is of utmost
importance.

1The ground set of K\ {σ,τ} is S if dimτ > 1, it is S \ τ if dimτ = 0, and it is ∅ if dimσ = 0.
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Figure 9.2. Two sequences of elementary simplicial collapses.

Finally, let us spend a moment’s thought on a somewhat degenerate
case. Recall that almost always we include the empty set among the sim-
plices of a simplicial complex. The only exception of this rule is the so-called
void complex which has no simplices at all. There is exactly one situation
in which the empty simplex is free: namely, if we consider the abstract sim-
plicial complex which has exactly one vertex v. In that case, removing the
simplices {v} and ∅ is a valid simplicial collapse, and the resulting simplicial
complex is the void one.

9.1.2. Collapsible simplicial complexes. Once we start considering the
simplicial collapses, it is only natural to look at those abstract simplicial
complexes, for which all the simplices can be successively removed in this
manner.

Definition 9.3. An abstract simplicial complex K is called collapsible if there
exists a sequence of simplicial collapses reducing K to the void simplicial
complex.

Note that in particular the void simplicial complex, or the complex
consisting of a single vertex are collapsible, whereas the empty simplicial
complex is not collapsible.

As an alternative to Definition 9.3 one could also declare, as a basis,
that all simplicial complexes with one vertex are collapsible, and then say
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that K is collapsible if it can be collapsed onto one of its vertices.2 That
definition would be fine as well for most purposes. From our point of view,
it has a slight disadvantage that the vertex to which the simplicial complex
is collapsed is not in any way fixed canonically; instead it has to be chosen.
Definition 9.3 avoids the necessity of making such a choice.

Definition 9.4. When an abstract simplicial complex K2 can be obtained
from another abstract simplicial complex K1 via a sequence of elementary
collapses, we say that K1 can be collapsed to K2. We then write K1 ↘ K2.

This is clearly a transitive relation: K1 ↘ K2 together with K2 ↘ K3
will imply K1 ↘ K3.

Proposition 9.5. Assume that an abstract simplicial complex K1 can be collapsed
to its subcomplex K2. Then the (reduced) Euler characteristic of K1 and K2 must
be equal.

In particular, the reduced Euler characteristic of a collapsible simplicial complex
is always equal to 0.

Proof. Since K2 can be obtained from K1 by a sequence of simplicial col-
lapses, it is enough to check that a single simplicial collapse does not change
the Euler characteristic.

Note, that as a result of a simplicial collapse, the simplices are removed
in pairs. The two simplices which form such a pair must have different
parities, so their total contribution to the Euler characteristic is 0. Clearly,
removing such a pair then will not change the Euler characteristic.

The last statement of the proposition follows from the fact that a col-
lapsible abstract simplicial complex can be collapsed to the void complex.
The latter has reduced Euler characteristic equal to 0. �

When we have abstract simplicial complexes K1 and K2 such that K1 ↘
K2 then we can talk about various collapsing sequences from K1 to K2. In
particular, when K1 is collapsible, we can take K2 to be the void complex
and talk about collapsing sequences for K1.

9.2. Collapses and topology

9.2.1. Deformation retracts. Let us start by recalling some standard termi-
nology from point-set topology.

Definition 9.6. Let X be a topological space, let A ⊆ X, and let i : A→ X be
the inclusion map. A continuous map f : X→ A is called

• a retraction if f|A = idA;

2As a matter of fact, in this case K can be collapsed to any of its vertices
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• a deformation retraction if i ◦ f : X → X is homotopic to the identity
map idX;
• a strong deformation retraction if there exists a homotopy F : X×I→ X

between i ◦ f and idX, which is constant on A, i.e., F(a, t) = a, for
all t ∈ I and a ∈ A.

Correspondingly, A is called a retract, a deformation retract or a strong defor-
mation retract of X.

1

. . .

0

X

1

1/2

1/3

Figure 9.3. The interval [0, 1]on the horizontal axis is a deformation retract
of the space X, but it is not a strong deformation retract of X.

The notion of homotopy equivalence can be completely understood by
means of strong deformation retracts, because of the following convenient
fact.

Proposition 9.7. Assume we are given topological spaces X and Y, and a contin-
uous map f : X→ Y. The map f induces a homotopy equivalence if and only if the
space X× {0} is a strong deformation retract of the mapping cylinder Cyl(f).

Proof. One direction of this statement is simple. Assume the space X× {0}

is a strong deformation retract of the mapping cylinder Cyl (f), and let
ϕ : Cyl(f) → X × {0} be the corresponding strong deformation retraction.
We set g : Y → X to be the composition

Y
j−→ Cyl(f) ϕ−→ X× {0}

p−→ X,

where j : Y ↪→ Cyl(f) is the standard inclusion map, and p : X × {0} → X is
the forgetful map.

Proving the other direction is a bit technical. It would have to rely on
the fact that the embedding of X into the mapping cylinder Cyl(f) as the
copy X × {0} is what is called a cofibration. This would distract too much
from our main subject of study. We therefore refer our reader to a standard
text in algebraic topology, such as [Hat02], where this statement is proved
as Corollary 0.21. �
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Proposition 9.7 immediately implies the following neat statement.

Theorem 9.8. Two topological spaces X and Y are homotopy equivalent if and
only if there exists a third topological space which contains both X and Y as strong
deformation retracts.

Proof. Indeed, if X and Y are homotopy equivalent, then the mapping
cylinder Cyl(f) of the corresponding homotopy equivalence f is this third
space. Its base space is homeomorphic to Y, and it is the strong deformation
retract of Cyl(f) as is the case for all mapping cylinders. On the other hand,
by Proposition 9.7, the space Cyl(f) contains a strong deformation retract
which is homeomorphic to X.

Reversely, since each strong deformation retraction is also a homotopy
equivalence, the existence of such third space will of course imply that
X ' Y. �

9.2.2. Collapses and strong deformation retracts. Simplicial collapses pro-
vide a useful example of a strong deformation retraction.

Proposition 9.9. An elementary simplicial collapse, removing simplices σ and τ,
such that dimσ = dim τ + 1 > 1, yields a strong deformation retraction of the
geometric realizations of the corresponding abstract simplicial complexes.

Proof. Assume we have an abstract simplicial complex K, with simplices σ
and τ such that τ is in the boundary of σ, dim τ > 0, and removing τ and σ
yields an elementary collapse. Let X denote the geometric realization of K,
and let A denote the geometric realization of K \ {σ, τ}. Finally, let i : A→ X

denote the obvious inclusion map. Our goal is to define a continuous map
f : X → A, together with a homotopy F : X × I → X between i ◦ f and id X,
which is constant on A.

Let d denote the dimension of σ. Assume σ = {v0, . . . , vd}, and assume
v0 < τ; in other words, τ = {v1, . . . , vd}. Pick an arbitrary point x ∈ σ ⊆ |K|,
and represent it in barycentric coordinates, say x = α0v0+ · · ·+αdvd, where
α0 + · · · + αd = 1, and 0 6 αi 6 1, for all 0 6 i 6 d. Set α := min16i6d αi,
and define

f(x) := (α0 + dα)v0 + (α1 − α)v1 + · · ·+ (αd − α)vd.

We can examine the coefficients to see that this map is well-defined. Since
α is chosen to be the minimum of α1, . . . , αd, all the coefficients will be non-
negative. Obviously the sum of the coefficients is equal to 1. Furthermore,
one of the coefficients α1 − α, . . . , αd − α must be equal to 0, again because
of the way α was chosen. This means precisely that f(x) ∈ A, and of course
f is continuous. It can be extended to a continuous function f : X → A by
setting it to be identity outside of the (closed) simplex σ.
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Next, we can define the homotopy F : X×I→ X as follows. For arbitrary
x ∈ σ and 0 6 t 6 1, we set

F(x, t) := (α0 + tdα)v0 + (α1 − tα)v1 + · · ·+ (αd − tα)vd.

It is immediate that this is well-defined, continuous, and F(x, 0) = x, while
F(x, 1) = f(x). For a ∈ A, we have α = 0, hence F(a, t) = a, for all t, and so f
is a strong deformation retraction. �
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Figure 9.4. The homotopy corresponding to an elementary collapse.

Figure 9.4 provides a geometric illustration of the homotopy described
in the proof of Proposition 9.9. This homotopy can be visualized as follows:
connect by a piece of cord the vertex v0 and the barycenter of the simplex
τ; as time runs from 0 to 1 pull the barycenter towards v0 so that it reaches
it precisely at the time t = 1; let the rest of the simplex follow in linear
fashion. More precisely, we take the stellar subdivision of the simplex τ,
which induces the subdivision of σ into d smaller simplices; these simplices
are then deformed linearly as the barycenter approaches v0.

9.3. More on collapses

9.3.1. 1-dimensional simplicial complexes. Clearly, the case of 0-dimen-
sional complexes is trivial: only the single vertex complex is collapsible.
The case of 1-dimensional complexes is only slightly more complicated.
Recall that a vertex whose valency is 1 is called a leaf. Clearly, elementary
collapses where the free simplex has dimension 0 are precisely removals of
leaves. Simplicial complexes which are not connected cannot be collapsible.
In fact, simplicial collapses preserve the number of connected components.
For this reason, it is enough to look at the connected complexes.

The following proposition provides the equivalence between various
topological concepts in the case of 1-dimensional complexes.

Proposition 9.10. Let G be 1-dimensional abstract simplicial complex. The fol-
lowing statements are equivalent:
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(1) G is collapsible;

(2) G is contractible;

(3) the groups H̃n(G;Z) are trivial for all n;

(4) G is a tree.

Proof. To start with, the implications (1) ⇒ (2) ⇒ (3) are simply true for
all simplicial complexes. On the other hand, assume the groups H̃0(G;Z)

and H̃1(G;Z) are trivial. The first assumption says that G is connected. The
second assumption says that G does not have any cycles, so then G is a tree,
and we have (3)⇒ (4).

Let now G be a tree with n vertices, where n > 2. It is well-known that
Gmust have a leaf. Removing this leaf gives again a tree, and continuing in
this matter we will collapse G to a vertex. In fact, we can collapse it to any
vertex which is chosen apriori. Simply declare this vertex a root and collapse
all the edges towards that vertex. This shows that trees are collapsible, i.e.,
(4)⇒ (1), and we have proved the whole equivalence statement. �

Definition 9.11. We say that a graph G is leafless if all its vertices have
valency at least 2.

WhenG is a graph, andH a subgraph, we say thatH is a leafless subgraph
of G if any vertex of H is adjacent to at least two edges of H.

For example, cycles in a graph are leafless subgraphs. In general, we can
see that a connected graph G does not have any leafless subgraphs if and
only it is a tree. Indeed, if G is a tree, then any of its subgraphs is a forest,
hence has leaves. Reversely, if a connected graph G does not have any
leafless subgraphs, it cannot have cycles, as these are leafless. Therefore, it
must be a tree.

Clearly, the union of any two leafless subgraphs of a graph is again
a leafless subgraph. This justifies the following definition.

Definition 9.12. Given a graph G, we let Core(G) denote the union of all
leafless subgraphs of G.

By what is said above, the graph Core(G) is the unique maximal leaf-
less subgraph of G. Furthermore, since Core(G) itself is leafless, we have
Core(Core(G)) = Core(G).

The following simple observation provides the crucial link to simplicial
collapses.

Proposition 9.13. Assume a graph G can be collapsed to H, and assume K is
a leafless subgraph of G, then K is contained in H.
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Proof. If K is not contained in H, then a part of it was collapsed when we
went from G to H. Let v be the first vertex of K which was collapsed in
this process. The valency of v in K is at least 2, hence at the time when v
was collapsed, its valency in what is left of G at this point is also at least 2,
yielding a contradiction. �

In particular, we see that no matter how much we collapse in G, we can
never collapse any part of Core(G).

Corollary 9.14. Assume G is an arbitrary connected graph, which is not a tree.
The following statements are true.

(1) G can be collapsed to Core(G).
(2) If G can be collapsed to H, then Core(G) = Core(H).

Proof. To show (1) assume that G was collapsed to a subgraph H, which
cannot be collapsed any further. Since G is connected, so must be H. Fur-
thermore, G is not a tree, so H is not an isolated vertex. We conclude that
all of the vertices have valency at least 2 in H. We know that H contains
Core(G), by Proposition 9.13. The argument above shows that Core(G)
contains H, so H = Core(G).

To see (2), note that any leafless subgraph ofH is also a leafless subgraph
of G, so Core(G) must contain Core(H). On the other hand, Core(G) is
contained in H and is leafless in H, so Core(H) must contain Core(G). �

We have now seen that any graphG contains a special subgraph Core(G),
such that no matter how we proceed in collapsingG eventually we will end
up with Core(G), at which point we will have to stop.

We have defined Core(G) as the union of all leafless subgraphs of G.
Alternatively, this subgraph can be defined directly, using the following
terminology.

Definition 9.15. Assume that G is an arbitrary connected graph. An edge e
of G is called a tree-bridge if

(1) it is a bridge, in other words, the graph obtained fromG by removal
of e, called G \ e, consists of two connected components;

(2) one of these connected components is a tree.

Let NTB (G) denote the subgraph of G whose edges are all the edges of
G which are not tree-bridges, and whose vertices are all the vertices of G
which are adjacent to one of these edges.

Proposition 9.16. Let G be an arbitrary connected graph. Then, the subgraphs
Core(G) and NTB (G) are equal.
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Proof. First, let e be an edge ofG, such that e is a tree-bridge. LetG\e consist
of two connected components A and B, where B is a tree. Let v denote the
vertex of e contained in B. Taking v as a root of B, we can collapse B to v,
after which we can collapse e. This means that e cannot be contained in
Core(G), so we have shown that Core(G) is contained in NTB (G).

On the other hand, assume e is not a tree-bridge. If the graph G \ e

is connected, then e is contained in a cycle, and hence e is contained in
Core(G). Otherwise, G \ e has two connected components A and B, none of
which is a tree. Let C be a cycle contained in A, letD be a cycle contained in
B, and let P be any path connecting an arbitrary vertex in C to an arbitrary
vertex in D. By what is said above, this path must contain e. On the other
hand, the union ofA, B, and P, is clearly a leafless subgraph ofG. It contains
e, so e is contained in Core(G). This means that NTB (G) is contained in
Core(G). �

As a final remark in this section, let us say a few words about collapsing
sequences in simplicial complexes of dimension 2 or higher. Indeed, in this
case things get much more complicated, and no analog of Proposition 9.10
or Corollary 9.14 can possibly hold. For instance, as Figure 9.2 illustrates,
it is no longer true that each simplicial complex has some sort of a unique
backbone, which it can be collapsed to. In fact, more than that, starting
from dimension 3, we need to begin to distinguish between the notions
of collapsible complexes and sustainably collapsible complexes. The latter
notion will be introduced in Subsection 9.3.3.

9.3.2. The compound collapses. There is a natural generalization of the
notion of the elementary simplicial collapse in which the dimension gap
between the two simplices defining the collapse is more than one.

Definition 9.17. Let K be an abstract simplicial complex, and let σ and τ be
some simplices of K, such that the following conditions are satisfied

(1) τ ⊂ σ, in particular dim τ < dimσ;

(2) all simplices containing τ must be contained in σ.

A compound simplicial collapse of K is the removal of all simplices γ, such
that τ ⊆ γ ⊆ σ.

For brevity, we shall say that the pair (σ, τ) itself is a compound simplicial
collapse.

As a curious special case we note that when the simplicial complex K

is just a simplex, there is a compound collapse which removes all simplices
of K in one move. The empty simplex is removed as well, so with just
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one compound collapse, the complex K is reduced to the void simplicial
complex.

Obviously, any elementary simplicial collapse, is also a compound sim-
plicial collapse in the sense of Definition 9.17. On the other hand, any
compound simplicial collapse can be represented by a sequence of elemen-
tary simplicial collapses, as the next proposition shows.

Proposition 9.18. Let K be an abstract simplicial complex, and let σ and τ
be some simplices of K, such that (σ, τ) is a compound simplicial collapse. Set
d := dimσ − dim τ, and let Σ be the (d − 1)-simplex, whose set of vertices is
identified with σ \ τ.

Let now ((ρ1, γ1), . . . , (ρt, γt)) be an arbitrary collapsing sequence of Σ, with
the last step removing some vertex together with the empty simplex.3 Then,
((ρ1 ∪ τ, γ1 ∪ τ), . . . , (ρt ∪ τ, γt ∪ τ)) is a collapsing sequence resulting in the
compound collapse (σ, τ).

Proof. Assume the contrary, and let k be the minimal index such that (ρk ∪
τ, γk ∪ τ) is not a valid elementary collapse. This can only happen, if
there is a simplex η, such that η ⊃ γk ∪ τ, and η , ρk ∪ τ. Since (σ, τ) is
a compound simplicial collapse, and η ⊃ τ, we must have η ⊆ σ. But then,
there exists i, such that η = ρi ∪ τ or η = γi ∪ τ. Since ((ρ1, γ1), . . . , (ρt, γt))

is a valid collapsing sequence, and η \ τ ⊃ γk, we must have i < k, leading
to a contradiction, since this means that η \ τ ∈ {ρ1, . . . , ρk−1, γ1, . . . , γk−1},
so η has already has been removed. �

It is easy to produce a specific sequence of elementary collapses emu-
lating the compound collapse (σ, τ). To do that, fix some vertex v which
belongs to σ, but not to τ. Take all the simplices in σ which contain τ ∪ {v}

and arrange them so that the dimension does not increase. Let us assume
this gives the sequence of simplices of K, which we call ρ1, . . . , ρt. Then the
sequence (ρ1, ρ1 \ v), . . . , (ρt, ρt \ v) is the desired sequence of elementary
collapses.

In general, let scn denote the number of the collapsing sequences of an
n-simplex. The magnitude of that number is investigated in Exercise (5) of
this chapter.

Corollary 9.19. A sequence of compound collapses from an abstract simplicial
complex K1 to an abstract simplicial complex K2 yields a strong deformation
retraction, and hence also a homotopy equivalence between the corresponding geo-
metric realizations |K1| and |K2|.

In particular, the geometric realization of a collapsible abstract simplicial com-
plex is contractible.

3Clearly, t = 2d−1, but we do not need that here.
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Proof. Any compound collapse is a sequence of elementary ones, so all the
statements follow immediately by repeated application of Proposition 9.9.

�

9.3.3. Sustainably collapsible simplicial complexes. From a constructive
point of view, when we know that an abstract simplicial complex K is
collapsible, we may try to find a collapsing sequence by first finding some
collapse which can be performed in K, and then continuing the collapsing
procedure with whatever collapses available. Unfortunately, it may very
well happen that, even when starting with a collapsible simplicial complex,
by choosing an unfortunate initial sequence of collapses, we could arrive at
a subcomplex where no further collapses are possible. This phenomenon is
formally managed by the following definition.

Definition 9.20. An abstract simplicial complex K is called sustainably col-
lapsible if any simplicial complex obtained fromKby a sequence of simplicial
collapses, is itself collapsible.

Note, that it does not matter for Definition 9.20 whether we allow com-
pound collapses or not.

Here is a very rough sketch of how a collapsible abstract simplicial com-
plex which is not sustainably collapsible can be obtained. Take a simplicial
subdivision of the Dunce hat. Say we get a 2-dimensional simplicial com-
plex K. Take the cylinder K × [0, 1]. There is a standard way to subdivide
this cylinder so that on one hand the obtained simplicial complex H can
be collapsed to K (this part is easy), and on the other hand H is collapsible
(this is more difficult, and needs to use specific structure of the Dunce hat).
We omit the technical details.

Definition 9.21. Assume K is an abstract simplicial complex, and H is a
subcomplex. We say that K is sustainably collapsible to H if any simplicial
complex, which is obtained from K by a sequence of collapses, and contains
H, can then be further collapsed to H.

When K is sustainably collapsible to H we shall write K ↘s H. The
careful reader should note at this point that K1 ↘s K2 and K2 ↘s K3 will
not necessarily imply that K1 ↘s K3. We leave it as an exercise.

On the positive side, in the 1-dimensional case, an examination of our
proof of Corollary 9.14 reveals that we have actually proved that G is sus-
tainably collapsible to Core(G).

Above we have mentioned an example of a 3-dimensional collapsible,
but not sustainable collapsible simplicial complex. The next proposition
shows that this example has the minimal possible dimension.
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Proposition 9.22. Let K be a 2-dimensional collapsible simplicial complex. Then
K is also sustainably collapsible.

Proof. Assume this is not the case, and let H be a subcomplex of K, such
that K can be collapsed to H, but no further collapses are possible in H.

First, assume that H has dimension 2. Consider an arbitrary collapsing
sequence of K, and let σ be the first one among the 2-simplices of H, which
is collapsed using this sequence. Let us say the corresponding collapse is
(σ, e), where e is some edge of σ. Since we cannot collapse (σ, e) in H, we
know that emust belong to at least two 2-simplices of H. By our choice, this
other simplex occurs later in the fixed collapsing sequence ofK. This means,
that e is not a free edge yet, so the collapse (σ, e) cannot be performed, and
we arrive at a contradiction.

Assume now that H has dimension 1. Since H is not collapsible, by
Proposition 9.10, it is also not contractible. This however, is impossible,
since K was collapsed to H, K is contractible, and collapses are strong
deformation retractions. This yields a contradiction, and we have shown
that such a subcomplex H cannot exist. �

9.4. Collapses and chain homotopy

Let us now visualize an elementary simplicial collapse as a chain homotopy.
Assume K is an abstract simplicial complex, and (σ, τ) is an elementary col-
lapse, such that d = dim τ > 0. We work with the integer coefficients.
Changing orientations if necessary we can assume, without loss of gener-
ality, that τ is contained in the boundary of σ with coefficient 1. Let us now
define a chain map f : C(K)→ C(K) by setting

f(τ) := τ− ∂σ,

f(σ) := 0,

f(γ) := γ, if γ , σ, τ,

for simplices, and then extending linearly.
Define furthermore a sequence of maps Φ = (Φi)i, where Φi : Ci(K)→

Ci+1(K), for all i, by setting, again for simplices,

Φd(τ) := σ,

Φi(γ) := 0, if γ , τ.

Proposition 9.23. The sequence of mapsΦ is a chain homotopy between the chain
map f and the identity map idC(K).
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Proof. Set g := id C(K). We verify the statement of the proposition by
a direct calculation. First, for the map g− f, we obtain

(g− f)(τ) = τ− (τ− ∂σ) = ∂σ,

(g− f)(σ) = σ,

(g− f)(γ) = 0, if γ , σ, τ.

Second, we have

(∂ ◦Φ)(τ) = ∂σ,

(∂ ◦Φ)(γ) = 0, if γ , τ.

And finally, we have

(Φ ◦ ∂)(σ) = σ,
(Φ ◦ ∂)(γ) = 0, if γ , σ,

where the last two equalities use the fact that (σ, τ) is an elementary collapse,
so τ is contained in ∂γ, if and only if γ = σ. Combining these calculations,
we see that ∂ ◦Φ+Φ ◦ ∂ = g− f, thus proving our proposition. �

9.5. A glimpse of simple homotopy theory

As we have already seen, the converse of the second statement of Corol-
lary 9.19 is not true: there are abstract simplicial complexes which are not
collapsible, yet their geometric realizations are contractible. However, it
turns out that the following weaker statement is true.

Theorem 9.24. A geometric realization of a finite abstract simplicial complex K

is contractible if and only if there exists an abstract simplicial complex K̃ such that

(1) K is a simplicial subcomplex of K̃, and K̃ can be collapsed to K;

(2) K̃ is collapsible.

The proof of Theorem 9.24 is by no means straighforward, it requires
a substantial theoretical build-up, and will not be presented here. Let us
just mention at this point that a statement closely related to Theorem 9.24
is called Zeeman Conjecture and it implies in particular the famous Poincaré
Conjecture.

Theorem 9.24 motivates the introduction of further terminology.

Definition 9.25. Assume K is a simplicial complex and K ′ is obtained from
Kvia an elementary simplicial collapse. Then we say thatK is obtained from
K ′ via an elementary simplicial expansion or just an elementary expansion.
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Furthermore, we say that an abstract simplicial complex K is obtained
from K ′ via a simplicial expansion if and only if K ′ is obtained from K via
a simplicial collapse.4

As before, a simplicial expansion can be decomposed as a sequence of
elementary simplicial expansions.

Theorem 9.24 can now be reformulated as saying that whenever a geo-
metric realization of a finite abstract simplicial complex is contractible, there
exists a sequence of simplicial collapses and simplicial expansions leading
from K to a vertex.

More generally, one benefits from the following definition.

Definition 9.26. Two abstract simplicial complexes are said to have the
same simple homotopy type if there exists a sequence of elementary collapses
and expansions leading from one to the other. Such a sequence is called
a formal deformation.

One can easily see that collapses and expansions commute in the fol-
lowing weak sense.

Proposition 9.27. Assume K is a simplicial complex, where we first collapse and
then expand. Then we could also do expansion first, followed by the collapse, with
the same final result.

Proposition 9.27 means that any sequence of elementary collapses and
expansions can be replaced with a sequence of expansions followed by
a sequence of collapses. Hence we have the following statement.

Proposition 9.28. Two simplicial complexes have the same simple homotopy type
if and only if there exists a third complex which collapses to each one of them.

Let us look at an example of how Proposition 9.28 might work. Let us
show that a barycentric subdivision of any abstract simplicial complex K

has the same simple homotopy type as K.

Proposition 9.29. Let |K| be the geometric realization of an arbitrary finite abstract
simplicial complex K. Then there exists a formal deformation from |K| to |BdK|.

Proof. To start with, since the barycentric subdivision can be represented
as a sequence of stellar subdivisions, see Subsection 2.7.8, it is enough to
find a formal deformation leading from |K| to |sd (K, σ)|, for an arbitrary
simplex σ ∈ K. One choice of such a deformation is a concatenation of two
steps.

4Alternatively, the simplicial expansions are sometimes called anti-collapses.
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Step 1. Add a cone over st Kσ. More precisely, consider a new simplicial
complex K ′, such that V(K ′) = V(K) ∪ {v}, K is an induced subcomplex of
K ′, and lk K ′v = st Kσ.
Step 2. Delete from K ′ all the simplices containing σ.

Since st Kσ is a cone, in particular collapsible, Step 1 can be performed as
a sequence of elementary expansions. Furthermore, Step 2 can be performed
as a sequence of elementary collapses as follows. The set of the simplices
which are to be deleted can be written as a disjoint union of sets A and
B, where B is the set of all simplices which contain both σ and v. Clearly,
adding v to a simplex is a bijection µ : A → B. Let τ1 . . . , τt be a reverse
linear extension order onA, then ((τ1, µ(τ1)), . . . , (τt, µ(τt)) is an elementary
collapsing sequence. Finally, we see that performing Steps 1 and 2, in this
order, will yield a stellar subdivision of |K| atσ, and therefore our description
is completed. �

Theorem 9.24 leads to a natural question: if the geometric realizations
of two abstract simplicial complexes are homotopy equivalent, can we con-
clude that the abstract simplicial complexes themselves have the same sim-
ple homotopy type?

Theorem 9.8 tells us that if two topological spacesX and Y are homotopy
equivalent, then there exists a third topological space which contains both
X and Y as strong deformation retracts. Therefore, to positively answer the
previous question, it would be enough to show that a strong deformation
retraction preserves the simple homotopy type.

Unfortunately, this is not the case. The simple homotopy type is a much
more fine invariant than the mere homotopy type. A sophisticated ob-
struction, called Whitehead torsion will prevent homotopy equivalent spaces
from having the same simple homotopy type. Still, this obstruction lives
in the group algebra associated to the fundamental group of the spaces in
question, so on the positive side, we have the following result.

Theorem 9.30. Two simply connected finite abstract simplicial complexes are
homotopy equivalent if and only if they have the same simple homotopy type.

Exercises

(1) Show that a non-void collapsible simplicial complex can be collapsed
to any of its vertices.

(2) Let T be a tree with n edges, and let c(T) denote the number of ways T
can be collapsed to a point.
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(a) Calculate the value c(T) for all trees T with at most 5 edges.
(b) Show that

(9.1) 2n! > c(T) > 2n.

(c) Give a complete description of the sets of trees for which the bounds
of Equation (9.1) are attained.

(3) (a) Assume T is a tree with n edges, n > 3, which contains a vertex of
valency > 3. Show that

c(T) > 2!(2n − 2).

Characterize the family of trees for which this bound is achieved.
(b) Assume T contains a vertex of valency d > 4. Show that

c(T) > 3!(2n − 2n).

Characterize the family of trees for which this bound is achieved.
(c) Assume T contains a vertex of valency d > 5. Show that

c(T) > 4!(2n − n2 + n− 2).

Characterize the family of trees for which this bound is achieved.
(d) In the general case, show that

c(T) > (d− 1)!
n−d+1∑
i=0

(
n− 1

i

)
,

where d is the maximal vertex valency in T .
(4) For an arbitrary integer n > 3, let Un denote the 2-dimensional simpli-

cial complex obtained as a cone over a cycle withn edges. Alternatively,
Un can be obtained as a stellar triangulation of an n-gon. The simpli-
cial complex Un has n + 1 vertices, 2n edges and n triangles, with all
triangles sharing a common vertex. It is clearly collapsible, and we let
ucn denote the number of its collapsing sequences.
(a) Calculate uc3, and use it to enumerate all collapsing sequences of

a 3-simplex.
(b) Calculate uc4.

(5) Let scn denote the number of the collapsing sequences of an n-simplex,
e.g., sc1 = 2, sc2 = 12.
(a) Calculate sc3.
(b) Show that

scn > (n+ 1)

n−1∏
k=1

(
n

k

)
!

(c) Derive that log log scn = Ω(n).
(6) Complete the proof of Proposition 9.7.
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(7) Let K be an abstract simplicial complex. Describe a simplicial subdivi-
sion H of the cylinder K× [0, 1] such that the bottom copy K× {0} is not
further subdivided, and H can be collapsed to K× {0}.5

(8) Find a collapsible simplicial complex K, such that there exists an ele-
mentary simplicial collapse of K producing a simplicial complex which
is not collapsible.

(9) Define cubical collapses. Formulate and prove the cubical analogs of
the main theorems of this chapter. What about polyhedral collapses?

(10) Find abstract simplicial complexes K, L, and M, such that K ↘s L and
L↘s M are true, but K↘s M is false.

5This exercise assumes that you are familiar with the concept of arbitrary simplicial subdivisions.



Chapter 10

Organizing Collapsing
Sequences

10.1. Face poset of an abstract simplicial complex

In order to learn how to keep track of various collapsing sequences, it is
useful to introduce some combinatorial notions which encode the simplicial
structure.

Definition 10.1. Let K be an arbitrary abstract simplicial complex. The face
poset of K is a partially ordered set, which we denote by F(K), defined by
the following:

• the elements of F(K) are all the simplices of K, including the empty
one;

• the partial order is given by the inclusion relation on the simplices,
in other words, we set σ > τ as elements of F(K) if and only if σ ⊇ τ
as simplices.

Note that sometimes one defines the face poset as the partially ordered
set of all non-empty simplices. There are advantages to both conventions.
When used to record collapses, it is handy to have the empty simplex
included.

As an example, when K is the n-simplex, whose set of vertices is [n],
we obtain the partially ordered set consisting of all the subsets of [n]. This
partially ordered set is called the Boolean algebra.

The next definition describes a procedure which in some sense is a re-
verse of taking the face poset. For this, recall that in a partially ordered set,

163
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Figure 10.1. An abstract simplicial complex and its face poset.
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Figure 10.2. The effect of an elementary simplicial collapse ({0, 1, 2}, {0, 2})

on the face poset of the corresponding abstract simplicial complex.

a chain is a subset of elements which is totally ordered. In particular, a set
consisting of a single element of P is a chain, and so is the empty set.

Definition 10.2. Let P be a partially ordered set. Its order complex is an
abstract simplicial complex, which we denote by ∆(P), defined as follows:

• we take the elements of P as the vertices of ∆(P);
• the simplices of ∆(P) are precisely all the finite chains of P.

The next proposition describes the precise manner in which the con-
structions described in Definitions 10.1 and 10.2 interact. Before that, just
a piece of notation: for any abstract simplicial complex K, we denote the
minimal element of F(K) by 0̂; it corresponds to the empty simplex.

Proposition 10.3.

(1) Assume K is an abstract simplicial complex, then ∆(F(K) \ {0̂}) is the
barycentric subdivision of K.
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(2) Assume P is a partially ordered set, then the poset F((∆(P)) is the poset
of chains of P, including the empty one.

Proof. Assume first we have an abstract simplicial complex K. Unwinding
the definitions we see that the non-empty simplices of ∆(F(K) \ {0̂}) are all
the totally ordered sets of non-empty simplices of K. These, of course, are
exactly the chains of F(K) \ {0̂}, so comparing this with the description of
the simplicial structure given in Definition 2.41 we arrive at the desired
conclusion.

The second part involving the partially ordered set P is immediate as
well, once the definitions of F and ∆ have been unwinded. �

Most of the combinatorial constructions involving abstract simplicial
complexes have their poset interpretation. Figures 10.3 and 10.4 show the
meaning of the deletion and the link in the face poset.

∅

0 1 2 3 4 5

01 02 04 13 23 25 35 45

0 3

2

1

4 5

Figure 10.3. Deletion of the simplex {1, 2} from the simplicial complex in
Figure 10.1 and the corresponding face poset.

∅

0 1 3 5

01 13

0 3

1

5

Figure 10.4. Link of the simplex {2} in the simplicial complex in Figure 10.1
and the corresponding face poset.

Figure 10.5 illustrates the case of the stellar subdivision. When passing
from the face poset of an abstract simplicial complex to the face poset of its
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stellar subdivision one needs to perform the so-called combinatorial blowup.
Before we proceed with the definition, recall the following terminology.

0 3

2

1

∅
4 5

01 02 04 45352523133a

0 1 2 3 4 5a

0a 1a 2a

01a 23a02a 13a

a

Figure 10.5. Stellar subdivision of the simplex {1, 2} in the simplicial com-
plex in Figure 10.1 and the corresponding face poset.

Let P be a poset, and choose a subset A ⊆ P. Consider the set S of all
lower bounds for A, i.e., S := {z | z 6 x, ∀x ∈ A}. If the set S has a unique
maximal element, then it is called the meet of A, and is denoted by ∧PA, or
simply ∧A. The poset P is called a meet-semilattice, or simply a semilattice, if
it has a meet for any non-empty finite subset.

When A consists of two elements, A = {x, y}, the meet of A is called the
meet of x and y, and is denoted by x∧P y, or simply by x∧ y.

Dually, for a subset A ⊆ P. Consider the set S of all upper bounds for A,
i.e., S := {z | z > x, ∀x ∈ A}. If the set S has a unique minimal element, then it
is called the join of A, and is denoted by ∨PA, or simply ∨A. For A = {x, y}

we write x∨P y, or simply x∨ y.

Definition 10.4. For a semilattice L and an element a ∈ L, a , 0̂,1 we define
a poset BlaL, the combinatorial blowup of L at a, as follows. The elements of
BlaL are given by

(1) y ∈ L, such that y � a;
(2) 〈a, y〉, for y ∈ L, such that y � a and y ∨L a exists (in particular,〈

a, 0̂
〉

can be thought of as the result of blowing up a);

The order relations in BlaL are given by:

(1) y > z in BlaL if y > z in L;
(2) 〈a, y〉 > 〈a, z〉 in BlaL if y > z in L;
(3) 〈a, y〉 > z in BlaL if y > z in L;

1Here, 0̂ denotes the unique minimal element of L.
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where in all three cases y, z � a.

As a special case, we can easily describe the combinatorics of the sim-
plicial complex obtained by taking an n-simplex, and taking the stellar
subdivision of one of its simplices. Let K denote the n-simplex whose set
of vertices is [n]. Pick S ⊆ [n], and let σ be the corresponding simplex of K.
Then, the set of all the simplices of SdK(σ) is given by

{T | T + S} ∪ {〈a, T〉 | T + S} ,

where a is the symbol corresponding to the barycenter of σ. Note, that the
actual new vertex at the barycenter of σ is denoted by 〈a, ∅〉. The simplex
inclusion rules are then simply

(1) the simplex indexed by T1 contains the simplex indexed by T2 if
and only if T1 ⊇ T2;

(2) 〈a, T1〉 contains 〈a, T2〉 if and only if T1 ⊇ T2;

(3) 〈a, T1〉 strictly contains T2 if and only if T1 ⊇ T2,

where in all three cases T1, T2 + S.

10.2. Acyclic matchings

Matching is the combinatorial notion for the face posets corresponding to
elementary simplicial collapses. Let us recall this concept from graph theory.

Definition 10.5. Let G be a graph, whose set of vertices is V and whose set
of edges is E. A partial matching in G is a set of edges {{a1, b1}, . . . , {at, bt}}

such that all the vertices {a1, . . . , at, b1, . . . , bt} are distinct.

Our notion of the partial matching is flexible, in the sense that it includes
the case where all the vertices are matched. This makes writing arguments
easier. However, often it is useful to specifically point out that all the
vertices have really been matched, in which case we may also call such
a matching a complete matching. In this text, we shall never drop the adjective
“complete”, so when we simply say “matching”, we shall always mean the
partial matching.

It is often convenient to think of a matching in a formal way: namely, as
a function µ :M →M, where M is a subset of the set of vertices of G. This
function must satisfy the following two conditions:

• for all v ∈ M, the vertices v and µ(v) are connected by an edge,
called the matching edge;

• for all v ∈M, we have µ(µ(v)) = v.
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The correspondence with the matchings is easy: M is the set of matched
vertices, and each vertex v ∈M is matched to the vertex µ(v).

Matching theory is an extensive branch of graph theory, with many
methods developed to find new and to improve existing matchings. We
refer the reader to [Lo86] as a possible point of entry.

In general, there are many constructions which associate a graph to
a poset P. The one we need here takes the set of vertices of P as the set of
vertices of that graph, and then connects two elements by an edge if and
only if one of these elements covers the other one. To this end, recall that
for x, y ∈ P we say that x covers y, and write x � y, if x > y and there exists
no z ∈ P, such that x > z > y. The obtained graph is called the underlying
graph of the Hasse diagram of P.

Definition 10.6. A partial matching in a poset P is a partial matching in the
underlying graph of the Hasse diagram of P. In other words, it is a subset
M ⊆ P, together with a bijection µ : M → M, such that for all v ∈ M, the
following two conditions are satisfied:

• either v covers µ(v), or vice versa;
• µ(µ(v)) = v.

We shall think about the set M as being a part of the information pro-
vided by the the function µ, so we shall simply say things like “assume we
have a matching µ.”

Given a bijection µ : M → M as in Definition 10.6, for future reference,
we introduce the following notation:

• M↑ is the subset of all v ∈M, such that µ(v) is covered by v;
• M↓ is the subset of all v ∈M, such that µ(v) covers v;
• R(µ) is the complement of M, i.e., R(µ) := P \M.

Note, that M↑ ∪M↓ =M, the union is disjoint, and the maps µ :M↑ →M↓

and µ : M↓ → M↑ are well-defined bijections, which are inverses of each
other. When µ is clear, we shall simply write R instead of R(µ).

As a more precise piece of notation, we write µ−(v) instead of just µ(v) if
v covers µ(v). Symmetrically, we write µ+(v) instead of µ(v) if µ(v) covers v.

An elementary simplicial collapse in an abstract simplicial complex K is
now encoded as the matching of two vertices in the face poset F(K), subject
to further conditions. These vertices correspond to the two simplicesσ and τ
which are removed during the collapse and the fact that they are connected
by an edge is ensured by the conditions σ ⊃ τ and dim τ+ 1 = dimσ.

Accordingly, a set of elementary simplicial collapses is described by
a matching consisting of a collection of pairs of simplices (σ, τ), such that σ
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contains τ, and dimσ = dim τ+1. It is a simple, but crucial observation, that
not every matching of this type can be turned into a collapsing sequence. For
example, no order can be chosen in the matching on the right of Figure 10.6,
which would correspond to an allowed collapsing sequence.

∅

2

23

4310

043412011

2

34

0

Figure 10.6. A cycle and a matching in its face poset.

Here is what goes wrong in this example: the prospective collapses are
all “hooked up” with each other in a cyclic pattern, so that any suggested
collapsing sequence would have one of these edges from the cycle occur-
ring before the other ones, clearly contradicting the conditions for being
an elementary collapse. This simple observation leads to the following
formalization.

Definition 10.7. Assume we are given a partially ordered set P, and a partial
matching µ :M→M on P. This matching is called acyclic, if there does not
exist a cycle of the following form:

(10.1) b1 � µ(b1) ≺ b2 � µ(b2) ≺ · · · ≺ bn � µ(bn) ≺ b1,

with n > 2, and all bi ∈M being distinct.

A graphic way to reformulate condition (10.1) of Definition 10.7 is as
follows. Given a poset P, we start by orienting all edges in the underlying
graph of the Hasse diagram of P, so that each one points from the larger
element to the smaller one. This graph is obviously acyclic.2 Now, assume
we are given a partial matching µ :M →M. For each v ∈M, such that v is
covered by µ(v), change the orientation of the edge (µ(v), v) to the opposite
one. The condition in question now says that the directed graph, obtained
in this fashion, has no cycles.

Let us next formulate a proposition which provides yet another alterna-
tive reformulation of Definition 10.7. Consider first the following general
construction. Assume P is a poset, and the element set of P is partitioned
into non-empty disjoint sets {Ai}i∈Q. We define a partial order on the index
set Q using the following two rules:

2A graph is called acyclic if it does not have any cycles.
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(1) for i, j ∈ Q, we write i � j if there exist x ∈ Ai and y ∈ Aj, such that
x > y;

(2) for i, j ∈ Q, we write i >Q j if there exists a finite sequence
i1, . . . , it ∈ Q, t > 2, such that i1 = i, it = j, and ik � ik+1, for
all k = 1, . . . , t− 1.

The resulting partial order onQ is said to be induced by P. It may or may
not be well-defined.

Proposition 10.8. Assume P is a poset equipped with a partial matching µ. Let
{Ai}i∈Q be the partition of P induced by that matching, where matched pairs of
elements form 2-sets and non-matched elements give singletons.

The matching µ is acyclic if and only if the partial order on Q induced by P is
well-defined.

The proof of Proposition 10.8 is straightforward and is best left to the
interested reader. From the point of view of universal constructions the
thinking along the lines of Proposition 10.8 is rather fruitful. We will return
to this topic in the context of the universality of the colimit of a matching in
Theorem 16.5, where more details will be provided.

10.3. Collapsing sequences vs acyclic matchings: Theorem A

The next theorem is the first, and the simplest, of the central results of
discrete Morse theory. In essence, it states that acyclic matchings provide
a perfect language for saying that one abstract simplicial complex collapses
to another one.

Theorem 10.9. (Theorem A).
Assume K is an abstract simplicial complex, and assume K ′ is a simplicial sub-
complex of K, such that K \ K ′ is finite. The following statements are equivalent:

(1) there exists a sequence of elementary collapses leading from K to K ′;

(2) there exists a complete acyclic matching3 on the set of all simplices of K
which are not contained in K ′.

Proof. Let us first show that (1) implies (2). Fix some sequence of elemen-
tary simplicial collapses leading from K to K ′, and take the matching µ on
the set of simplices of K \K ′, which corresponds to this sequence. Assume
that this matching is not acyclic. Then, by definition, there must exist a cycle
of the form

b1 � µ(b1) ≺ b2 � µ(b2) ≺ · · · ≺ bn � µ(bn) ≺ b1,

3By this we mean matching on the underlying graph of the Hasse diagram of the face poset of K.
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for some distinct elements b1, . . . , bn ∈ K \ K ′.
Consider the sequence (b1, µ(b1)), . . . , (bn, µ(bn)) of elementary col-

lapses. Without loss of generality, we can assume that in the sequence
of elementary collapses leading from K to K ′, the elementary collapse
(b1, µ(b1)) occurs before all the other elementary collapses from this set.
Clearly, this contradicts the fact that µ(b1) ≺ b2, since then µ(b1) is properly
contained in at least two simplices, namely in b1 and in b2, both of which
are present in the complex when we attempt to perform the elementary
collapse (b1, µ(b1)).

Let us now show the reverse direction, that is that (2) implies (1). Con-
sider a complete acyclic matching on the set of simplices K \ K ′. We shall
show that there exists a collapsing sequence from K to K ′ using induction
on |K \ K ′|. When |K \ K ′| = 1, the statement is trivial, and we take it as the
basis for induction.

For the induction step, assume |K \ K ′| > 2. We construct an directed
graph G as follows. As vertices of G we take the elements of K \ K ′. We
let edges be defined by the containment relations, that is, (σ, τ) is an edge
if σ ⊃ τ as simplices. Finally, whenever σ ⊃ τ, we orient the edge (σ, τ)

from σ to τ, unless τ = µ−(σ), in which case we orient the edge from τ to σ
instead. As already mentioned above, the fact that the matching is acyclic
is equivalent to saying that the obtained directed graph is acyclic, i.e., does
not have any oriented cycles.

It is a standard fact of graph theory that an acyclic directed graph
contains at least one source, which is a vertex v such all the edges adjacent to
v are oriented away from v. Let τ ∈ K\K ′ denote such a source. There cannot
exist σ ∈ K \ K ′ such that τ = µ+(σ), because then the edge (σ, τ) would be
oriented from σ to τ, contradicting the assumption that τ is a source. Since
the matching is complete, we must instead have some σ ∈ K\K ′, such that
τ = µ−(σ).

We now claim that (σ, τ) corresponds to an elementary simplicial col-
lapse in K. Indeed, since τ is a source, there exists no vertex γwith an edge
towards τ, which means that there exists no simplex γ , σ which properly
contains τ. On the other hand, the simplex τ is of course a boundary sim-
plex of σ of codimension 1, since these two simplices are matched; yielding
a contradiction.

Set K̃ := K\ {σ, τ}. Clearly, the simplicial complex K ′ is a subcomplex of
K̃, since we have removed two simplices outside ofK ′. The acyclic matching
above gives a complete acyclic matching on K̃ \ K ′. This matching has one
edge less, so by induction hypothesis, there exists a collapsing sequence
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from K̃ to K ′. Concatenating this sequence with the elementary collapse
(σ, τ), will give the desired collapsing sequence from K to K ′. �

10.4. Collapsing sequences and cones

10.4.1. Canonical way to collapse cones. Let K be a finite abstract simpli-
cial complex, and let L be a cone over K with an apex a. There is a canonical
way to collapse this cone. Before getting into the description of the collaps-
ing procedure, we introduce a notation which will come in handy in many
situations.

Definition 10.10. Assume we have a set A, a subset B ⊆ A, and an element
v ∈ A, then we set

B XOR v :=

{
B ∪ v, if v < B;
B \ v, otherwise.

The operation XOR is called exclusive OR.

We note the following useful identity

(10.2) (B XOR v) XOR v = B,

which is valid for all v and B. We also have |B XOR v| = |B|± 1.
Any cone can now be collapsed by taking the exclusive OR with its

apex.

Proposition 10.11. The abstract simplicial complex L described above is collapsi-
ble.

Proof. Consider the matching µ : L→ L on the set of simplices of L, given
by the rule

µ(σ) := σ XOR a.

Since the vertex a can be added to any simplex σ ∈ K, the function µ is
well-defined, and Equation (10.2) tells us that µ(µ(σ)) = σ. Furthermore,
for all σ, dimµ(σ) = dimσ ± 1, and either µ(σ) is contained in σ or vice
versa. This means that µ is actually a matching. It is also clearly complete.

Assume now µ is not acyclic, and take a cycle

b1 � µ(b1) ≺ b2 � µ(b2) ≺ · · · ≺ bn � µ(bn) ≺ b1,

where n > 2, and all the simplices are distinct. By definition of µ we have
a ∈ b1, a ∈ b2, and a < µ(b1). This means b1 = µ(b1) ∪ a = b2, yielding
a contradiction. �
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10.4.2. Stellar and barycentric subdivisions of a simplex. Let n be a pos-
itive integer, and let K be an n-simplex. Let L be the stellar subdivision
of K with respect to the top-dimensional simplex. By definition, the set
of vertices of L is {v1, . . . , vn+1, a}, where {v1, . . . , vn+1} are the vertices of
K, and a is the new vertex added at the barycenter of the top-dimensional
simplex. The simplices of L are given by the set

{σ |σ ∈ K, σ , (v1, . . . , vn+1)} ∪ {a ∪ σ |σ ∈ K, σ , (v1, . . . , vn+1)} ,

where in both sets σ is allowed to be empty.
It is obvious from this description that L can be obtained by starting

from the (n+ 1)-simplex, and then performing an elementary collapse.
The complex L is a cone over K \ (v1, . . . , vn+1) with apex at a, so it

follows from Proposition 10.11 that L is collapsible.
As another example, we can take the barycentric subdivision of the sim-

plex K. We have seen that this subdivision is a cone with apex at the vertex
indexed with the maximal simplex of K, hence, again by Proposition 10.11
we know that it is collapsible.

10.4.3. Removing a simplex whose link is collapsible. One of the first
things one can do to simplify the abstract simplicial complex at hand is to
remove all the simplices whose links are collapsible themselves. As the first
simple, but instructive case, let us see how to remove a simplex whose link
is actually a cone.

Proposition 10.12. Assume K is a finite abstract simplicial complex, and assume
σ is a simplex of K, such that lkK(σ) is a cone. Then, we have K↘ dlK(σ).

Proof. The argument is a modification of the proof of Proposition 10.11. Let
b denote the apex of the cone lkK(σ). For an arbitrary simplex τ, which lies
in the open star of σ, we set

µ(τ) := τ XOR b.

Same way as in the proof of Proposition 10.11 we see that µ is an acyclic
matching. This matching is complete on the set of simplices in the open star
of σ, which of course are precisely the simplices of the difference K\dlK(σ).
The result then follows from Theorem 10.9. �

Let us now slightly upgrade our argument to deal with the general case.

Proposition 10.13. Assume K is an abstract simplicial complex, and assume σ is
a simplex of K, such that lkK(σ) is collapsible. Then, again, we have K↘ dlK(σ).

Proof. By Theorem 10.9 collapsibility of the complex lkK(σ) implies that
there exists a complete acyclic matching on the set of the simplices of lkK(σ).
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Let ν denote this matching. For arbitrary simplex τ ∈ K which lies in the
open star of σ, we set

µ(τ) := ν(τ \ σ) ∪ σ.
Assume this matching is not acyclic, and pick a cycle

(10.3) b1 � µ(b1) ≺ b2 � µ(b2) ≺ · · · ≺ bn � µ(bn) ≺ b1, where n > 2.

The simplices b1, . . . , bn belong to the open star of σ, which means that
σ ⊆ bi, for all i = 1, . . . , n. Write b1 = a1∪σ, . . . , bn = an∪σ. Then the cycle
in Equation (10.3) becomes

a1 ∪ σ � ν(a1)∪ σ ≺ a2 ∪ σ � ν(a2)∪ σ ≺ · · · ≺ an ∪ σ � ν(an)∪ σ ≺ a1 ∪ σ,

and deleting σ everywhere we obtain

(10.4) a1 � ν(a1) ≺ a2 � ν(a2) ≺ · · · ≺ an � ν(an) ≺ a1.

The existence of the cycle shown by Equation (10.4) contradicts our assump-
tion that ν is an acyclic matching. Thus, assuming that µ was not acyclic
was wrong. The statement of the proposition, then again, follows from
Theorem 10.9. �

10.5. Standard subdivisions of collapsible complexes

10.5.1. Stellar subdivision of a collapsible simplicial complex. Next, let
us consider a slightly more complicated example. We have seen that the
stellar subdivision of a simplex is collapsible. In fact, the following gener-
alization of this fact is true.

Theorem 10.14. Assume K is a collapsible abstract simplicial complex, and let
α be an arbitrary simplex of K. Then, the abstract simplicial complex SdK(α) is
collapsible as well.

The proof of Theorem 10.14 depends on the following lemma.

Lemma 10.15. Assumen is a positive integer, andK is ann-simplex, with vertices
indexed by the set [n], and let L be the subcomplex of K consisting of all simplices
except for [n] and [n− 1]. Let σ be an arbitrary simplex of K. Then we have

(10.5)

{
SdK(σ)↘ SdL(σ), if σ , [n− 1], [n];
SdK(σ)↘ L, otherwise.

Proof. We shall only show the first line of (10.5), leaving the cases σ = [n−1]

and σ = [n] for the exercises.
The simplicial structure of SdK(σ) was described in the discussion fol-

lowing Definition 10.4. As was done there, let a denote the barycenter of σ,
so the set of the simplices of SdK(σ) is the union of the sets {〈a, τ〉 | τ + σ},
and {τ | τ + σ}.
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We need to distinguish two cases. Assume first that σ ⊂ [n − 1]. Then,
we have

SdK(σ) \ SdL(σ) = {〈a, τ〉 | τ ⊇ [n− 1] \ σ, τ + σ} .

This is precisely the open star of the simplex 〈a, [n− 1] \ σ〉. The link of this
simplex is a cone with apex at n. It is collapsible, using the matching given
by the operation XOR n. It can then be checked directly, that his gives
the desired collapsing sequence SdK(σ) ↘ SdL(σ). Alternatively, we can
apply Proposition 10.13.

Assume now that n is a vertex of σ, but σ , [n]. In this case, we have

SdK(σ) \ SdL(σ) = {〈a, τ〉 | τ ⊇ [n] \ σ, τ + σ} ∪ {[n− 1]}.

We now start by collapsing the pair (〈a, [n− 1]〉 , [n − 1]). This is a legal
elementary collapse, as no other simplex of SdK(σ) can contain [n − 1].
After this we just need to collapse the open star of the simplex 〈a, [n] \ σ〉.
Again, the link of that simplex is a cone with apex at n (it is actually
isomorphic to the boundary of a (dimσ)-simplex with one top-dimensional
simplex removed), so we apply Proposition 10.13 as we did in the previous
case. �

Proof of Theorem 10.14. In order to obtain a collapsing sequence for the
simplicial complex SdK(α), we start with the collapsing sequence for K,
taking it as a blueprint. Then, every time we would have a collapse (σ, τ),
in K, such that α ⊆ σ, we simply replace it with the collapsing sequence
either for SdK(α) ↘ SdL(σ), or SdK(α) ↘ L, whichever is appropriate,
where L = K \ {τ, σ}. The existence of the latter collapsing sequence is
guaranteed by Lemma 10.15. �

10.5.2. Barycentric subdivision of a collapsible simplicial complex. In
general, it is interesting to know which constructions preserve collapsibility.
The next theorem tells us that taking barycentric subdivision is one of these
constructions.

Theorem 10.16. Assume K is a collapsible abstract simplicial complex. Then, the
abstract simplicial complex BdK is collapsible as well.

More generally, if K is an abstract simplicial complex and L its subcomplex
such that K↘ L, then BdK↘ BdL.

Corollary 10.17. The iterated barycentric subdivision of a simplex Bdt(∆n) is
collapsible.

Before we proceed with the proof of Theorem 10.16 we need the follow-
ing notion.
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Definition 10.18. AssumeK is an abstract simplicial complex. For a simplex
α ∈ BdK, α = {σ1, . . . , σt}, such that σ1 ⊂ · · · ⊂ σt, we shall use the notation
α = (σ1 ⊂ · · · ⊂ σt). Furthermore, we call σt ∈ K the support of α, and write
suppα = σt.

The following lemma is the analog of Lemma 10.15, it plays the crucial
role in the proof of Theorem 10.16.

Lemma 10.19. Assumen is a positive integer, andK is ann-simplex, with vertices
indexed by the set [n]. Let L be the subcomplex of K consisting of all simplices
except for [n] and [n− 1]. Then we have BdK↘ BdL.

Proof. Note, that BdL is the subcomplex of BdK consisting of all simplices
except for those whose support is [n] or [n − 1]. Let C denote the set of
simplices BdK \ BdL. We define the matching µ : C → C as follows. The
first partial rule says

(10.6) µ(σ1 ⊂ · · · ⊂ σk) :=

{
σ1 ⊂ · · · ⊂ σk ⊂ [n], if σk = [n− 1];
σ1 ⊂ · · · ⊂ σk−1, if σk−1 = [n− 1].

For the last line note that when σk−1 = [n − 1], we automatically have
σk = [n]. This will match completely all simplices α in C which have
suppα = [n− 1] with those which have suppα = [n] and σk−1 = [n− 1].

What remains are the simplices α = (σ1 ⊂ · · · ⊂ σk) for which σk = [n]

and σk−1 , [n−1]. Assume α is such a simplex, and let h(α) be the maximal
index 1 6 h(α) 6 k such that n < σh(α). If n ∈ σi for all 1 6 i 6 k, then we
set h(α) := 0, and use σ0 = ∅ as a default value.

The next rule completes our definition of µ:

µ(σ1 ⊂ · · · ⊂ σk) :={
σ1 ⊂ · · · ⊂ σh(α) ⊂ σh(α) ∪ n ⊂ · · · ⊂ σk, if |σh(α)+1| > |σh(α)|+ 2;
σ1 ⊂ · · · ⊂ σh(α) ⊂ σh(α)+2 ⊂ · · · ⊂ σk, if |σh(α)+1| = |σh(α)|+ 1.

It is clear that µ is a complete matching on the set C. Before proceeding, we
make the following observations:

• by definition of µ, we have suppb = [n] for all b ∈M↑(C);
• for all b ∈ C, we have h(µ(b)) = h(b), since µ adds or deletes a set

containing n;

• if b ≺ c in BdK, then h(b) 6 h(c).

Let us now show that µ is acyclic. Assume it is not, and take a cycle

b1 � µ(b1) ≺ b2 � µ(b2) ≺ · · · ≺ bt � µ(bt) ≺ b1,
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where n > 2, and all the simplices are distinct. By what is said above, we
have

h(b1) = h(µ(b1)) 6 h(b2) = h(µ(b2)) 6 · · · 6 h(bt) = h(µ(bt)) 6 h(b1),

which of course implies

h(b1) = h(µ(b1)) = h(b2) = h(µ(b2)) = · · · = h(bt) = h(µ(bt)) = h(b1).

To start with, assume that all of the matched pairs (b1, µ(b1)), . . . , (bt, µ(bt))
are of the first type, as defined in Equation (10.6), in other words, suppµ(b1) =
· · · = suppµ(bt) = [n − 1]. Let us say µ(b1) = (σ1 ⊂ · · · ⊂ σd−1 ⊂ [n − 1]).
Since suppb1 = · · · = suppbt = [n], we get

b1 = (σ1 ⊂ · · · ⊂ σd−1 ⊂ [n− 1] ⊂ [n]) = b2,

which obviously is a contradiction.
We can therefore assume without loss of generality that suppµ(b1) ,

[n − 1], which of course implies suppµ(b1) = [n]. Since µ(b1) ∈ M↓(C),
assuming µ(b1) = (σ1 ⊂ · · · ⊂ σd), we must have

b1 = (σ1 ⊂ · · · ⊂ σh ⊂ σh ∪ n ⊂ σh+1 ⊂ · · · ⊂ σd),

where h = h(µ(b1)). We furthermore have assumed that b1 � µ(bt), and
derived h(b1) = h(µ(bt)). This forces us to conclude that

µ(bt) = (σ1 ⊂ · · · ⊂ σh ⊂ σh ∪ n ⊂ σh+1 ⊂ · · · ⊂ σj−1 ⊂ σj+1 ⊂ · · · ⊂ σd),

for some h + 1 6 j 6 d. However this means that µ(bt) ∈ M↑(C), again
yielding a contradiction.

All-in-all, we can conclude that the matching µ is acyclic. The result
now follows from Theorem 10.9. �

Proof of Theorem 10.16. We shall show the second statement. Assume K is
an abstract simplicial complex and L its subcomplex such that K↘ L. Take
some sequence of elementary collapses (σ1, τ1), . . . , (σt, τt) leading from K

to L. During the elementary collapse (σk, τk) for some 1 6 k 6 twe remove
two simplices: σk and τk. Passing on to the barycentric subdivisions, we
would like to come from BdK to BdL using essentially the same collapsing
steps. The difference is that now instead of removing σk and τk we would
like to delete the whole set of simplices Bdσk ∪ Bdτk. Here Bdσk denotes
the set of simplices of BdK whose support is equal to σk, and similarly for
Bdτk. Fortunately, this is precisely the statement of Lemma 10.19, so we are
done. �
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10.6. Standard chromatic subdivision

10.6.1. Standard chromatic subdivision of a simplex. Let n be a natural
number, and let again∆n be the standardn-simplex. The abstract simplicial
complex χ(∆n) is a pure n-dimensional abstract simplicial complex defined
as follows:

• the vertices of χ(∆n) are indexed by all pairs (p, V), such that V ⊆
[n], and p ∈ V ;

• the n-dimensional simplices of χ(K) are formed by all sets of ver-
tices {(0, V0), (1, V1), . . . , (n,Vn)} satisfying the following axioms:

(i) for all i, j ∈ [n], we have either Vi ⊆ Vj or Vj ⊆ Vi;
(ii) for all i, j ∈ [n], if i ∈ Vj, then Vi ⊆ Vj.

In particular, note that χ(∆n) has 2n(n+ 1) vertices in total.

Definition 10.20. The abstract simplicial complex χ(∆n) is called the stan-
dard chromatic subdivision of ∆n.

The standard chromatic subdivision of a simplicial complex is similar
to the barycentric subdivision. Yet, there is a crucial difference, which also
explains the etymology of the term. Imagine, we are interested in coloring
the vertices of a simplicial complex K, so that, if two vertices are connected
by an edge, they must get different colors. Clearly, we will need at least
dimK+1 colors, since all the vertices of any simplex of maximal dimension
will need to be covered differently. However, if we did succeed to color
K with dimK + 1 colors, taking the barycentric subdivision will ruin it,
since the color assigned to the barycenter of any top-dimensional simplex
σ cannot be any of the old ones, as this barycenter is connected to all the
vertices of σ. This is not the case for the standard chromatic subdivision.
On the contrary, given a valid coloring of the vertices of K, the vertices of
the simplicial complex χ(K) can be colored using the same of colors.

It is useful to obtain an alternative combinatorial description of the
entire simplicial structure of χ(∆n), including the boundary operator.

Definition 10.21. A partial ordered set partition of the set [n] is a pair of ordered
set partitions of non-empty subsets of [n], σ = ((A1, . . . , At), (B1, . . . , Bt)),
which have the same number of parts, and are subject to the following
additional conditions

• for all 1 6 i 6 t, we have Bi ⊆ Ai;
• the sets Ai are disjoint.

Given such a partial ordered set partition σ, we introduce the following
terminology.
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• The union A1 ∪ · · · ∪At is called the carrier set of σ, and is denoted
by R(σ).
• The union B1 ∪ · · · ∪Bt is called the color set of σ, and is denoted by
C(σ).
• The dimension of σ is defined to be |C(σ)|− 1, and is denoted dimσ.

When appropriate, we shall also write

(10.7) σ =
A1 . . . At
B1 . . . Bt

,

which we shall call the table form of σ.
We note, that both nodes (A, x), for A ⊆ [n], as well as ordered set

partitions of [n] are special cases of partial ordered set partitions of [n].
Indeed, a node (A, x), such that A ⊆ [n] corresponds to the somewhat
degenerate partial ordered set partition of [n]

σ =
A

x
.

Whereas an ordered set partition (A1, . . . , At) corresponds to the partial
ordered set partition of [n]

σ =
A1 . . . At
A1 . . . At

,

i.e., any partial ordered set partition ((A1, . . . At), (B1, . . . , Bt)), such that
Ai = Bi for all i, and A1 ∪ · · · ∪At = [n].

Each partial ordered set partition has a non-empty color set, which
in turn is contained in its carrier set. The nodes correspond to the partial
ordered set partitions with minimal color set, consisting of just one element,
and ordered set partitions correspond to the partial ordered set partitions
with maximal color set, namely the whole set [n].

Definition 10.22. Assume we are given a partial ordered set partition of the
set [n], say σ = ((A1, . . . , At), (B1, . . . , Bt)), such that dimσ > 1, and we are
also given an element x ∈ C(σ), say x ∈ Bk, for some 1 6 k 6 t. To define
the deletion of x from σ we consider three different cases.

Case 1. If |Bk| > 2, then the deletion of x from σ is set to be

((A1, . . . , At), (B1, . . . , Bk−1, Bk \ x, Bk+1, . . . , Bt)).

Case 2. If |Bk| = 1, and k 6 t− 1, then the deletion of x from σ is set to be

((A1, . . . , Ak−1, Ak ∪Ak+1, . . . , At), (B1, . . . , Bk−1, Bk+1, . . . , Bt)).

Case 3. If |Bk| = 1, and k = t, then the deletion of x from σ is set to be

((A1, . . . , At−1), (B1, . . . , Bt−1)).
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We denote the deletion of x from σ by dl(σ, x).

The deletion of an element corresponds to the boundary relation in the
standard chromatic subdivision.

012

0|12

01|2

0|1|2

Figure 10.7. Standard chromatic subdivision of a triangle.

Theorem 10.23. The standard chromatic subdivision of a simplex is collapsible.

Proof. Consider an n-simplex K, whose set of vertices is indexed by [n].
Let B be the set of all simplices

σ =
A1 . . . At
A1 . . . At

,

such that C(σ) = A1 ∪ · · · ∪At , [n]. For each σ ∈ B, set

λ(σ) :=
A1 . . . At [n] \ C(σ)

A1 . . . At [n] \ C(σ)
.

It is then easy to see that the face poset of χ(K) decomposes as a disjoint
union of intervals [σ, λ(σ)], where σ ∈ B. Each such interval corresponds
to a (possibly non-elementary) collapse. The collapses can be performed in
any order, so that the cardinality of C(σ) does not decrease. �

10.6.2. Standard chromatic subdivision of a collapsible simplicial com-
plex.

Definition 10.24. Let K be an arbitrary abstract simplicial complex. A new
simplicial complex χ(K), called the standard chromatic subdivision of K is
defined as follows:

• the simplices of χ(K) are indexed by all partial ordered set parti-
tions

σ =
A1 . . . At
B1 . . . Bt

,
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such that A1 ∪ · · · ∪At is a simplex of K;
• the boundary relation is encoded by the deletion of elements, as

described in Definition 10.22.

Theorem 10.25. If K is an abstract simplicial complex and L its subcomplex such
that K↘ L, then χ(K)↘ χ(L). In particular, the standard chromatic subdivision
of a collapsible simplicial complex is collapsible.

In line with our previous arguments, the collapsing sequence required
in Theorem 10.25 can be obtained by an iterated application of the following
lemma.

Lemma 10.26. Let K denote the n-simplex, with the vertex set [n], and let Λ
denote the subcomplex of K obtained by an elementary collapse ([n], [n−1]). Then,
we have χ(K)↘ χ(Λ).

Proof. The proof proceeds in three stages. First, we perform all the collapses(
A1 . . . At [n] \ (A1 ∪ · · · ∪At)
B1 . . . Bt n

,
A1 . . . At
B1 . . . Bt

)
,

where n < A1 ∪ · · · ∪At.
Second, collapse the open star of the vertex ([n], n), using Proposi-

tion 10.13.
Finally, arrange the remaining simplices ([n], S), where S ⊆ [n − 1], in

such an order, that the cardinality of S does not increase, and use Propo-
sition 10.13 again to delete the open stars of these simplices in this chosen
order. Details are left as an exercise. �

Proof. Given a collapsing sequence leading from K to L, we simply replace
each elementary collapse in K by the corresponding sequence of elementary
collapses in χ(K), whose existence is guaranteed by Lemma 10.26. �

Corollary 10.27. The iterated standard chromatic subdivision of a simplex χt(∆n)
is collapsible.

Proof. By Theorem 10.23 the standard chromatic subdivision of a simplex
is collapsible. Now, repeated application of the second statement of Theo-
rem 10.25 yields the result. �

10.7. Combinatorial collapsing sequences

10.7.1. Closure operators in posets. Let us now describe a framework
which is classical in combinatorial topology, and which yields a sequence
of simplicial collapses.
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Definition 10.28. Let P be a partially ordered set. A closure operator on P is
a poset map ϕ : P → P satisfying the following conditions:

(1) ϕ(x) > x, for all x ∈ P;
(2) ϕ2 = ϕ.

Assume ϕ : P → P is a closure operator, and let ϕ(P) denote its image
{ϕ(x) | x ∈ P}. This is of course a partially ordered set as well, with the partial
order induced by that ofP. Furthermore, by condition (2) in Definition 10.28,
the restriction of ϕ to the poset ϕ(P) is simply the identity map. Moreover,
we obtain the following implication:

(10.8)


x ∈ P
y ∈ ϕ(P)
x 6 y

=⇒ ϕ(x) 6 y.

Indeed, since ϕ is a poset map, the inequality x 6 y implies the inequality
ϕ(x) 6 ϕ(y). On the other hand, ϕ(y) = y, since y ∈ ϕ(P), so we obtain
ϕ(x) 6 y.

The following theorem provides a connection between closure operators
and simplicial collapsing sequences.

Theorem 10.29. Let P be a finite partially ordered set, and let ϕ : P → P be
a closure operator. Then there exists a collapsing sequence from the order complex
∆(P) to the order complex ∆(ϕ(P)).

Proof. Clearly, the simplicial complex ∆(ϕ(P)) is a subcomplex of ∆(P). Let
us define an acyclic matching on the simplices of ∆(P) such that the set of
critical simplices is precisely ∆(ϕ(P)).

Recall that simplices of ∆(P) are chains c = (x1 < · · · < xt). Assume
that c is not a chain in ϕ(P), and let k be the largest index between 1 and
t, such that xk < ϕ(P). Note, that if k 6 t − 1, then xk+1 ∈ ϕ(P), so, by
Equation (10.8), we have xk < ϕ(xk) 6 ϕ(xk+1).

We now define a matching by setting

µ(c) := c XOR ϕ(xk),

where XOR is the exclusive OR operation defined in Definition 10.10.
Let us see that µ is an acyclic matching. Consider a cycle

b1 ≺ µ(b1) � b2 ≺ µ(b2) � · · · � bn ≺ µ(bn) � b1.

For a chain c = (x1 < · · · < xt) in P, let h(b) denote the number of xi’s which
belong to the image ϕ(P). On one hand, we have h(µ(bi)) = h(bi) + 1, for
i = 1, . . . , n, since when the matching operation adds an element, it adds an
element from the image of ϕ. On the other hand, h(µ(bi)) − 1 6 h(bi+1),
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for i = 1, . . . , n,4 simply because when passing from µ(bi) to bi+1, we may
delete at most one element from the image of ϕ. So, in total, we have

h(b1) = h(µ(b1)) − 1 6 h(b2) = · · · 6 h(bn) = h(µ(bn)) − 1 6 h(b1).

We then have h(b1) = · · · = h(bn). Assume µ(b1) = b1 ∪ ϕ(xk). When
passing from µ(b1) to b2 we must delete an element from the image of ϕ,
so we cannot delete xk. But then xk is still the largest element of b2 which
lies outside of the image of ϕ, so µ(b2) = b2 ∪ ϕ(xk). This, of course, is
impossible, since b1 , b2, so ϕ(xk) ∈ b2.

We conclude that µ is acyclic. Clearly, the set of those simplices which
are not matched by µ coincides with the set of simplices of ∆(ϕ(P)), so the
proposition follows from Theorem 10.9. �

10.7.2. Order complexes of posets with a join-transversal.

Definition 10.30. An element α of P is called a join-transversal if for any
other element x ∈ P the join of x and α exists.

There is an easy way to produce a poset with a join-transversal. Start
with any poset P and an element α ∈ P and then simply delete all x ∈ P
such that the join of α and x does not exist. It is an easy exercise to see that
α will be a join-transversal in the resulting poset.

Theorem 10.31. Assume P is a poset possessing a join-transversal, then the order
complex of P is collapsible.

Proof. This is a simple corollary of Theorem 10.29. Specifically, assume
α ∈ P is a join-transversal. We define ϕ : P → P by setting ϕ(x) := x ∨ α.
Obviously it is a poset map and ϕ(x) > x. Also (x ∨ α) ∨ α = x ∨ α, so
ϕ(ϕ(α)) = ϕ(α), making ϕ a closure operator. The image ϕ(P) is precisely
P>α, since, on one hand x∨α > α, for all x ∈ P, on the other hand, x∨α = x,
whenever x > α, so each element of P>α lies in ϕ(P).

By Theorem 10.29 this means that there exists a collapsing sequence from
∆(P) to∆(P>α). However, the simplicial complex∆(P>α) is a cone with apex
at α, which is collapsible. Therefore ∆(P) is collapsible as well. �

10.7.3. Removing dominating vertices in independence complexes. Re-
call, that a set of vertices of a graph is called independent if no two of them
are connected by an edge. Now, given a graph G, its independence complex
Ind(G) has vertices of G as vertices, and independent sets of G as simplices.

4As usual, we use the convention bn+1 = b1.
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Definition 10.32. Assume we are given a graph G and two vertices of G,
say v and w. We say that w dominates v if any vertex which is adjacent to v
is also adjacent to w.5
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Figure 10.8. On the left hand side we see a graph G with vertex w dom-
inating the vertex v. On the right hand side we see the independence
complex Ind(G) and the collapsing sequence used in the proof of Propo-
sition 10.33.

Proposition 10.33. Assume we are given a graph G and two vertices v and w
such that w dominates v, then there is a sequence of simplicial collapses reducing
Ind(G) to Ind(G \w).

Proof. The following observation is crucial for defining the collapsing se-
quence: if A is an independent set in G, and w ∈ A, then also A ∪ v is an
independent set in G. Indeed, if A ∪ v is not an independent set, then there
exists x ∈ A, such that the edge (x, v) belongs to G. Since w dominates v,
also the edge (x,w) must be an edge of G, contradicting the fact that A is an
independent set.

Equipped with this fact, we simply define the matchingµ(A) := A XOR v,
for all A ∈ Ind(G), such that w ∈ A. This is well-defined and obviously
acyclic. �

Proposition 10.33 can be effectively used to reduce independence com-
plexes of graphs, to independence complexes of, potentially, much smaller
graphs. For example, when G is a path of n vertices, as in Exercise (2) then
Proposition 10.33 allows us to obtain very extensive information on Ind(G).

10.7.4. Complexes of disconnected graphs and the order complex of the
partition lattice. There is a standard way to associate a family of simplicial
complexes to any graph property Λ which is closed under the deletion of
edges, in other words, if G has property Λ and e is an arbitrary edge of G,
then also G \ e will have the property Λ.

5When the vertices are persons, and edges record who knows whom,w dominates v if it knows
everybody whom v knows.
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Definition 10.34. Let Λ be a graph property closed under the deletion of
edges, and let n be an arbitrary integer, n > 2. We define a simplicial
complex GPn(Λ) as follows.

(1) The vertices of GPn(Λ) are indexed by all ordered pairs (i, j), where
1 6 i < j 6 n; there are

(
n
2

)
vertices.

(2) Given a set σ of vertices of GPn(Λ), we can construct a graph Gσ,
whose vertices are indexed 1, . . . , n, and edges are listed in σ. We
now say that σ is a simplex of GPn(Λ) if and only if the graph Gσ
has the property Λ.

Varying n, we get an infinite family of abstract simplicial complexes.

Colloquially we shall refer to the simplicial complexes GPn(Λ) as com-
plexes of all graphs with the property Λ. In principle, one can take any graph
property which is closed under the deletion of edges, such as planarity,
or colorability with a certain number of colors. In general however, the
resulting simplicial complexes can be hard to analyze.

Remark 10.35.
(1) Definition 10.34 can be easily modified to describe abstract sim-

plicial complexes associated to those graph properties of directed
graphs, which are closed under edge deletion.

(2) Another possible generalization of Definition 10.34 is to consider
hypergraphs instead of graphs.

Here, we consider the simplicial complexes of disconnected graphs.
These are of course well-defined, since a deletion of an edge from a discon-
nected graph again yields a disconnected graph. For brevity we shall let
Discn denote the abstract simplicial complex of all disconnected graphs on
n vertices. For n = 2, this simplicial complex is empty. For n = 3 it consists
of 3 isolated vertices. The example n = 4 is shown in Figure 10.9. This
simplicial complex can be visualized as taking every other triangle in an
octahedron and then connecting the 3 pairs of opposite vertices by edges.
It has the homotopy type of a wedge of 6 circles.

The case n = 5 is slightly more difficult. The simplicial complex Disc5
has dimension 5. It has 5maximal simplices of dimension 5 and 10maximal
simplices of dimension 3. With a little bit of extra effort one can figure out
that Disc5 is homotopy equivalent to a wedge of 24 spheres of dimension 2.

The observations made for the lower values of n carry over to the
higher-dimensional case. The maximal simplices of Discn are indexed by
partitions of the set {1, . . . , n} into two non-empty subsets. Accordingly,
when these parts have cardinalities k and n− k, the corresponding simplex
has dimension

(
k
2

)
+
(
n−k
2

)
−1, so the dimension of Discn is equal to

(
n−1
2

)
−1.
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Figure 10.9. The complex of disconnected graphs on 4 vertices.

As a contrast, its homology is concentrated in a much lower dimension.
As a matter of fact, it turns out that the simplicial complex Discn is homo-
topy equivalent to the wedge of (n− 1)! spheres of dimension n− 3. We we
will see this in Chapter 11, however the fact that the homology in higher
dimensions is trivial can be shown using collapsing sequences. In order to
do this, we need another object, frequently met in combinatorial topology,
which we now proceed to introduce.

Definition 10.36. Let n be an integer, n > 3. The partition lattice Πn is the
poset whose elements are all set partitions of the set {1, . . . , n}, with the
partial order given by refinement.

1|2|3|4

1234

1|2|3413|2|4 1|23|4

12|34123|4 14|2313|241|234134|2124|3

12|3|4 14|2|3 1|24|3

Figure 10.10. The partition lattice Π4.

The idea behind Definition 10.36 is to encode the combinatorics of co-
incidences. For example, the Euclidean space Rn consists of all n-tuples
of real numbers. We can stratify this space by geometric locuses of points
with various sets of coordinates coinciding. Geometrically this is known as
the braid arrangement and the stratification poset is precisely the partition
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lattice. More generally, the partition lattice describes the combinatorics of
the standard stratification of the ordered configuration space of n points in
an arbitrary topological space.

The partition lattice Πn has a maximal element corresponding to the
partition consisting of a single block (1, . . . , n), and a minimal element
corresponding to the partition (1) . . . (n) consisting of singletons6 only.

In general, we said that 0̂ should denote the minimal element in a poset,
so it is close at hand to extend this notation, and let 1̂ stand for the maximal
element. In many natural situations, as is the case for the partition lattice,
the considered poset will have both the maximal and the minimal element.
When considering the associated complex, it is useful to exclude both, so
as to avoid the double cone, we would get otherwise. This makes the next
definition natural.

Definition 10.37. Assume P is a partially ordered set, having both the
minimal element 0̂, as well as the maximal element 1̂. We call the order
complex ∆(P \ {0̂, 1̂}) the reduced order complex of P, and denote it by ∆̃(P).

The following proposition provides a relation between the complex of
disconnected graphs with the reduced order complex of partition lattice.

Proposition 10.38. For every n > 2, there exists a collapsing sequence leading
from the barycentric subdivision of the simplicial complex of all disconnected graphs
on n vertices to the reduced order complex of the partition lattice Πn, i.e., we have

Bd Discn ↘ ∆̃(Πn).

Figure 10.11. Collapsing the barycentric subdivision of the complex of
disconnected graphs on 4 vertices to ∆(Π4).

Proof. Let P be the face poset of Discn, and let ϕ : P → P map each graph
to its transitive closure. The graphs in the image of ϕ all consist of disjoint

6Recall that singletons is the short term used for sets consisting of one element.
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unions of complete graphs, which are in a clear one-to-one correspondence
with partitions of the vertex set. Since the elements ofP encode disconnected
graphs, we will never get the partition consisting of a single block, so we
stay within Πn \ {1̂}. The statement now follows from Theorem 10.29. �

Exercises

(1) Prove Proposition 10.8.

(2) Compute the homotopy type of independence graphs of paths. Do the
same for cycles.

(3) Characterize all graphs such that the iterative removal of dominating
vertices gives a disjoint union of isolated vertices or edges. Use this
to compute the homotopy type of the corresponding independence
complexes.

(4) A finite abstract simplicial complex K is called nonevasive if it is either
a point, or contains a vertex v such that both the deletion of v as well as
the link of v are nonevasive.
(a) Show that the reduced Euler characteristic of a nonevasive simpli-

cial complex is equal to 0.
(b) Show that a nonevasive simplicial complex is collapsible.
(c) Can you find a collapsible simplicial complex which is evasive (i.e.,

not nonevasive)?

(5) Assume K and M are abstract simplicial complexes. Let dcoll(K,M)

denote the minimal number of elementary simplicial collapses and ex-
pansions which are needed to transform K to M. We call dcoll(K,M) the
collapsing distance between K and M.
(a) Show that dcoll is a metric.
(b) For any k > 3, let Ck denote the cyclic graph with k edges. Assume

n > m > 3. Show that dcoll(Cm, Cn) = 3(n−m).
(c) Assume k,m > 3. Let Xk be the star graph with k edges: its set

of vertices is [k], and its set of edges is {(0, v) | 1 6 v 6 k}. Let Pm
be the path graph with m edges: its set of vertices is [m], and
its set of edges is {(v, v+ 1) | 0 6 v 6 m− 1}. Derive a formula for
dcoll(Xk, Pm).

(6) Let a group G act on an abstract simplicial complex K. Assume that
removing a pair of simplices (σ, τ) is a simplicial collapse. Assume
furthermore that we have the inclusion of stabilizers stabσ ⊆ stab τ,
and consider the set of pairs S = {(gσ, gτ) |g ∈ G}.
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Show that removing each element of S is a simplicial collapse, and
that these simplicial collapses are disjoint, and can be performed in an
arbitrary order, independently of each other.

In a situation like this, we say that removing the entire set S is
an equivariant simplicial collapse.

(7) Assume K is a finite abstract simplicial complex, and the group G acts
on K. The complex K is called equivariantly collapsible if there exists
a sequence of equivariant collapses (defined in Exercise (6)), with respect
to this G-action, resulting in a void simplicial complex.
(a) Assume n > 2. Show that the stellar subdivision of an n-simplex is

equivariantly collapsible with respect to the natural vertex permu-
tation action by Sn+1.

(b) Show that the barycentric subdivision of an n-simplex is equivari-
antly collapsible with respect to the same action.

(c) Show that the chromatic subdivision of an n-simplex is equivari-
antly collapsible with respect to the same action.

(8) Show the second line in Equation (10.5).
(9) Complete the proof of Lemma 10.26 by checking the correctness of the

described collapsing sequence.





Chapter 11

Internal Collapses and
Discrete Morse Theory

11.1. Replacing the simplicial complex with a smaller cellular
complex: Theorem B

Assume K is an abstract simplicial complex. In Chapter 9 we have consid-
ered the situation where one chooses a simplicial subcomplex L, and then
matches all the simplices in the difference K \ L, using the so-called acyclic
matching. In the simplicial picture, this leads to a collapsing sequence,
whereas in the topological picture this leads to a strong deformation retrac-
tion; both of which are quite definitive conclusions.

Our next and in many respects primary goal is to relax that condition
and to consider arbitrary acyclic matchings in the face poset F(K). Fortu-
nately, in many specific situations, one can still achieve a rather satisfactory
topological conclusion, or, at the very least, say something meaningful
about algebraic invariants of the underlying topological space.

Our basic setting will be as follows.

• We have an abstract simplicial complex K.

• We let M be some fixed set of non-empty simplices of K.

• We have an acyclic matching µ :M→M.

The central role will be played by those simplices which are not matched.

Definition 11.1. The non-empty simplices of K which do not belong to M
are called critical.

191
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Recall that, given a matching µ : M → M, we let R(µ) denote the set of
critical cells with respect to µ.

Theorem 11.2. (Theorem B).
Assume K is an abstract simplicial complex, M is some set of simplices of K, and
µ :M→M is an acyclic matching. Then there exists a CW complex X such that

(1) for each dimension d, the number of d-cells in X is equal to the number
of d-simplices in K, which are critical with respect to µ,

(2) we have a homotopy equivalence K ' X.

Before we can prove Theorem 11.2 we need to develop some termi-
nology involving attachment maps, and to understand how varying these
maps up to homotopy influences the topology of the space.

Still, already now we can point out the following useful consequences
of that theorem. In what follows, we will especially appreciate those acyclic
matchings, which have no critical simplices in neighboring dimensions.

Definition 11.3. Let K be an abstract simplicial complex, and let C be some
subset of the set of non-empty simplices of K. The set C is called sparse if
it does not contain a pair of simplices σ and τ in neighboring dimensions,
that is, such that |dimσ− dim τ | = 1.

The next corollary shows that the acyclic matchings with sparse sets of
critical simplices are well-behaved.

Corollary 11.4. Assume that as above K is an abstract simplicial complex, M is
some subset of simplices of K, and µ : M → M is an acyclic matching. Assume
furthermore the set R(µ) is sparse. Then

• the integer homology groups of K are free,

• in each dimension d, the dth Betti number of K is equal to the number of
critical d-simplices.

Proof. Theorem 11.2 tells us that up to homotopy equivalence, the sim-
plicial complex K can be replaced with the CW complex X, with as many
cells in each dimension as there are critical simplices. The fact that R(µ) is
sparse tells us that X does not have cells in neighboring dimensions. The
homological conclusion then follows, since we know that the homology
groups of CW complexes may be computed using the cellular chain com-
plex. Of course, if a CW complex lacks cells in neighboring dimensions, all
of the cellular boundary maps are zero, and its homology coincides with
the cellular chain groups. �
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Corollary 11.5. If all the critical simplices are in the same dimension, then K is
homotopy equivalent to a wedge of spheres. Specifically, we have

K ' ∨σ∈R(µ)S
dimσ.

Proof. Continuing the argument of Corollary 11.4 we see that X has one cell
in dimension 0, and all other cells have the same dimension, say d. There is
however only one such CW complex, as all the gluing must be trivial. This
complex is a wedge of d-spheres, and the number of spheres is equal to the
number of d-cells. �

As a simple example of applying Corollary 11.5 let us consider a skeleton
of a simplex. So let us assume n > 1 and n > d > 0.

Proposition 11.6. The d-skeleton of an n-simplex is homotopy equivalent to
a wedge of

(
n
d+1

)
copies of d-dimensional spheres.

Proof. Let K denote the d-skeleton of an n-simplex, and consider its face
poset F(K). In the standard combinatorial setting, the elements of this
poset (i.e., the simplices of K) are indexed by all subsets A ⊆ [n], such that
|A| 6 d+ 1.

Consider the matchingµ : A→ A XOR n, where as before XOR denotes
exclusive OR. In other words, we set

µ(A) :=

{
A ∪ {n}, if n < A,
A \ {n}, otherwise.

It is easy to check that there is one critical 0-simplex, namely {n}, and
there are

(
n
d+1

)
critical d-simplices, indexed by the sets {x0, . . . , xd}, for all

0 6 x0 < · · · < xd 6 n− 1.
Furthermore, the matching µ is acyclic. This is because in any cycle

b1 � µ−(b1) ≺ b2 � . . . , we would have µ−(b1) = b1 \ {n}, and n ∈ b2,
hence b2 = µ−(b1) ∪ {n} = b1, yielding a contradiction.

The result then follows from Corollary 11.5. �

More examples will follow in Section 11.5.

11.2. Internal collapses and attachment maps

Let us now develop some intuition and machinery to prove Theorem 11.2.
If the quintessential example of the elementary collapse in Chapter 9 was
the removing of a leaf from a tree, the quintessential example of what we
call an internal collapse here is the shrinking of an edge inside a graph.

Accordingly, let us start by considering a cycle with 4 vertices, thought
of as a 1-dimensional simplicial complex. The complex does not have any
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free simplex, as any vertex is adjacent to two edges. Hence, no elementary
collapse can be performed, and the methods described in Chapter 9 cannot
be used. It is however possible to let one of the edges shrink, to form a cycle
c with three vertices. This will not change the topology while reducing the
total number of vertices and edges, see Figure 11.1.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

v1

v2

v3

σ2
σ1

τ

Figure 11.1. Various internal collapses.

A slight problem with this approach is to decide how to proceed with
the cycle c. One way forward is to allow graphs with multiple edges. In
this case, we can still shrink an edge in c to obtain a graph with 2 vertices
and a double edge. If we allow loops on top of that, we can shrink again, to
end up with a graph consisting of a single vertex and a loop. This is then
in a certain sense the optimal, most compact presentation of the topology
of the graph which we have had at the beginning.

As far as the connected graphs are concerned, the situation is simple.
We can always shrink some edges one after the other to end up with a graph
consisting of a single vertex and a bunch of loops. This can be done in an or-
ganized fashion by first choosing the so-called spanning tree, as described
in Subsection 2.7.3. It is not difficult to adapt this to the case of discon-
nected graphs. For each graph, simply do this procedure in each connected
component and end up with a graph which has only loops.

Things will get more complex once we go one up in the dimension.
Consider the simplicial complex in the upper right corner of Figure 11.1.
It consists of two triangles σ1 and σ2 sharing an edge τ. The edge τ is not
free, so it cannot be removed using any elementary collapse. On the other
hand, there is a clear geometric procedure of removing that edge together
with the triangle σ1. It can be visualized in the same way as we did for
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the elementary collapses. Envision a piece of cord connecting the vertex
v1 to the barycenter of τ and let the cord shrink, while keeping v1 fixed. It
will eventually let σ1 vanish completely, with σ2 filling in and becoming
a rectangle. The edge τwill also vanish, merging into the edges {v1, v2} and
{v1, v3}.

An alternative way to think of this is in terms of the attaching maps,
see Definition 3.9. If we did not have the triangle σ2 to start with, then we
would be looking at the deformation associated to an elementary collapse,
as we explained in Chapter 9. So let us think of the whole space as being
obtained from a base space which does not include σ2, here that would be
just the triangle σ1, by attaching σ2 using some continuous map. Then we
could imagine just doing the elementary collapse on the base space, and
then reattaching σ2 to the result. Following this thinking, we would need to
trace what happens to that attachment map, when the elementary collapse
on the base space is performed.

The first and immediate problem which we then have is that, unlike
in the graph situation, we must leave the world of simplicial complexes at
once. Most internal collapses will destroy the simplicial structure. There
are two ways to deal with this problem. One option would be to switch to
the more general category of CW complexes. This allows for a more flexible
work. The downside is clearly that the gluing procedure for the complex
is not given anymore using purely combinatorial data. Instead, we need to
specify continuous attachment maps: something which in many practical
contexts may be rather prohibitive. We pursue the approach using CW
complexes in Chapter 17.

Another option would be to work in the broader context of chain com-
plexes. This turns out to be very fruitful and will be done in Section 15.1.

11.3. Attaching cells to homotopy equivalent spaces

Let us show the following standard fact concerning adjunction spaces which
will be of major importance in our proof of Theorem 11.2.

Theorem 11.7. AssumeX1 andX2 are two homotopy equivalent topological spaces,
and let h : X1 → X2 be a homotopy equivalence. Let σ be a cell with attachment
maps f1 : ∂σ → X1, and f2 : ∂σ → X2, such that h ◦ f1 is homotopic to f2. Then
the space X1 ∪f1 σ is homotopy equivalent to the space X2 ∪f2 σ.

An example of attaching over homotopy equivalent spaces is shown
in Figure 11.2. A 2-dimensional disc is attached to a Möbius band over
its boundary. The Möbius band is homotopy equivalent to a circle, so we
might as well attach to the circle, yielding a projective plane.
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Proof of Theorem 11.7. The homotopy equivalence in Theorem 11.7 can be
described by giving an explicit map f : X1 ∪f1 σ → X2 ∪f2 σ. This map is
induced by the map h, and by the homotopy H : ∂σ × I → X2 satisfying
H(∂σ, 0) = f2, H(∂σ, 1) = h ◦ f1. To describe f, we identify σ with the unit
disc Dn, and ∂σ with the bounding unit sphere Sn−1. Then we set

f(x) := h(x), for x ∈ X1,

f(tv) :=

{
2tv, for 0 6 t 6 1/2, v ∈ Sn−1,
H(v, 2t− 1), for 1/2 6 t 6 1, v ∈ Sn−1.

We leave the verification of the details to the reader, see Exercise (6). �

f

Möbius band RP2

Figure 11.2. Attaching a disc to the Möbius band produces the projective plane.

The following two special cases of Theorem 11.7 are often distinguished
as those of particular importance.

Case 1. X1 = X2, and h = idX1 .

This special case is used for example when justifying the fact that the homo-
topy type of a CW complex does not change when the attachment maps are
replaced by the homotopic ones. Figure 11.3 shows an example of such sit-
uation. On the right we see the attachment map from S1 to S1 which wraps
around 3 times: twice in one direction, and then once in the opposite direc-
tion. The resulting adjunction space is the so-called Dunce hat. However,
this attachment map is clearly homotopic to the trivial one. Replacing the
map with the homotopic one will yield the adjunction space which is just
a 2-dimensional disc. This space is contractible, hence the original Dunce
hat is contractible as well.

Case 2. h ◦ f1 = f2.
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a a

a

Figure 11.3. Changing the attachment map by a homotopy can show that
Dunce hat is contractible.

In fact, if h ◦ f1 = f2, then it is much simpler to describe the homotopy
equivalence map f : X1 ∪f1 σ→ X2 ∪f2 σ. Specifically, we set

(11.1) f(x) :=

{
h(x), for x ∈ X1;
x, for x ∈ Intσ.

11.4. Organizing internal collapses

We shall find that a fruitful alternative to actually carrying out internal
collapses geometrically and to tracing the evolution of the attachment maps,
as we did in the previous section, will be to restrict ourselves to merely
keeping records of which internal collapses were performed.

Under this approach, we could stay within the realm of abstract sim-
plicial complexes. However, we would need to deal with the additional
complication that some of the pairs of simplices are already marked as in-
ternally collapsed. Any further internal collapses would need to take into
account the existence of these previous ones.

Fortunately, the technical tool needed to express these conditions has
already been introduced. As the formulation of Theorem 11.2 indicates - all
we need to do is to restrict ourselves to acyclic matchings only.

As a warm-up, let us show, that when µ is an acyclic matching in a non-
empty abstract simplicial complex K, we can always find a critical simplex
in dimension 0. Indeed, if dimK = 0, then all the 0-simplices are critical.
Else, let dimK > 1 and assume there are no critical 0-simplices. This means
that µ is defined on the entire set K(0). Consider a bipartite graphG, whose
set of vertices is K(0) ∪ K(1). The edges between simplices are defined as
above. Two simplices are connected by an edge if and only if one of them
contains the other one. The orientation of edges between two matched
simplices is towards the simplex of dimension 1, while the orientation of
the other edges is towards the simplex of dimension 0.



198 11. Internal Collapses and Discrete Morse Theory
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Figure 11.4. An acyclic matching and the corresponding sequence of in-
ternal collapses.

As was already mentioned, acyclicity of the matching implies that the
graphG is acyclic. We know from graph theory that a finite acyclic directed
graph will have at least one sink, a vertex with no outgoing edges. To find
this sink, simply start from any vertex and follow outgoing edges as long
as you can: you will either find a sink or a cycle. If this sink is a simplex
of dimension 0, we get a contradiction, as each one must have the outgoing
edge corresponding to the matching. If, on the other hand, this sink is
a simplex of dimension 1, we get a contradiction again, since each simplex
of dimension 1 has two adjacent edges, at least one of them is not a matching
edge, so it must be an outgoing one.

This little argument provides a simplified example of the type of con-
siderations that we need in order to prove Theorem 11.2. To get a little more
structural understanding we introduce a certain generalization of collaps-
ing orders.

Definition 11.8. Given a poset P, a linear extension L of P is a total order <L
on the elements of P, such that x < y, for x, y ∈ P, implies x <L y.

Linear extensions are easy to define, but can turn out to be surprisingly
complicated. Even for the Boolean algebra the set of all linear extensions is
an interesting object, and the cardinality of this set is a subject of research.

Theorem 11.9. (Acyclic matchings via linear extensions)
A partial matching on a poset P is acyclic if and only if there exists a linear
extension L of P, such that the elements a and µ(a) follow consequently in L.

Proof. Assume first we have a linear extension L satisfying this property,
and, at the same time we have a cycle as in (10.1). Set ai = µ−(bi), for
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i = 1, . . . , n. Then

bi+1 � ai ⇒ ai <L bi+1 ⇒ ai <L ai+1

(since ai+1, bi+1 follow consequently in L). Thus an >L an−1 >L · · · >L
a1 >L a0 = an, yielding a contradiction.

In order to show the reverse direction, assume that we are given an
acyclic matching, and let us define L inductively. Let Q denote the set of
elements which are already ordered in L. We start withQ = ∅. LetW denote
the set of the minimal elements in P \Q. At each step we have one of the
following cases.

Case 1. One of the elements c in W is critical.

In this case, we simply add c to the order L as the largest element, and
proceed with Q ∪ {c}.

7

8 4 2 1

6 3

11

10

0

59

Figure 11.5. Acyclic matching and the corresponding linear extension.

Case 2. All elements in W are matched.

Consider the subgraph of the underlying graph of the Hasse diagram of
P \Q induced by W ∪ µ(W). Orient its edges as described above, i.e., they
should point from the larger element to the smaller one in all cases, except
when these two elements are matched, in which case the edge should point
from the smaller element to the larger one. Call this directed graph G.

If there exists an element a ∈W, such that the only element inW∪µ(W),
which is smaller than µ(a), is a itself, then we can add elements a and µ(a)
on top of L and proceed with Q ∪ {a, µ(a)}. Otherwise, we see that the
outdegree of µ(a) in G is positive, for each a ∈ W. On the other hand, the
outdegrees in G of all a ∈ W are equal to 1. Since therefore outdegrees of
all vertices in the directed graph G are positive, we conclude that G must
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have a cycle, which clearly contradicts the assumption that the considered
matching is acyclic. �

An example of a linear extension derived from an acyclic matching by
this procedure is shown on Figure 11.5.

We now proceed with the proof of Theorem 11.2.

Proof of Theorem 11.2. Theorem 11.9 tells us that K can be obtained con-
structively by starting with a vertex and then at each step either adding
a critical simplex, or performing the inverse of a collapse, which, as we
recall, is called expansion.

So take a linear extension L satisfying the conditions of Theorem 11.9.
We perform induction on the cardinality of F(K). If |F(K)| = 1, the statement
is clear. For the induction step, let σ be the last cell in L.

Case 1. The cell σ is critical.

Let K̃ = K \ σ, so |K̃| = |K| \ Intσ. Let ϕ : ∂σ → K̃ be the attaching map
of σ in K. The matching µ restricted to K̃ is again acyclic, and the critical
simplices are the same, with σ missing. Hence, by induction, there exists
a CW complex X̃, with cells of X̃ enumerated by the critical simplices of K̃,
and a homotopy equivalence h : |K̃|→ X̃.

Consider the composition attaching map h◦ϕ : ∂σ→ X̃, see Figure 11.6.
By Theorem 11.7, we conclude that we have a homotopy equivalence |K̃|∪ϕ
σ ' X̃ ∪h◦ϕ σ. Note that |K| = |K̃| ∪ϕ σ. The theorem follows by induction,
if we set X := X̃ ∪h◦ϕ σ.

K̃
h

σ

X̃

h ◦ϕ
ϕ

∂σ

Figure 11.6. Attaching a critical cell.

Case 2. The cell σ is not critical.

In this case we must have σ, µ−(σ) ∈ M. Note that µ−(σ) is maximal in
F(K) \ σ, and let K̃ = K \ (σ, µ−(σ)), so |K̃| = |K| \ (Intσ ∪ Intµ−(σ)).

Clearly, removing the pair (σ, µ−(σ)) is a simplicial collapse, in par-
ticular, there exists a homotopy equivalence f : |K| → |K̃|. On the other
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hand, by the induction assumption, there exists a CW complex X̃, whose
cells are indexed by the critical simplices of X̃, and a homotopy equiva-
lence f̃ : |K̃| → X̃. Hence, setting X := X̃, we obtain the desired homotopy
equivalence f̃ ◦ f : |K|→ X. �

11.5. Examples of computation

11.5.1. Complexes of disconnected graphs. As our first example we return
to considering the simplicial complex of disconnected graphs on n vertices.

Definition 11.10. Let n be a positive integer. A recursive tree on n vertices
is a labeled rooted tree whose vertices are distinctly labeled by integers
1, 2, . . . , n, such that the labels are strictly increasing along each path starting
at the root.

Note, that as a consequence of the condition in Definition 11.10, in
a recursive tree the root itself must always be labeled 1, and, if n > 2, one
of its adjacent vertices must have label 2.

For the purposes of this subsection, let Rn denote the set of all recursive
trees on n vertices. Recursive trees are also known as increasing Cayley trees.
They can alternatively be defined as the trees on vertices labeled 1 through
n, satisfying the following property:

for each 2 6 k 6 n, the vertex labeled k is adjacent to
exactly one of the vertices labeled 1, . . . , k− 1.

From this, one can easily construct all the recursive trees by scanning the
vertices 2 through n, and choosing for each vertex k to which of the vertices
1, . . . , k−1 it must be connected. In particular, the number of recursive trees
on n vertices is (n− 1)!.

From now on, let us assume that n > 2, and let us label the edges
with the pair of labels associated to its vertices. As mentioned above, each
recursive tree must have the edge labeled (1, 2). Let Qn denote the set of
graphs obtained from the recursive trees in Rn by deleting this edge. Of
course, we have the equality |Qn| = |Rn| = (n− 1)!, and all the graphs inQn
are disconnected, with precisely two connected components, where vertices
1 and 2 belong to different components.

Proposition 11.11. For each integer n, n > 3, there exists an acyclic matching µ
on the simplicial complex Discn, such that the set of critical simplices of µ is Qn.
In particular, Discn is homotopy equivalent to the wedge of (n − 1)! copies of
(n− 3)-dimensional spheres.
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Figure 11.7. The acyclic matching on the complex of disconnected graphs
on 4 vertices defined in the proof of Proposition 11.11, and the graphs
labeling the critical simplices.

Proof. To construct an acyclic matching we start by taking a disconnected
graph G and matching it with G XOR (1, 2), when possible. Consider the
graphs left unmatched: these are

• the graph consisting of a single edge (1, 2), this will be the critical
0-simplex in our matching;

• the disconnected graphs G which do not contain the edge (1, 2),
and which will become connected if the edge (1, 2) is added.

Let now H be a disconnected graph, such that H ∪ (1, 2) is connected.
It must have precisely two connected components, one of them containing
the vertex 1 and the other one containing the vertex 2. Accordingly, we label
these components H1 and H2. Assume the vertex 3 belongs to Hk, where
k ∈ {1, 2}. Now, if possible, match H with H XOR (i, 3).

Let us see which graphs will be left unmatched. Clearly, since 3 is
already in the connected component Hk, adding the edge (k, 3) will not
make the graph connected. So the only way something may go wrong
is that Hk contains the edge (k, 3), and removing it would increase the
number of connected components. This is because the graph Hk \ (i, 3) has
already been matched with Hk ∪ (1, 2) \ (i, 3). So the only graphs which are
left unmatched are precisely those which have two connected components,
containing 1 and 2 respectively, and furthermore containing an edge (k, 3)

for some k ∈ 1, 2, such that this edge is a bridge.1

We now proceed performing a similar matching for vertices 4 throughn.
At each step, for 4 6 k 6 n, we have unmatched simplices G which have
the following structure:

1Recall that a bridge in the graph is an edge whose removal increases the number of connected
components.



11.5. Examples of computation 203

• the subgraph H of G induced by the vertices 1, . . . , k lies in Qk;

• the edges ofH (it has k−2 edges) are all bridges inG, and removing
these edges fromGproduces a graph with k connected components
Ti, each one containing one of the vertices 1, . . . , k.

Let Ck denote the set of graphs satisfying these conditions. Figure 11.8
shows schematically what such an unmatched graph looks like. We note
that Cn+1 coincides with Qn.
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Figure 11.8. Tree decomposition used in the proof of Proposition 11.11.

When performing step k, choose 1 6 m 6 k − 1, such that k belongs
to Tm. We would now like to match the graph G with G XOR (m,k), if
possible. The argument now repeats the one above, where k = 3. Adding
the edge (m,k) is always possible, but removing may not be. Specifically,
removing (m,k) will not work, if it is a bridge. In this case the number
of connected components would increase, resulting in the graph G \ (m,k),
which in turn has already been matched withG∪(1, 2)\(m,k). We conclude
that the set of graphs indexing the simplices which are left unmatched after
the step k is precisely Ck.

Let us show that the matching which we produced is acyclic. Assume
the contrary and take a cycle

b1 ≺ µ(b1) � b2 ≺ µ(b2) � · · · � bt ≺ µ(bt) � b1,

where t > 2. Assume µ(bi) = bi ∪ (mi, ki), with mi < ki, for all i = 1, . . . , t.
Without loss of generality, we can assume that k2 is the minimal element of
the set {k1, . . . , kt}.

If k2 = 2, then (m2, k2) = (1, 2). This implies that (1, 2) ∈ µ(b1), which
is a contradiction, since when the edge (1, 2) belongs to the graph, the
matching µ will always delete it.

We can thus assume k2 > 3. Since adding the edge (m2, k2) to b2 is
allowed, we know m2 and k2 are in the same connected component of
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b2. But then, clearly, they are also in the same connected component of
µ(b1). By our assumption, k2 < k1, so applying µ to µ(b1) should add
the edge (m2, k2), rather than to delete the edge (m1, k1). This yields the
contradiction to the existence of the cycle above.

Finally, the set of critical simplices is Cn+1 = Qn, so the conclusion
follows from Corollary 11.5. �

11.5.2. The order complex of the partition lattice. Let us now return to
the partition lattice Πn. For convenience, we shall skip the singletons
in our partition notation. We shall call partitions which have a unique
nonsingleton part blocks. Finally, for the purposes of this subsection, the
special blocks are the blocks containing n in that unique nonsingleton part.

Let An be the set of all saturated chains2 in Πn \ {0̂, 1̂} consisting entirely
of special blocks, i.e.,

(11.2) An := {(α1n) < · · · < (α1 . . . αn−2n) |α1, . . . , αn−2 ∈ {1, . . . , n− 1}} .

Note, that |An| = (n− 1)!.

Proposition 11.12. Let Kn be the reduced order complex of the partition lattice,
i.e., Kn := ∆̃(Πn), n > 3. Then there exists an acyclic matching µ on Kn, such
that the set of critical simplices of µ isAn. In particular, Kn is homotopy equivalent
to the wedge of (n− 1)! copies of (n− 3)-dimensional spheres.

Of course, we already know the validity of the last statement of Propo-
sition 11.12, as it follows from Propositions 10.38 and 11.11. What we are
interested in here is the actual collapsing sequence.

Proof of Proposition 11.12. By definition of the order complex, the max-
imal simplices of Kn are indexed by saturated chains of Πn \ {0̂, 1̂}. We
describe a matching µ such that the set of critical simplices R(µ) is pre-
cisely An.

Let a chain of the type

(α1n) < (α1α2n) < · · · < (α1 . . . αkn), where α1, . . . , αk ∈ {1, . . . , n− 1},

be called a special k-prefix. For an arbitrary simplex σ, we let h(σ) denote the
maximal k, such that σ contains a special k-prefix. We call h(σ) the prefix
height of σ. In particular, we have h(σ) = n − 2 if and only if σ ∈ An, cf.
(11.2). We set h(σ) := 0 if σ does not contain any special k-prefix at all.

Let us now pick a simplex σ in Kn \An, say σ = (π1 < · · · < πt), and set
h := h(σ), h 6 n− 3. We can write

σ = (α1n) < (α1α2n) < · · · < (α1 . . . αhn) < πh+1 < . . . ,

2Recall that a poset chain is called saturated if it is properly contained in any other chain.
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whereπh+1may not exist, but if it does, then we haveπh+1 , (α1 . . . αh+1n),
for any αh+1. Set Bσ := {α1 . . . αhn}, and consider a specific coatom3 γσ
of Πn, which consists of two parts: Bσ and its complement, i.e., set

γσ := (Bσ)({1, . . . , n} \ Bσ).

Recall that ∧ denotes the meet operation in the lattice, where the meet of
two elements x and y is the maximal element which is less or equal than
both x and y. Let π be a partition, such that Bσ is contained in one of the
parts of π. Then, the meet π∧γσ is obtained from π by splitting off Bσ from
the part that contains it.

Next, let m denote the maximal index in the range h 6 m 6 t − 1, such
that πm contains Bσ as a part, whereas πm+1 does not. If all partitions
πh, . . . , πt contain the set Bσ as a part, we set m := t, and furthermore
πm+1 := (1 . . . n) = 1̂.

We are now ready to define the partition µ(σ). In the short notation, we
could simply write

µ(σ) := σ XOR (πm+1 ∧ γσ).

When expanded, this formula would read

µ(σ) :=

{
σ \ πm, if πm = πm+1 ∧ γσ,

σ ∪ (πm+1 ∧ γσ), if πm , πm+1 ∧ γσ,

where σ \ πm means that we delete the partition πm from the chain σ,
whereas σ∪ (πm+1 ∧ γσ) means that we insert the partition πm+1 ∧ γσ into
the chain σ. The latter is well-defined since obviously πm+1 > πm+1 ∧ γσ,
and furthermore, by our choice ofm, we have πm+1∧γσ > πm. An example
of matching µ for n = 4 is shown in Figure 11.9.

To see that µ is well-defined, and that R(µ) = An is a straightforward
verification.

To see that the matching µ is acyclic, pick a presumptive cycle. For
any two simplices σ and τ, σ � τ implies h(σ) > h(τ). Since we also have
the equality along the matching edges, this means that the prefix height is
preserved in a cycle. Furthermore, let the capacity of σ be the number of
partitions outside of the special prefix which do not contain Bσ as a part.
Matched partitions have equal capacity. We leave it as an exercise to show
that following the non-matching edges down along a cycle will always
decrease capacity by 1. This yields a contradiction. �

3Recall that in a poset P with maximal element 1̂, a coatom is an element covered only by 1̂.



206 11. Internal Collapses and Discrete Morse Theory

34

14

23

123

134

124

12

24

234
13

Figure 11.9. The matching µ for Π4.

11.6. An acyclic matching associated to a sequence of vertices

In this section we describe a standard way to obtain an acyclic matching
associated to an ordered subset of the set of vertices of an arbitrary simplicial
complex.

Let K be a simplicial complex, and let S = {v1, . . . , vn} be a subset of the
set of vertices of K. Fix the order on the set S given by the indices. We now
construct a matching, which we call µS, using the following procedure.
Step 1. For each simplex σ, such that σ XOR v1 belongs to K, we match σ
with σ XOR v1. Let M1 denote the set of all matched simplices.
For all k = 2, . . . , n, starting with k = 2, and increasing k by 1 at each step
repeat the following.
Step k. For each simplex σ in K \ (M1 ∪ · · · ∪Mk−1), such that σ XOR vk
also belongs to K \ (M1 ∪ · · · ∪Mk−1), we match σ with σ XOR vk. Let Mk

denote the set of all simplices newly matched at this step.
In the end, we call the obtained matching µS, denote the set of matched

simplices by MS := M1 ∪ · · · ∪Mn, and, finally, denote the set of critical
simplices by CS := K \MS. It is useful to know that the obtained matching
is always acyclic as the next theorem states.

Theorem 11.13. Assume K is an arbitrary simplicial complex, S = {v1, . . . , vn} is
a subset of the set of vertices of K, and µS is the corresponding matching as defined
above. Then, for any choice of S, the matching µS is acyclic.
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Proof. Assume, on the contrary, that the matching µS is not acyclic. This
means that there exists an integer t > 2, and simplices σ1, . . . , σt in K, such
that

(11.3) σ1 ≺ µS(σ1) � σ2 ≺ µS(σ2) � · · · � σt ≺ µS(σt) � σ1.

Choose the minimal index k, for which there exists 1 6 m 6 t, such that
σm ∈Mk. Without loss of generality, we can shift the indices of σ1, . . . , σt,
so that m = 1. So σ1 ∈ Mk, and, in particular, we have vk < σ1, and
µS(σ1) = σ1 ∪ vk.

Furthermore, since σ2 is obtained from µS(σ1) by deleting one vertex,
and σ1 , σ2 (as we have assumed that t > 2), we must have vk ∈ σ2. On
the other hand, by our construction, we have µS(σt) � σ1, vk < σ1, and
µS(σt) , µS(σ1) = σ1 ∪ vk. Therefore, we must have vk < µS(σt), and so, of
course, also vk < σt.

Let now l be the minimal index, such that l , 1, and vk < σl. By what
is said above, we must have 3 6 l 6 t. Assume first, that vk < µS(σl−1).
Then, also vk < σl−1. This contradicts the minimality of l, since l > 2. So
we conclude that vk ∈ µS(σl−1), which means that µS(σl−1) = σl ∪ vk.

Since σl and µS(σl−1) are not matched to each other, there exist indices
p and q, such that σl ∈ Mp, µS(σl−1) ∈ Mq, and p, q , k. We have
chosen k to be minimal, so p, q > k. We clearly have σl, µS(σl−1) ∈ K \

(M1 ∪ · · · ∪Mk−1). But then nothing is stopping us from matching σl with
µS(σl−1) = σ1 XOR vk at step k above. This clearly contradicts the fact that
σl ∈Mp, µS(σl−1) ∈Mq.

Hence the situation given by (11.3) cannot happen, and the matching
µS must be acyclic. �

Exercises

(1) Describe the set of all collapsing sequences of a given tree using the
language of increasing Cayley trees.

(2) Show that a d-skeleton of an n-cube is homotopy equivalent to a wedge
of d-dimensional spheres, by using the same technique as in our proof
of Proposition 11.6. What about general polytopes?

(3) Use Theorem 11.2 to find the homotopy type of the independence com-
plex of the graph G, where
(1) G is a path graph;
(2) G is an arbitrary tree;
(3) G is a cycle.
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(4) Find the homotopy type of the simplicial complex of independent sets
of a matroid.

(5) A flag in a vector space V is a sequence of vector subspaces strictly
containing each other. The simplicial complex of flags is defined by
taking all vector subspaces ofV as vertices, and taking flags as simplices.
Let Flagdk denote the simplicial complex of flags in the d-dimensional
vector space over a finite field k. Find the homotopy type of Flagdk .

(6) Complete the proof of Theorem 11.7.
(7) Complete the proof of Proposition 11.12.



Chapter 12

Explicit Homology
Classes Associated to
Critical Cells

12.1. The graph Gd(µ) and its use

Let us now describe how in some cases discrete Morse theory allows us to
find explicit homology classes.

Definition 12.1. Assume we are given an abstract simplicial complex K,
and an acyclic matching µ. For every d, between 0 and dimK, the directed
graph Gd(µ) is defined as follows:

• the vertices of Gd(µ) are indexed by the d-dimensional simplices
of K;

• the edges of Gd(µ) are given by the rule: (α,β) is an edge of Gd(µ)
if and only if µ(β) is defined, and α � µ(β), see Figure 12.1.

µ(β)

α β

α β

in F(K) in Gd(µ)

Figure 12.1. The rule defining the edges of the directed graph Gd(µ).

209
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Obviously, the acyclicity of the matching µ is equivalent to the acyclicity
of the directed graph Gd(µ).

d

a
c

e

b

Figure 12.2. A simplicial complex with an acyclic matching.

It is a well-known fact in graph theory that the vertex set of a finite acyclic
directed graphGd(µ) can be decomposed into layers, that is, represented as
a disjoint union V0 ∪ · · · ∪ Vt, such that

(1) for any α ∈ Vi, there exists β ∈ Vi−1, such that (α,β) is an edge
of Gd(µ),

(2) for any α ∈ Vi, β ∈ Vj, such that (α,β) is an edge of Gd(µ), we have
i > j.

In other words, V0 consists of all the sinks, the vertices with outdegree equal
to 0; V1 consists of all the vertices with edges pointing to sinks only, and,
in general, for each i, the set Vi consists of vertices α such that the longest
path from α to a sink has length i. Another way to say this is that the sets
V1, . . . , Vt are precisely the sets which would be produced by the breadth-
first search algorithm, starting from the set of all sinks V0, and tracing the
edges in the opposite direction.

ab ad bd ac ce bc be ae

a

abd acd bcd ace bce abe

b d c e

cd

Figure 12.3. The acyclic matching on the face poset (with ∅ omitted) of
the simplicial complex from Figure 12.2.

An instance of how this construction works is shown on Figures 12.2
to 12.4. Note, that in general, edges are allowed to skip levels, by which we
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mean that we may have edges (α,β), such that α ∈ Vi, β ∈ Vj, and i > j+ 2.
For example, in the graph in Figure 12.4 the edge between abd and acd

skips a level.

bcd bce abe

acd ace

V0V1V2

V3

abd

Figure 12.4. The directed graph G2(µ), for the acyclic matching µ from
Figures 12.2 and 12.3, and its decomposition into layers V0, . . . , V3.

Let µ be the acyclic matching, and, as previously defined, let R,M↑, and
M↓ be the corresponding decomposition. Let us now consider consequences
for the d-chains of K.

Proposition 12.2. Assume σ ∈ Cd(K) and suppσ ⊆M↑.

(1) If σ is a cycle, then σ = 0.
(2) More generally, if σ , 0, then

(12.1) supp∂σ ∩ µ(suppσ) , ∅.

In other words, there exists an element v ∈ suppσ, such that µ(v) belongs
to supp∂σ.

Proof. We start by proving (1). Set A := suppσ, and assume σ , 0, or,
equivalently, A , ∅. Let L be the subcomplex of the simplicial complex K

obtained by taking the union of the closures of all the simplices in A. In
other words, the simplicial complex L consists of all the simplices contained
in one of the simplices in A. This a pure simplicial complex of dimension
d, and its maximal simplices are indexed by the set A.

By our construction, for each β ∈ A, the simplex µ(β) is defined and has
dimension d−1. Consider a matching λ on L which matches each d-simplex
β ∈ A with the (d− 1)-simplex µ(β). Since this is a restriction of the acyclic
matching µ, the matching λ is itself a well-defined acyclic matching. The
unmatched part of L forms a subcomplex L̃, whose dimension is strictly less
than d. We now use Theorem 10.9 to conclude that the simplicial complex
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L can be collapsed to its subcomplex L̃. In particular, Hd(L) = 0, which,
since d is the top dimension of L, means that every d-dimensional cycle of
L must in fact be 0. Since ∂dσ = 0 in L as well, we conclude that σ = 0.

Let us now show (2). As before, set A := suppσ, and now let H be the
subgraph of Gd(µ) induced by the vertex set A. This graph is acyclic, since
the original graph Gd(µ) is acyclic. Let v be any of the sources of H, and set
w := µ(v). By construction, w ∈ µ(suppσ). On the other hand, there can
be no u ∈ A \ v, such that w ∈ supp∂u, as otherwise the edge (u, v) would
belong to H, contradicting the fact that v is a source. However, if there is no
such u, then we must have v ∈ supp∂σ, and we are done. �

Clearly, (2) implies (1) in Proposition 12.2, as ∂σ = 0 and σ , 0 being
valid at the same time would contradict Equation (12.1).

12.2. The closure map ϕ

Let us now define a function ϕ which maps each vertex of Gd(µ) to a set of
vertices of Gd(µ). Algebraically, we will let ϕ map each d-simplex of K to
a d-chain of K with coefficients in Z2.

Definition 12.3. We defineϕ recursively on the sets Vi ofGd(µ), in the order
of growing indices. As the base, we set ϕ(α) := α, for all α ∈ V0, that is,
when α is a sink.

µ(β1)

α β1 β2 β3 β4

µ(β2) µ(β3) µ(β4)

Figure 12.5. The setting defining the function ϕ in Definition 12.3.

Next, assume that the functionϕhas already been defined for all vertices
in the set V0 ∪ · · · ∪ Vi−1, for some 1 6 i 6 t, and pick a vertex α in Vi.
Let (α,β1), . . . , (α,βm) be the complete list of edges emanating from α.
The sets V0, . . . , Vt were constructed so that all edges point from higher-
indexed levels to the lower-indexed ones, so we know that β1, . . . , βm ∈
V0 ∪ · · · ∪ Vi−1. We then set

(12.2) ϕ(α) := α+

m∑
i=1

ϕ(βi),

which is well-defined by what we just said, see also Figure 12.5.
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For the running example from Figures 12.2 to 12.4 we obtain the values

ϕ(abe) = abe

ϕ(ace) = ace

ϕ(acd) = acd+ ace

ϕ(bce) = bce+ abe

ϕ(bcd) = bcd+ bce+ abe

ϕ(abd) = abd+ bcd+ bce+ abe+ acd+ ace

Let us make a couple of remarks.

Remark 12.4. A criticial simplex σ must be a source in graph Gd(µ). This is
because, wheneverGd(µ) has an edge (α,β), the simplexβmust be matched
by µ, so it cannot be a critical one.

The converse of Remark 12.4 is false. The graph Gd(µ) may have sources
which are not critical.

Remark 12.5. If σ is not critical, then the support of ϕ(σ) does not contain
any critical simplices. Otherwise, if σ is critical, the support of ϕ(σ) must
contain a unique critical simplex, namely, σ itself.

Of course Remark 12.5 follows at once from Remark 12.4.
Once we have defined ϕ for the d-simplices, we can take the linear

extension, and obtain a linear map between the chain groups

ϕ : Cd(K;Z2)→ Cd(K;Z2).

Next, let us look at an alternative way to compute the function ϕ.

Definition 12.6. Assume K is an abstract simplicial complex, and µ is an ar-
bitrary matching on the set of simplices of K. Let α and β be arbitrary
simplices of K such that dimα = dimβ. A reaching path p from α to β is any
sequence

(12.3) α � µ(β1) ≺ β1 � µ(β2) ≺ β2 � · · · � µ(βm) ≺ βm = β,

where m > 0, β1 , β2, . . . , βm−1 , βm, see Figure 12.6.

Given a reaching path p from α to β, we set p• := α and p• := β.

Proposition 12.7. Assume we are given a simplicial complex K and an acyclic
matching µ. Let the function ϕ be given by Definition 12.3. Then the following
formula is valid:

(12.4) ϕ(α) =
∑

p:p•=α

p•,
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where the notation means that the sum is taken over all reaching paths p, such that
p• = α.

. . .

µ(β1) µ(β2) µ(βm)

β1 β2 βm−1p• = α βm = p•

Figure 12.6. An example of a reaching path p.

Proof. Equation (12.4) is obviously valid when α is a sink, i.e., α ∈ V0,
because the only reaching path which starts and terminates in α is the path
consisting of α only. We call this path idα.

We can verify that Equation (12.4) holds for all α ∈ Vk, using induction
on k. We already know it is true for k = 0 and by the induction hypothesis
it is true for Vi, for all i 6 k− 1. By Equation (12.2) we now have

ϕ(α) = α+

m∑
i=1

ϕ(βi) = (idα)• +
m∑
i=1

∑
p:p•=βi

p• =
∑

p:p•=α

p•,

where the last equality follows from the fact that any non-identity reaching
path which starts at the simplexα, will first pass through one of the simplices
β1, . . . , βm. �

Proposition 12.8. For any σ ∈ Cd we have supp∂(ϕ(σ)) ⊆ Rd−1 ∪M↑d−1.

Proof. Assume that on the contrary, supp∂(ϕ(σ)) ∩M↓d−1 , ∅, and pick an
element β from that intersection. Applying the boundary operator ∂d to
the equation in Proposition 12.7, we have

(12.5) ∂dϕ(σ) =
∑
p

∂dp
•,

where the sum is taken over all reaching paths p such that p• = σ. This
means that the coefficient with which β appears on the right-hand side of
Equation (12.5) is equal to the parity of the number of reaching paths p,
such that

(1) p• = σ,
(2) the d-simplex p• contains the (d− 1)-simplex β.

Since we have assumed thatβ ∈ supp∂(ϕ(σ)), we must have an odd number
of such paths.



12.2. The closure map ϕ 215

Let A denote the set of all such paths. We now describe a complete
matching ν on the set A. For each path p ∈ A we match

p
ν←→ p XOR {β, µ(β)}.

In other words, if β ∈ p, then since p is a reaching path, and β is a (d − 1)-
simplex, we must have µ(β) ∈ p. Furthermore, we must then also have
p• = µ(β), so we can match p with the path obtained from p by deleting
both β and µ(β).

On the other hand, assume β < p, and set γ := p•. We know that γ
contains β. Furthermore, µ(β) , γ, as otherwise, we would have β in p.
This means that neither β, nor µ(β) ∈ p, and adding β and µ(β) to p is again
a reaching path originating at σ.

. . .

β

µ(β)
p

ν(p)

γ

Figure 12.7. Matching ν on the set A.

Thus we have shown that ν is a complete matching on the set A. In
particular, the cardinality of the set A is even, contradicting to the previous
assumption that it was odd. We conclude that supp∂(ϕ(σ)) ∩M↓d−1 is an
empty set. �

Also the converse of Proposition 12.8 is true, in the sense made precise
in the next statement.

Proposition 12.9. Assume suppσ ⊆ Rd, and suppα ⊆ M↑d. Assume further-
more that supp∂(σ+ α) ⊆ Rd−1 ∪M↑d−1. Then ϕ(σ) = σ+ α.

Proof. First, note that by definition of ϕ, there exists β, such that suppβ ⊆
M
↑
d and ϕ(σ) = σ + β. Let us now consider γ := ϕ(σ) + σ + α = β + α.1

Assume ϕ(σ) , σ + α, in other words γ , 0. Obviously, suppγ ⊆ M↑d. On
the other hand, by Proposition 12.8 we have supp∂(ϕ(σ)) ⊆ Rd−1 ∪M↑d−1,
and by our assumptions, we have supp∂(σ+α) ⊆ Rd−1 ∪M↑d−1. It follows,
that supp∂γ ⊆ Rd−1 ∪M↑d−1. However, Proposition 12.2(2) tells us that

1Remember, the calculations are done mod Z2.
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there must exist ρ ∈ suppγ, such that µ(ρ) ∈ supp∂γ. This, of course, is
impossible, since µ(ρ) ∈ M↓d−1, and we have just shown that supp∂γ ⊆
Rd−1 ∪M↑d−1. We conclude that γ = 0, and subsequently ϕ(σ) = σ+ α. �

Verbally, Propositions 12.8 and 12.9 can be summarized as follows: ϕ is
the closure operator which expands a chain from R with a chain from M↑,
so that the M↓-component of the boundary is annihilated. The operator ϕ
is well-defined since there is a unique way to perform such an extension.

12.3. Homology generators associated to critical cells in an
isolated dimension

Assume we are given an abstract simplicial complexK and an acyclic match-
ing µ. The case we would like to investigate in detail in this subsection is
when we only have critical simplices in some chosen dimension d, and
no critical simplices in neighboring dimensions. In other words, all the
simplices of dimension d + 1 and d − 1 are matched by µ. The following
statement is the main result of this section.

Theorem 12.10. Assume, as above, that we are given a simplicial complex K, and
an acyclic matching µ, such that, for a certain positive integer d, all the simplices
of K in dimensions d− 1 and d+ 1 are matched, i.e., Rd−1 = Rd+1 = ∅.

Assume furthermore, we are given a critical simplex σ of dimension d. Then,
with the function ϕ being defined as above, the value ϕ(σ) is a homology class,
such that σ is a unique critical d-simplex contained in the support of ϕ(σ).

Proof. According to Remark 12.5, we already know thatσ is a unique critical
d-simplex contained in the support of ϕ(σ). Let us now show that ϕ(σ) is
actually a cycle.

Assume ∂dϕ(σ) , 0, and let S denote the support set of ∂dϕ(σ) , 0. Set
SI := S ∩M↓ and SII := S ∩M↑. Since we have assumed that all (d − 1)-
simplices of K are matched, µ(τ) is well-defined for all τ ∈ S, so the set S is
a disjoint union of the sets SI and SII. This means that we can write

∂dϕ(σ) = τI + τII, where τI =
∑
τ∈SI

τ and τII =
∑
τ∈SII

τ.

The situation is illustrated in Figure 12.8.
All we need to do is to show that τI = τII = 0. First, τI = 0 by

Proposition 12.8. Second, the chain τII must be a cycle. Indeed, since
τI = 0, we get ∂dϕ(σ) = τI + τII = τII. Taking boundary once more, we
obtain

0 = ∂d−1∂dϕ(σ) = ∂d−1τII.
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σ
ϕ(σ)

type II
type I

β

d

d− 1

d− 2

dim

S

type II

Figure 12.8. Taking the boundary of ϕ(α).

Since supp τII ⊆ M↑, we can now use Proposition 12.2(1) to conclude
that τII = 0.

We have shown that ϕ(α) is a cycle. As the last part of the proof, let
us see that ϕ(α) represents a non-trivial homology generator. Our main
characters are the following disjoint sets:

M
↓
d+1 = {σ ∈ K | dimσ = d+ 1 and dimµ(σ) = d+ 2} ,

M
↑
d+1 = {σ ∈ K | dimσ = d+ 1 and dimµ(σ) = d} ,

M
↑
d+2 = {σ ∈ K | dimσ = d+ 2 and dimµ(σ) = d+ 1} ,

M
↓
d = {σ ∈ K | dimσ = d and dimµ(σ) = d+ 1} .

We know that µ matches M↑d+2 with M↓d+1, it matches M↓d with M↑d+1, and
the set of (d + 1)-simplices of K is a disjoint union of the sets M↓d+1 and
M
↑
d+1. Let E denote the subcomplex of the simplicial complex K, defined

by
E := {σ ∈ K | dimσ 6 d+ 1} ∪M↑d+2,

and let F be the subcomplex defined by

F := E \ (M↓d ∪M
↓
d+1 ∪M

↑
d+1 ∪M

↑
d+2).

Since µ is also acyclic on E, Theorem 10.9 implies that there exists a sequence
of simplicial collapses from E to F. In particular, the inclusion map ι : F ↪→ E

induces isomophisms of homology groups.
By our construction, the support of the homology class ϕ(σ) is disjoint

from the set M↓d, hence ϕ(σ) is a homology class in the simplicial complex
F. Now dimF = d, so ϕ(σ) is in the top dimension. It is also not equal to
0, since it contains σ, so it must be a non-trivial homology class in F. Since
the inclusion map ι : F ↪→ E induces isomophisms of homology groups,
ϕ(σ) is also non-trivial in E. It must then be also non-trivial on K, since E
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M↓d+1 M↑d+1

M↓d

M↑d+2

F

E

d+ 2

d+ 1

d

dim

Figure 12.9. The construction of E and F.

contains the entire (d+ 1)-skeleton of K. Finally, Remark 12.5 tells us that σ
is a unique critical d-simplex contained in the support of ϕ(σ). �

Remark 12.11. Note that Theorem 12.10 provides a canonical procedure to
associate a non-trivial homology generator to an acyclic matching µ and
a critical d-simplex, assuming there are no critical simplices in dimensions
d− 1 and d+ 1.

Theorem 12.10 has the following useful corollary.

Corollary 12.12. Under the same conditions as in Theorem 12.10, the homology
classes [ϕ(σ)], σ ∈ Rd form a basis for Hd(K).

Proof. We already know that the number of the homology classes [ϕ(σ)] is
equal to the d-th Betti number, so it is enough to see that they are linearly
independent. This can be done by using essentially the same argument as
the one in the last part of proof of Theorem 12.10. If a linear combination of
ϕ(σ)’s would represent a trivial homology class, then it would do so in the
subcomplexF already. This, however, is impossible, as every non-zero cycle
in the top dimension always represents a non-trivial homology class. �
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12.4. Sample applications

Let us now see how this knowledge can be applied in practice.

12.4.1. The d-skeleton of an n-simplex. In this example, we return to the
situation dealt with in Proposition 11.6. We have seen there that using
discrete Morse theory it is easy to show the d-skeleton of an n-simplex is
homotopy equivalent to

(
n
d+1

)
copies of d-dimensional spheres. We can

now use Theorem 12.10 to describe explicit homology generators.
Pick a critical d-simplex σ indexed by 0 6 x0 < · · · < xd 6 n − 1. The

boundary (d− 1)-simplices of σ are all given by

τi := {x0, . . . , x̂i, . . . , xd}, for 0 6 i 6 d.

Using the matching µ used in the proof of Proposition 11.6, we obtain

µ(τi) = {x0, . . . , x̂i, . . . , xd} ∪ {n}.

Switching to the graphGd(µ), we see that all the vertices µ(τ0), . . . , µ(τd) are
sinks, hence ϕ(µ(τi)) = µ(τi), for all 0 6 i 6 d. By Theorem 12.10 we then
conclude that the canonical homology class associated to the d-simplex σ
under the acyclic matching µ is given by

ϕ(σ) = σ+ µ(τ0) + · · ·+ µ(τd).

A handy way to write this cycle is to say ϕ(σ) = ∂d+1(σ ∪ {n}), where the
boundary is taken in the full ambient n-simplex.

12.4.2. The complex of disconnected graphs. Consider the simplicial com-
plex Discn of disconnected graphs on n vertices, n > 3. In this case each
critical (n−3)-simplex σ is obtained from a recursive tree Tσ by deleting the
edge (1, 2). One can see that

(12.6) ϕ(σ) = ∂n−2Tσ.

Indeed, for each edge e ∈ σ, the graph τe := σ \ e has 3 connected compo-
nents, so µ(τe) is well-defined, and

µ(τe) = (σ \ e) ∪ (1, 2).

Then, for each (n − 4)-simplex ν, which is contained in µ(τe), such that
ν , τe, we have (1, 2) ∈ ν, hence µ(ν) is well-defined, and µ(ν) = ν \ (1, 2).
So, each µ(τe) is a sink of the directed graph Gn−3(µ), and Equation (12.6)
follows.
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12.4.3. Order complex of the partition lattice Πn. Let us now return to
considering the order complex of the lattice of all partitions of the set [n],
n > 3. Our notation for this simplicial complex was ∆̃(Πn). This complex
has dimension n− 3.

Let µ be the acyclic matching which we have described in Subsec-
tion 11.5.2. For this matching, the critical simplices of µ all have dimension
n−3, so our framework applies and we may attempt to calculate the canon-
ical homology classes associated to the critical simplices.

Recall, that each critical simplex is obtained as follows. Choose a per-
mutation π of [n] of the form 1x2 . . . xn. The (n− 3)-simplex σπ is a chain of
partitions α2 < · · · < αn−1, such that

αi = 1x2 . . . xi|xi+1| . . . |xn.

We would like to describe the canonical homology classϕ(σπ). The standard
action of the permutation group Sn−1, on the set of elements x2 . . . xn,
induces an action on the chains in Πn. This action is transitive on the set
of critical simplices. Hence, if we want to calculate ϕ(σπ) in general, it is
enough to do that for the ordered tuple (x2, . . . , xn) = (2, . . . , n).

So let π be fixed to be the identity permutation. Consider the subposet
Q of Πn consisting of all permutations λ of the form

λ = 1 . . . i1 | i1 + 1 . . . i2 | . . . | it + 1 . . . n,

for some 1 6 i1 < · · · < it < n. It is easy to see that Q is a Boolean algebra
on n − 1 elements. Indeed, each element in Q is simply determined by
where the separators | are inserted in the ordered sequence 1, . . . , n. There
are n − 1 potential positions where the separator can be inserted and any
choice of positions is allowed. The order relation is given by inclusion of
the sets of positions, and it corresponds precisely to the refinement order in
the partition lattice.

Now, the order complex of a Boolean algebra is homeomorphic to
a sphere, in fact it is a barycentric subdivision of the boundary of a simplex.
Taking the sum of all the top-dimensional simplices in the order complex of
Q yields the fundamental homology class γπ of the corresponding sphere.
It can be shown, see Exercise (5) that γπ is precisely the canonical homology
class associated to the acyclic matching µ and the critical simplex σπ. When
π varies across the set of all (n− 1)! permutations of the type above, we get
the canonical homology classes associated to all the critical simplices.
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Exercises

(1) Use Corollary 12.12 to describe an explicit homology basis for the inde-
pendence complexes of the graph G, where
(1) G is a path graph;
(2) G is an arbitrary tree;
(3) G is a cycle.

(2) Describe an explicit homology basis for the complex of independent
sets of a matroid.

(3) Describe an explicit homology basis for Flagdk . The latter complex was
defined in Exercise (5) in Chapter 11.

(4) Investigate the computational complexity of finding the homology basis
using Corollary 12.12.

(5) Complete the argument in Subsection 12.4.3.





Chapter 13

The Critical Morse
Complex

13.1. A basis for the chain groups associated to the acyclic
matching

For our purposes it is useful to modify the basis Rd ∪M↑d ∪M
↓
d in a way

which will make the effect of the boundary operator more transparent.
Specifically, let us set

BRd := {ϕ(γ) |γ ∈ Rd} ,

B
↑
d :=M↑d,

B
↓
d :=

{
∂β |β ∈M↑d+1

}
.

We would like to show that the union of these three sets is a basis for
Cd(K). Before proceeding with the proof, it is useful to define a directed
graph, which we call Hd(µ), and which is quite analogous to the directed
graph Gd(µ). The definition, see Figure 13.1, is as follows:

• the set M↑d is taken as the set of vertices of Hd(µ);

• there is a directed edge from α to β, for some α,β ∈M↑d if and only
if µ(α) � β.

When the matching µ is acyclic, then, in the same way as we have
seen in the case of the graph Gd(µ), the graph Hd(µ) is acyclic. This again
means that the vertices ofHd(µ) can be ordered so that the edges are always
pointing down in the chosen order.
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α β

in F(K) in Hd(µ)

βα

µ(α)

Figure 13.1. The rule defining the edges of the directed graph Hd(µ).

Proposition 13.1. The set BRd ∪B
↑
d ∪B

↓
d is a basis for Cd(K).

Proof. For brevity, set Bd := BRd ∪B
↑
d ∪B

↓
d, and Sd := Rd ∪M↑d ∪M

↓
d. Let us

first show that each element from Sd can be obtained as a linear combination
of the elements from Bd. For γ ∈M↑d this is trivial, since M↑d = B

↑
d.

Next, take γ ∈ Rd. By Remark 12.5 we know that ϕ(γ) = γ + β, where
β ∈ B

↑
d, so each element of Rd is a linear combination of the elements of Bd.

Finally, take γ ∈ M
↓
d. Set β := µ(γ). By construction β ∈ M

↑
d+1.

Consider an arbitrary α ∈ supp∂β, such that α , γ. If α ∈ Rd or α ∈ M↑d,
then we have already seen that α is a linear combination of the elements
of Bd. If, instead, α ∈ M↓d, we have an edge in Hd(µ) directed from β to
α. Now using induction on the distance from the sink of β seen as a vertex
of Hd(µ), we can conclude that α is a linear combination of the elements
of Bd as well. All in all, we see that all the elements of supp∂β, which
are different from γ are in the space generated by Bd. Since ∂β itself is an
element of Bd we see that also γ is a linear combination of the elements
of Bd.

We have shown that Bd generates the vector space Cd(K). It is easy,
using a similar argument, to show that the set Bd is also linearly indepen-
dent. However, this is not necessary as we can reach our conclusion using
dimensional reasoning. Indeed, since the number of vectors in Bd is the
same as in Sd we conclude that Bd is actually a basis. �

An illuminating way to rephrase our proof of Proposition 13.1 is to
look at the transformation matrix between Bd and Sd. For this we need to
choose an order on Sd, which we do as follows. First in that order, are all
the elements of M↓d, then come all the elements of Rd, and finally all the
elements ofM↑d. The internal order on Rd, and the internal order onM↑d can
be chosen arbitrarily. The internal order on M↓d is chosen so that the edges
of Hd(µ) point from a lower-indexed vertex to a higher-indexed one. Such
a choice is possible, since the graph Hd(µ) is acyclic. Finally, the order on
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Bd is chosen accordingly, using the obvious bijection: γ↔ ϕ(γ), for γ ∈ Rd,
and α↔ ∂(µ(α)), for α ∈M↓d.

It is then easy to see that our proof of Proposition 13.1 is essentially
saying that the corresponding transformation matrix is upper-triangular.
The fact that Sd is a basis, implies clearly that also Bd is a basis.

13.2. Decomposition of the chain complex

The basis Bd provides the best framework to describe a direct sum de-
composition of a chain complex of a simplicial complex, associated to an
acyclic matching on its simplices. The key fact is provided by the following
proposition.

Proposition 13.2. For any α ∈ Rd, there is a set S(α) ⊆ Rd−1, such that

∂(ϕ(α)) =
∑

β∈S(α)

ϕ(β).

Proof. We already know, by Proposition 12.8, that

supp∂(ϕ(α)) ⊆ Rd−1 ∪M↑d−1.

So let us say ∂(ϕ(α)) = β+γ, where suppβ ⊆ Rd−1 and suppγ ⊆M↑d−1. We
have ∂(β+γ) = ∂(∂(ϕ(α))) = 0. In particular, the condition supp∂(β+γ) ⊆
Rd−2 ∪M↑d−2 is satisfied, so we can use Proposition 12.9 to conclude that
β+ γ = ϕ(β). This is exactly what we want, with S(α) := suppβ. �

It is not difficult to give a precise definition of the set S(α). However,
it is best done using some further terminology, so we delay doing this for
a short while. Instead, we proceed to formulate our main decomposition
theorem.

Theorem 13.3. Given a simplicial complex K and an acyclic matching µ, we
define chain subcomplexes of C(K), which we call Crit(K, µ) and Match(K, µ), as
follows: for each d > 0, we take

• the group Critd(K, µ) to be generated by the set BRd,

• we take the group Matchd(K, µ) to be generated by the set B↑d ∪B
↓
d.

In particular, the boundary operators of Crit(K, µ) and Match(K, µ) are induced
by the boundary operator of C(K). Then, the chain complex C(K) decomposes as
a direct sum

(13.1) C(K) = Crit(K, µ)⊕Match(K, µ).

Proof. Let us first see that Crit(K, µ) and Match(K, µ) are well-defined as
chain subcomplexes of C(K). This means that we have to check that they are
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closed with respect to applying the boundary operator. For the subcomplex
Crit(K, µ) this is an immediate consequence of Proposition 13.2. For the
subcomplex Match(K, µ) this can be checked directly: ∂β = 0, for each
β ∈ B

↓
d, and ∂β ∈ B

↓
d−1, for each β ∈ B

↑
d.

On the other hand, we already know by Proposition 13.1 that Cd(K) =

Critd(K, µ) ⊕Matchd(K, µ), for all d. This immediately implies that the
decomposition described in Equation (13.1) holds. �

As a matter of fact, the chain complex Match(K, µ) can further be de-
composed into the so-called atomic chain complexes. We do not need this fact
for now.

13.3. The language of alternating paths

Our next task is to describe the set S(α) which has appeared in Proposi-
tion 13.2. To do that, we need some new terminology. Recall that when σ
and τ are simplices of an abstract simplicial complex K, we write σ � τ if
σ ⊃ τ and dimσ = dim τ+ 1.

Definition 13.4. Assume K is an abstract simplicial complex, and µ is an
arbitrary matching on the set of simplices of K. Let σ and τ be arbitrary
simplices of K such that dimσ = dim τ + 1. An alternating path from σ to τ
is any sequence

(13.2) σ � γ1 ≺ µ(γ1) � γ2 ≺ µ(γ2) � · · · � γt ≺ µ(γt) � τ,

where t > 0, γ1 , γ2, . . . , γt−1 , γt, γt , τ, and σ , µ(γ1).

Clearly, an alternating path is obtained from a reaching path by adding
a non-matching edge at the end of that path.

LetPσ(γ1, . . . , γt, τ)denote the alternating path given by Equation (13.2).
Note, that the case t = 0 corresponds to the alternating path σ � τ, which is
the shortest possible alternating path. That path is denoted by Pσ(τ).

. . .

γ1 γ2 γt

µ(γ1) µ(γ2) µ(γt−1) µ(γt)

τ

σ
, , , ,

,,,,

,

Figure 13.2. An example of an alternating path Pσ(γ1, . . . , γt, τ).

When σ = µ(τ), and t > 1, adding the edge (σ, τ) to Pσ(γ1, . . . , γt, τ)
produces the alternating cycle, which we denote AC(γ1, . . . , γt, τ).
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Note also that for 1 6 i 6 t − 1, the inequality γi , γi+1 implies
µ(γi) , µ(γi+1). For acyclic matchings a stronger conclusion can be made.

Proposition 13.5. Let µ be an acyclic matching on a set of simplices of an abtract
simplicial complex K. Then, for an arbitrary alternating path Pσ(γ1, . . . , γt, τ) all
the simplices γ1, . . . , γt, τ are distinct.

Proof. Assume the conclusion of the proposition does not hold, and assume
first that there exists 1 6 k 6 t − 1, such that γk = γk+l, for some l > 1.
By construction we must have l > 2, and without loss of generality we
can assume that all the simplices γk, . . . , γk+l−1 are distinct. Then we have
an alternating cycle AC(γk, . . . , γk+l−1), which is a contradiction to the
acyclicity of µ.

Similarly, if τ = γk, for some 1 6 k 6 t− 1, then we have an alternating
cycle AC(γk, . . . , γt). �

Corollary 13.6. For fixed K and µ, the length of an alternating path is bounded
from above.

Proof. Since K is assumed to be finite, the statement follows immediately
from Proposition 13.5. �

Let Λµ(σ, τ) denote the set of all alternating paths from σ to τ.

Proposition 13.7. The set S(α) consists of allβ ∈ Rd−1, for which the setΛµ(α,β)
has an odd number of elements.

Proof. Take γ ∈ suppϕ(α), and assume p is a reaching path from α to
γ. Assume furthermore, that β ∈ supp∂γ, and β ∈ Rd−1. Then, adding
β to p will yield an alternating path from α to β. Also reversely, every
alternating path from α to β arises in this way. This means that the number
of alternating paths from α to β is equal to the number of reaching paths
from γ to some simplex which contains β in its boundary. Our proposition
now follows from Proposition 12.7. �

13.4. Morse complex for Z2-coefficients

We can now describe a combinatorially defined chain complex whose ho-
mology will compute the homology of the simplicial complex K, but which
potentially can be much smaller in size.

Definition 13.8. For σ and τ as above, we set

capµZ2(σ, τ) :=

{
1, if |Λµ(σ, τ)| is odd;
0, otherwise.

We call the number capµZ2(σ, τ) the channel capacity overZ2 between σ and τ.
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Definition 13.9. Assume K is an abstract simplicial complex, and µ is an
acyclic matching on the set of simplices of K. We define a chain complex
Cµ(K;Z2) as follows:

• for each d, Cµd(K;Z2) is the vector space over Z2 with basis
{γµ |γ ∈ Rd(µ)};
• for each d, and each σ ∈ Rd(µ), the boundary operator is given by

(13.3) ∂
µ
dσ
µ =

∑
τ∈Rd−1(µ)

capµZ2(σ, τ)τ
µ.

The chain complex Cµ(K;Z2) is called the Morse complex withZ2-coefficients
associated to µ.

The reader who has been following the developments in the previous
subsections will immediately recognize that, in particular Proposition 13.7
implies that Cµ(K;Z2) is isomorphic as chain complex to the chain subcom-
plex Crit(K, µ).

Theorem 13.10. (Theorem C for Z2-coefficients).
The Morse complex Cµ(K;Z2) computes the Z2-homology of K. In other words,
for any t we have an isomorphism Ht(C

µ(K;Z2)) ≈ Ht(K;Z2).

Proof. The decomposition from Theorem 13.3 implies that

H∗(C(K)) = H∗(Crit(K, µ))⊕H∗(Match(K, µ)).

Now, the chain complex Match(K, µ) is acyclic, i.e., H∗(Match(K, µ)) = 0,
while, as mentioned above, the chain complex Crit(K, µ) is isomorphic to
Cµ(K;Z2), so the homology of Cµ(K;Z2) must be the same as that of K. �

13.5. Morse complex for Z-coefficients and Theorem C

Let now K be an abstract simplicial complex with a total order chosen on
the set of its vertices.

Definition 13.11. For any two simplices σ and τ such that σ = (v1, . . . , vt),
for v1 < · · · < vt, and τ = (v1, . . . , v̂k, . . . , vt), we set sgn (σ, τ) := (−1)k.
Furthermore, for an arbitrary alternating path p = Pσ(γ1, . . . , γt, τ) between
σ and τ, we set

(13.4) sgn(p) := sgn(σ, γ1) sgn(µ(γt), τ)×

×
t∏
i=1

sgn(γi, µ(γi))
t−1∏
i=1

sgn(µ(γi, γi+1)).

Note, that for t = 0, Equation (13.4) is to be interpreted as sgn (p) =

sgn(σ, τ).
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Definition 13.12. For critical simplices σ and τ, we set

capµZ(σ, τ) :=
∑

p∈Λ(σ,τ)

sgn(p),

and call this number the channel capacity over Z between σ and τ.

Definition 13.13. Assume K is an abstract simplicial complex, and µ is an
acyclic matching on the set of simplices of K. We define a chain complex
Cµ(K;Z) as follows:

• for each d, Cµd(K;Z) is the free abelian group generated by
{γµ |γ ∈ Rd(µ)};
• for each d, and each σ ∈ Rd(µ), the boundary operator is given by

(13.5) ∂
µ
dσ
µ =

∑
τ∈Rd−1(µ)

capµZ(σ, τ)τ
µ.

The chain complex Cµ(K;Z) is called the Morse complex with Z-coefficients
associated to µ.

Theorem 13.14. (Theorem C forZ-coefficients). The Morse complexCµ(K;Z)

computes theZ-homology of K. In other words, for any t we have an isomorphism
Ht(C

µ(K;Z)) ≈ Ht(K;Z).

Proof. Analogous to proof of Theorem 13.10. �

Exercises

(1) Describe the chain complex decomposition from Theorem 13.3 for our
standard acyclic matching for the d-skeleton of an n-simplex.

(2) Use the machinery described in this chapter to compute the homology
groups of the simplicial complex, which was introduced as a sample
application in the preface.





Chapter 14

Implications and
Variations

14.1. Relaxing the simplicial structure

14.1.1. Generalized simplicial complexes. The most natural first step which
we can take to get away from the rather rigid definition of simplicial com-
plexes is to allow more than one simplex to be supported by the same set of
vertices. In dimension 1 this corresponds to allowing multiple edges, while
in higher dimensions we need to be careful when saying precisely what we
want to allow.

Definition 14.1. A finite generalized abstract simplicial complex K is given by
the following data:

• a finite vertex set V ;

• a possibly empty set ΣS, for every non-empty subset S ⊆ V ;

• a map δST : ΣS → ΣT for every pair of non-empty subsets T ⊂ S ⊆ V .

This data is subject to the following conditions:

• for each v ∈ V , we have Σ{v} = {v};

• we have δTR ◦ δST = δSR whenever R ⊂ T ⊂ S.

Each set ΣS contains all the simplices whose set of vertices is S. These
sets are certainly allowed to be empty.

Given a generalized abstract simplicial complex K, we can associate to
it a semisimplicial set ∆ = ((Sk)k>0, {Bf}f) as follows. Assume for technical
simplicity that the set V is equal to [t], for some nonnegative integer t. The
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set of k-simplices of ∆ is then simply taken to be Sk := ∪AΣA, where the
union is taken over all subsets A ⊆ [t], such that |A| = k + 1. Assume
f : [m] ↪→ [n] is an order-preserving injection. We can then define a map
Bf : Sn → Sm. Take σ ∈ Sn. By definition there exists a subset A ⊆ [t],
such that |A| = n + 1, and σ ∈ ΣA. Let ϕ : [n] → A be the order-preserving
bijection, and set X := Im (ϕ ◦ f). We then define Bf(σ) := δAX(σ). We leave
checking the semisimplicial set axioms as an exercise.

When we say that a simplex τ ∈ ΣT is contained in a simplex σ ∈ ΣS, we
mean that

(1) T ⊂ S;

(2) δST (σ) = τ.

Alternatively, we say that τ is a boundary simplex of σ. The simplices in ΣS
have dimension |S| − 1, and when τ ∈ ΣT is contained in a simplex σ ∈ ΣS
the codimension of τ in σ is equal to |S|− |T |.

Using that terminology, Definition 9.1 of the elementary simplicial col-
lapse can be adapted verbatim to the context of generalized simplicial com-
plexes. Moreover, Proposition 9.9 remains true, and the simplicial complex
still corresponds to a strong deformation retraction for the geometric real-
ization.

The concept of the face poset of a generalized simplicial complex is
defined without changes. The only difference to the abstract simplicial
complexes is that we end up with a more general class of posets: for exam-
ple, they do not have to be semilattices anymore.

Theorem A of discrete Morse theory then holds precisely as stated if the
following is taken as a definition of a subcomplex.

Definition 14.2. AssumeK = (V, Σ∗, δ∗) is a generalized simplicial complex.
A subcomplex of K is K̃ = (V, Σ̃∗, δ̃∗), such that Σ̃S ⊆ ΣS, for all S ⊆ V , δ̃ST is
the restriction of δST to Σ̃S, and Im δ̃ST ⊆ Σ̃T .

Theorem B also holds precisely as stated for the generalized simplicial
complexes, and proofs of both theorems go through without any change.

14.1.2. Polyhedral complexes. In Section 3.1 we have looked at the situa-
tion, where instead of allowing more than one simplex with the same set
of vertices, one can go in a slightly different direction and replace simplices
by polyhedras. This includes frequently used families, such as cubical
complexes. We shall sketch this in a rather brief way, since the details are
straightforward, and furthermore, a lot of these considerations are sub-
sumed and made precise by switching to chain complexes altogether.
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Recall, that a convex polytope P in Rn is a convex hull of a finite set of
points. This includes the empty set. Any hyperplane H divides Rn into
two closed half-spaces, whose intersection is H. A hyperplane H is called
a bounding hyperplane for P, if P is contained entirely in one of these closed
half-spaces. A face of a convex polytope P is an intersection of P with an
arbitrary bounding hyperplane H. Note that this includes the case when
P∩H = ∅, corresponding to the empty face of P. If P is not full-dimensional,
then P itself is also considered one of its faces.

Definition 14.3. A polyhedral complex in a Euclidean space Rn is a set Σ of
convex polytopes satisfying the following two conditions:

(1) every face of a polytope in Σ also belongs to Σ;

(2) the intersection of any two polytopes in Σ is either empty or is
a face of both of them.

Definition 14.4. A polyhedral collapse is defined in precisely the same way
as in the simplicial case: it is a deletion of two polytopes σ and τ from Σ,
such that

• σ is maximal, i.e., it is not a face of any other polytope in Σ;

• τ is a face of σ, and it is not a face of any γ ∈ Σ, γ , σ, τ.

We formulate the following result without proof.

Theorem 14.5.
(Main theorem of discrete Morse theory for polyhedral complexes)
Let ∆ be a polyhedral complex, and letM be an acyclic matching on F(∆) \ {0̂}. Let
ci denote the number of critical i-dimensional cells of ∆.

(a) If the critical cells form a subcomplex ∆c of ∆, then there exists a sequence
of polyhedral collapses leading from ∆ to ∆c.

(b) In general, the space ∆ is homotopy equivalent to ∆c, where ∆c is a CW
complex with ci cells in dimension i.

(c) There is a natural indexing of cells of ∆c with the critical cells of ∆, such
that, for any two cells σ and τ of ∆c, satisfying dimσ = dim τ + 1, the
incidence number [τ : σ] is given by

(14.1) [τ : σ] =
∑
c

w(c).

Here the sum is taken over all alternating paths c connecting σ with
τ, i.e., over all sequences c = (σ, a1, u(a1), . . . , at, u(at), τ), such that
σ � a1, u(at) � τ, and u(ai) � ai+1, for i = 1, . . . , t − 1. For such
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an alternating path, the quantity w(c) is defined by

(14.2) w(c) := (−1)t[a1 : σ][τ : u(at)]

t∏
i=1

[ai : u(ai)]

t−1∏
i=1

[ai+1 : u(ai)],

where the incidence numbers in the right hand side are taken in the
complex ∆.

Remark 14.6. The converse of Theorem 14.5(a) is clearly true in the fol-
lowing sense: if ∆c is a subcomplex of ∆, and if there exists a sequence of
collapses from ∆ to ∆c, then the matching on the cells of ∆ \ ∆c induced
by this sequence of collapses is acyclic. In particular, a polyhedral complex
∆ is collapsible if and only if the poset F(∆) \ {0̂} allows a complete acyclic
matching.

14.1.3. A toy application to Hom-complexes.
Assume we are given two graphs T and G.

Definition 14.7. A graph homomorphism between T andG is an arbitrary map
between their sets of vertices ϕ : V(T) → V(G), such that for every edge
(x, y) in T the pair (ϕ(x), ϕ(y)) is an edge in G.

Definition 14.8. A multihomomorphism from a graph T to a graph G is an
assignment λ : V(T) → 2V(G), such that

• each set λ(v) is non-empty,

• if the vertices v and w of T are connected by an edge, then any two
vertices x ∈ λ(v) and y ∈ λ(w) are also connected by an edge.

The complex Hom(T,G) is the complex of all multihomomorphisms
from T to G. The boundary relation is given by deleting vertices from the
sets λ(v).

In particular, a cell in Hom(T, Kn) is an assignment of subsets of [n] to
vertices of T , such that an arbitrary choice of one color per list yields an
admissible coloring of T .

In general, the complexes Hom(T,G) are not simplicial. They are poly-
hedral, with each cell being a direct product of simplices. This type of
complexes is called prodsimplicial complexes.

The complex Hom(K2, Kn) has the following combinatorial description:

• the cells are indexed by ordered pairs (A,B), where A and B are
non-empty disjoint subsets of [n],

• the boundary relation is indexed by deleting elements from the
subsets A and B.
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Let us describe a matching on the set of cells of Hom(K2, Kn), for n > 3.
To start with, for a cell σ = (A,B), we set

ρ(σ) := min([n] \ B).

The matching µ is then defined by the formula

(14.3) µ(σ) = µ(A,B) :=

{
(A XOR ρ, B), if A , {ρ},

(ρ, B XOR {ρ+ 1}), otherwise,

where ρ = ρ(A,B). Verbally, the rule given by Equation (14.3) can be
formulated as follows. Take the pivot element ρ = ρ(σ) and add it to the
first set A, if it is not there already. If it is, then try deleting it. The only
reason deleting may not work is thatAwould become empty, that isA = {ρ}.
In that case, add the element ρ+ 1 to the second set B, if, of course, it is not
there already. If it is, then delete ρ+ 1 from B instead. The only case where
this is not possible is when B = {ρ+ 1}.

Proposition 14.9. The described matching µ is acyclic. It has one critical 0-cell
indexed by (1, 2), and one critical (n− 2)-cell indexed by (n, [n− 1]).

Proof. Let us first see for which cells σ = (A,B) the function µ is not defined.
First, if ρ < A, then adding ρ will always work. Furthermore, ρ ∈ A and
|A| > 2, then deleting ρ also results in a well-defined cell of Hom(K2, Kn).
So, in order for µ not to be defined, we must have A = {ρ}.

So, assume σ = (ρ, B), with [ρ − 1] ⊆ B. If ρ = n, then σ = (n, [n − 1])

and we find the first cell for which µ is not defined. Otherwise, we have
ρ 6 n− 1, so ρ+ 1 ∈ [n]. Again, if ρ+ 1 < B, we can add ρ+ 1 to B, and µ is
defined. If ρ+ 1 ∈ B, and |B| > 2, then ρ+ 1 can be deleted, and µ is defined
again. The final case is that B = {ρ + 1}. Since [ρ − 1] ⊆ B, we must have
ρ = 1. We then conclude that σ = (1, 2), finding the second and the final cell
for which µ is not defined.

A case-by-case analysis of Equation (14.3) shows that ρ(σ) = ρ(µ(σ)).
That, in turn, implies that µ ◦ µ = id , so µ really defines a matching.

Let us now show that µ is acyclic. We shall assign labels to the matched
pairs in µ as follows. The matched pair (A,B) ↔ (A XOR ρ, B) gets the
label (I, ρ), we call it the matched pair of the first kind. The matched pair
(A,B) ↔ (ρ, B XOR {ρ + 1}) gets the label (II, ρ), and we call it the matched
pair of the second kind. In both cases ρ is called the weight of the matched
pair.

Assume now that µ is not acyclic and consider a cycle

a1 < µ(a1) > a2 < µ(a2) > · · · > at < µ(at) > a1,

where all ai’s are different and t > 2. Without loss of generality we can
assume that the matching pair a1 ↔ µ(a1) has the lowest weight w among
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all the matching pairs in this cycle. Furthermore, if there are matching pairs
of weight w both of the first and of the second kind, we can reindex to
ensure that the matching pair a1 ↔ µ(a1) is of the second kind.

Assume first that the latter is the case and that a1 ↔ µ(a1) is of the
second kind. This means that a1 = (w, [w−1]∪B), where Bmight be empty,
w+ 1 < B, and µ(a1) = (w, [w− 1]∪B∪ {w+ 1}). The cell a2 is obtained from
µ(a1) by either deleting an element of [w− 1] or deleting an element of B.

Consider the first subcase that it is obtained by deleting x ∈ [w− 1]. We
have

a2 = (w, [x− 1] ∪ {x+ 1, . . . , w− 1} ∪ {w+ 1} ∪ B).
In that case µ(a2) = ({w, x}, [x − 1] ∪ {x + 1, . . . , w − 1} ∪ {w + 1} ∪ B), and
the matching pair a2 ↔ µ(a2) has weight x 6 w − 1, which contradicts our
assumption that w is the minimal weight in the cycle.

Consider now the second subcase in which an element of B is deleted
instead. We have

a2 = (w, [w− 1] ∪ {w+ 1} ∪ (B \ x)),

for some x ∈ B. In that case, µ(a2) should be obtained by deleting w+ 1, so
µ(a2) = (w, [w − 1] ∪ (B \ x)), and a2 > µ(a2), clearly a contradiction. The
only exceptional case is when the set [w − 1] ∪ (B \ x) is empty. This will
happen if w = 1 and |B| = 1. However then a2 = (1, 2), which is a critical
cell, and we arrive at a contradiction again.

Assume now that the matching pair a1 ↔ µ(a1) is of the first kind. We
then have

a1 = (A, [w− 1] ∪ B), µ(a1) = ({w} ∪A, [w− 1] ∪ B),

where A and B are disjoint non-empty subsets of [n] \ [w]. There are three
cases to consider: a2 is obtained from µ(a1) by deleting an element from
either [w− 1], B, or A.
Case 1. We delete x ∈ [w− 1]. We then have

a2 = ({w} ∪A, [x− 1] ∪ {x+ 1, . . . , w− 1} ∪ B).

The rule in Equation (14.3) then tells us that

µ(a2) = ({x,w} ∪A, [x− 1] ∪ {x+ 1, . . . , w− 1} ∪ B).

The matching pair a2 ↔ µ(a2) is then of the first kind and has the weight
x 6 w− 1. This is a contradiction to the minimality of w.
Case 2. We delete x ∈ B, and have

a2 = ({w} ∪A, [w− 1] ∪ (B \ x)).

Since A is non-empty, we have µ(a2) = (A, [w − 1] ∪ (B \ x)). In particular,
a2 > µ(a2), which is a contradiction.
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Case 3. Assume we delete x ∈ A, so

a2 = ({w} ∪ (A \ x), [w− 1] ∪ B).

If |A| > 2, i.e., A \ x is non-empty, Equation (14.3) tells us that µ(a2) =

(A \ x, [w− 1]∪B), so µ(a2) < a2, which is a contradiction. Finally, if |A| = 1,
i.e., A = {x}, we have a2 = (w, [w− 1] ∪ B). If w = n, the cell a2 = (n, [n− 1])

is critical. Otherwise µ(a2) = (w, ([w− 1]∪B) XOR {w+ 1}), so the matching
pair a2 ↔ µ(a2) is of the second kind and has the same weight w. In both
subcases we obtain a contradiction to our previous assumptions.

All-in-all, we have shown that the matching µ is acyclic and that it has
two critical cells: one in dimension 0 and one in dimension n− 2. �

Clearly, Proposition 14.9 implies that Hom(K2, Kn) is homotopy equiv-
alent to an (n− 2)-sphere. In fact, with a little more work one can show that
it is in fact homeomorphic to Sn−2.

14.2. Discrete Morse functions and gradient vector fields

Historically, discrete Morse theory was introduced by Forman, see [Fo98],
using the concepts of discrete Morse functions, combinatorial vector fields and
discrete gradient vector fields. The modern treatment presented here deals ex-
clusively with combinatorial matchings, jetissoning the unnecessary topo-
logical information. Still, a certain amount of literature uses that previous
terminology, so we include here a brief description of the connection be-
tween the two.

Let us recall the definition of a discrete Morse function. For simplicity
we restrict ourselves to the simplicial setting. Let K be a simplicial complex,
and let F(K), as before, be its face poset.

Definition 14.10. A function ϕ : F(K)→ R is called a discrete Morse function
if it satisfies the following two properties:

• For any simplex σ ∈ F(K), the number of simplices τ ∈ F(K) in the
boundary of σ, which satisfy ϕ(σ) 6 ϕ(τ) and dim τ = dimσ− 1, is
at most one.
• For any simplex σ ∈ F(K), the number of simplices τ ∈ F(K)

containing σ in their boundary, which satisfy ϕ(σ) > ϕ(τ) and
dimσ = dim τ− 1, is at most one.

Given a discrete Morse function ϕwe can construct a matching µ(ϕ) as
follows: for σ, τ ∈ F(K), we match σ with τ if the following two conditions
are satisfied:

• τ is a boundary simplex of σ with dim τ = dimσ− 1,
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• ϕ(τ) > ϕ(σ).

The following proposition describes the relation between acyclic match-
ings and discrete Morse functions.

Proposition 14.11. Assume K is a simplicial complex. Given a discrete Morse
function ϕ, the associated matching µ(ϕ) must be acyclic.

Reversely, given an acyclic matching γ, there exist discrete Morse functions ϕ
realizing this specific matching, that is, such that γ = µ(ϕ).

Proof. The first claim is obvious. Simply trace the value of ϕ following
the cycle, if one exists. This value will not increase when we follow the
matching edges upwards, and it will decrease when we follow the non-
matching edges downwards. As a result, the function value will decrease
after following the entire cycle, which is of course a contradiction.

For the opposite direction, recall that Theorem 11.9 tells us that there is
a linear extension l of F(K) such that µ(x) follows directly after xwhenever
x is matched and dimµ(x) > dim x. By recording for each x ∈ F(K) its
position in the linear extension, we can identify l with the corresponding
function F(K) → [d], where d is the number of the elements in F(K). We
can now define the function ϕ : F(K)→ R by setting

ϕ(x) :=

{
l(x) + 1, if x is matched and dimµ(x) > dim x;
l(x), otherwise.

Whenever x is matched and dimµ(x) > dim x, we have ϕ(x) = ϕ(µ(x)).
This, together with the fact that l is a linear extension, implies that ϕ is
a discrete Morse function. �

Proposition 14.11 is well-known in the literature using discrete Morse
function terminology, where what we call acyclic matchings appears under
the name discrete gradient vector field. Here we prefer the acyclic matchings
as it is a well-established terminology in graph theory.

As Proposition 14.11 shows, any discrete Morse function yields a unique
acyclic matching, whereas each acyclic matching is generated by many
different discrete Morse functions. As the entire topological information is
derived from the matching itself, we feel it is unnecessary to deal with the
discrete Morse functions at all.

14.3. Subsuming shellability

Recall, that a simplex σ of an abstract simplicial complex K is called maximal
if there is no simplex of K which contains σ properly. Using maximal
simplices we can think about an abstract simplicial complex in a constructive
way.
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Indeed, assume we are given some ordering (σ1, . . . , σt) on the set of
maximal simplices of K. Let us say that we build up K successively as
follows. We start with taking the simplex σ1, and of course all of its subsim-
plices. Next, we add the simplex σ2, and all its subsimplices, and so forth,
until the simplex σt. In the end we will get K. Notationally, the simplex σ
and all its subsimplices is the set family 2σ, so our building workflow is

∅ 2σ1  2σ1 ∪ 2σ2  . . . 2σ1 ∪ · · · ∪ 2σt = K.

At step k we are adding the set of simplices 2σk . The set of those of these
simplices which are already there is denoted by 2σk ∩ (2σ1 ∪· · ·∪2σk−1). One
can define various classes of abstract simplicial complexes by imposing
different conditions on these intersections. Shellable simplicial complexes
is one of these concepts.

Definition 14.12. Let K be an abstract simplicial complex. It is called
shellable if there exists an ordering (σ1, . . . , σt) on the set of maximal sim-
plices of K, such that for each 2 6 k 6 t the intersection

2σk ∩ (2σ1 ∪ · · · ∪ 2σk−1)

is a pure abstract simplicial complex of dimension dimσk − 1.

An ordering on the maximal simplices of an abstract simplicial complex
K satisfying conditions of Definition 14.12 is called a shelling order. Fig-
ure 14.1 shows different shelling orders, as well as a sequence which is not
a shelling order.

shelling orders

not a shelling order

3
2 4

1

2
1 4

3

2
3 4

1

Figure 14.1. Different shelling and non-shelling orders.

Given a shelling order (σ1, . . . , σt), we call the simplex σk filling with
respect to that shelling order if the intersection ofσkwith previous simplices
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is the entire boundary of σk, in other words,

2σk ∩ (2σ1 ∪ · · · ∪ 2σk−1) = {τ | τ ⊂ σk} .

Each time our construction process arrives at a filling simplex σk, we
actually only add the simplexσk itself, as its boundary is already completely
in. Since the filling simplices cannot contain each other, this means, that
given any shelling order, we can form a new well-defined shelling order by
pulling out all the filling simplices and then adding them in arbitrary order
at the end of the sequence.

Traditionally, shellability is used to show that the abstract simplicial
complex is homotopy equivalent to a wedge of spheres, and also to provide
examples of explicit homology generators. It turns out that this tool can be
subsumed by discrete Morse theory in the following precise sense.

Theorem 14.13. Assume K is a shellable abstract simplicial complex, and assume
(σ1, . . . , σt) is a shelling order on the set of maximal simplices of K. Assume
{τ1, . . . , τm} are the filling simplices. Then K \ {τ1, . . . , τm} is collapsible.

Equivalently, there exists an acyclic matching µ, such that the set of criticial
simplices with respect to µ coincides with the set of filling simplices with respect to
the selected shelling order.

Proof. By Theorem 10.9 the second statement follows from the first one, so
it is enough to show that K\{τ1, . . . , τm} is collapsible. The easiest way to do
that is to consider a shelling order in which the filling simplices {τ1, . . . , τm}

all come in the end, after all other simplices. By our previous remarks, this
can always be assumed without loss of generality. Let d be the number of
maximal simplices of K which are not filling.

Now, let us simply verify that 2σ1 ∪ · · · ∪ 2σk is collapsible for all k 6 d.
This can be done by induction on k with the base k = 1 being trivial. For
the induction step we are going to show that adding 2σk to 2σ1 ∪ · · · ∪ 2σk−1
is a compound collapse. Indeed, we know that 2σk ∩ (2σ1 ∪ · · · ∪ 2σk−1) is
pure, so there exists a set {x1, . . . , xs} ⊆ σk, such that

2σk ∩ (2σ1 ∪ · · · ∪ 2σk−1) = {γ ⊆ σk |γ ⊆ (σk \ xi), for some 1 6 i 6 s} .

But then we also have

(14.4) 2σk \ (2σk ∩ (2σ1 ∪ · · · ∪ 2σk−1)) = {γ ⊆ σk |γ ⊇ (σk \ {x1, . . . , xs})} .

Since σk is not filling, we must have s 6 dimσk. Equation (14.4) then
implies that adding 2σk to 2σ1 ∪ · · · ∪ 2σk−1 is the compound collapse

(σk, σk \ {x1, . . . , xs}).

This finishes the proof. �
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14.4. Infinite simplicial complexes

Until now we have always assumed that our complexes are finite. A natural
question arises: can some of the results be generalized to the infinite case?

The short answer to this is: yes, as long as the set of matched pairs
remains finite. To start with Theorem 10.9 (Theorem A) holds with the
simple requirement that K \ K ′ is finite. Theorem 11.2 (Theorem B) holds
under assumption thatM is finite. Both proofs go through virtually without
changes.

Furthermore, when M is finite, all the alternating paths are finite. So
the closure map ϕ can be defined in the same way as in Chapter 12 and the
explicit homology classes can also be computed using the same recursive
formula.

Finally, the definition of the critical Morse complex is identical, and the
basis change in Theorem 13.3 still works, since it proceeds in the number of
steps equal to the cardinality of M, which we assume to be finite.

In all these cases the details are mundane, and we relegate their check
to the interested reader.

Exercises

(1) Check that the semisimplicial set which we associated to the generalized
abstract simplicial complex in Subsection 14.1.1 is well-defined.

(2) Give an example of a collapsible simplicial complex which is not shellable.
(3) Prove that the geometric realization of a shellable simplicial complex is

homotopy equivalent to a wedge of spheres.
(4) Find a triangulation of a 3-dimensional sphere, which is not shellable.





Suggested further
reading for Part 3

The idea of defining a combinatorial homotopy theory based on the notions
of collapse and anti-collapse (also known as expansion) was developed by
Whitehead, who coined the term simple homotopy theory. The original
articles are still instructive and worth consulting, see [Wh50] and references
therein.

In 1973 Marshall Cohen has written a concise text, [Co73], which re-
mains the standard textbook reference on the subject to this day, and which
we highly recommend as an entry point. The basics of the theory and the
notion of Whitehead torsion are developed there in the CW category.

For the readers interested in the broader subject of algebraic torsion,
such as Reidemeister torsion etc we recommend the book by Turaev, [Tu01].

Discrete Morse theory was introduced by Robin Forman, whose original
paper [Fo98] is still very much worth checking up. The idea of viewing the
resulting complex deformation as a sequence of internal collapses can be
traced back to [Ko08, Section 11.2].

The reader will appreciate switching to the purely combinatorial notion
of matchings, whose theory is richly developed, see [Lo86] for an intro-
duction. The general combinatorial background can be found in textbooks
[Har69, MSTY].

We have used the rich plethora of combinatorially defined simplicial
complexes to illustrate managing collapsing sequences. If these examples
appeared appealing, the reader may want to consult the author’s previous
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textbook [Ko08], devoted entirely to the topic. Further useful background
references on topological combinatorics are [Bj96, Ko02, Zi97].

A large class of combinatorially defined cell complexes is provided
by the so-called Hom-complexes, the references here are [BK03a, BK03b,
BK04, CK04a, CK04b, Ko04, Ko05a, Lo78]. Some applications in topolog-
ical combinatorics, including details of structures used here, can be found
[Ko99, Ko00, LPV13, SW12, Sh01, Zh18].

Further afield, discrete Morse theory has been used for questions in ge-
ometry in topology, see, e.g., [CGN16, FS05, GMS11, Ga10, MS11, NTT18,
Oz17, RW10, ZhP17]. The specific notion of compound collapse has found
its applications in [BE17].

Despite of our focus on acyclic matchings, rather than discrete Morse
functions, the latter were and remain a subject of intense scrutiny, see, e.g.,
[AGORS, CM17, Ch00, CJ05].

One of the considered subdivisions of the simplex - the standard chro-
matic one, is a central object in the field of applications of combinatorial
topology to theoretical distributed computing. If this is of interest, the
textbook [HKR14], as well as research articles [BR18, Ko12], are warmly
recommended.
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Extensions of Discrete
Morse Theory





Chapter 15

Algebraic Morse Theory

15.1. Replacing simplicial complexes with general chain
complexes

In Chapter 11 we have learned how to think intuitively about discrete Morse
theory for simplicial complexes as a procedure which starts with a collection
of the so-called internal collapses and then progresses by performing these
collapses, in a certain order, while tracing the gluing maps of the simplices.
While being beautifully geometrically intuitive, this procedure is not as im-
peccably formal as one might prefer. Furthermore, any real-life algorithmic
realizations will have their share of difficulty implementing “continuous
deformations of gluing maps.” It turns out, that switching to a purely al-
gebraic setting allows us to kill two birds with one stone: gaining both the
formal, algorithmically implementable framework for our procedures, as
well as gaining broader generality.

As a general plan, we would like to replace simplicial complexes, or any
cell complexes for that matter, with their corresponding chain complexes.
In order to model the “set of simplices” algebraically, we choose a basis in
each chain group. So the algebraic object which is to serve as a main subject
of study in the theory, which was appropriately dubbed algebraic Morse
theory, is a chain complex, where each chain group has a chosen basis, and
there is a certain partial matching on these bases.

As the next step in the algebraic direction, we replace the geometrically
intuitive internal collapses from the topological context by simultaneous
changes of bases. Specifically, each internal collapse is replaced by the simul-
taneous changes of bases in two chain groups, and the indices of these chain
groups are the dimensions of the two simplices which are being matched.

247
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As a result, the entire topological collapsing procedure is then replaced by
a sequence of such basis changes, which can easily be implemented algorith-
mically using row and column operations for the corresponding adjacency
matrices.

In Chapter 12 we have developed a certain tracing procedure which
allowed us to write down explicitely the homology classes in the final
Morse complex. The concept of alternating paths can be carried over to
the chain complexes. So, in the algebraic context, this procedure can be
repeated in better clarity and in broader generality.

Before moving on to dealing with the general context, let us illustrate
what we mean to accomplish in this chapter by means of a small toy ex-
ample. Consider a 3-simplex as an abstract simplicial complex, which
we denote by K. Let the vertices be indexed 1, 2, 3, 4, and for every set
S ⊆ {1, 2, 3, 4}, let σS denote the simplex whose set of vertices is indexed by
the set S. For brevity of notations, we shall skip some commas and curly
brackets, and, for instance, write σ123, instead of σ{1,2,3}.

We shall work with coefficients in Z2. The initial chain complex is

0→ 〈σ1234〉 → 〈σ123, σ124, σ134, σ234〉
→ 〈σ12, σ13, σ14, σ23, σ24, σ34〉 → 〈σ1, σ2, σ3, σ4〉 → 0,

where each chain group is actually a vector space over Z2.
For the sake of our example, let us consider a very simple matching

consisting of a single pair σ23 ↔ σ234. In the topological picture, we would
remove the simplices σ23 and σ234, changing the rest of the gluing maps
and thinking of this as an internal collapse. The new gluing maps can be
described, but this would require some technical work, as well as making
some choices; something which we would always rather avoid.

In the algebraic context, we start with the vectors spaces

C1 = 〈σ12, σ13, σ14, σ23, σ24, σ34〉 and C2 = 〈σ123, σ124, σ134, σ234〉 .

We now pick some specific new bases for C1 and C2. The new basis for
the vector space C1 is

{σ12, σ13, σ14, ∂σ234, σ24, σ34},

where of course ∂σ234 = σ23+σ24+σ34. The new basis for the vector space
C2 is

{σ123 + σ234, σ124, σ134, σ234}.

The incidence matrices will change as follows:
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σ123 σ124 σ134 σ234
σ12 1 1 0 0
σ13 1 0 1 0
σ14 0 1 1 0
σ23 1 0 0 1©
σ24 0 1 0 1
σ34 0 0 1 1

−→

σ123+

σ234 σ124 σ134 σ234
σ12 1 1 0 0
σ13 1 0 1 0
σ14 0 1 1 0
∂σ234 0 0 0 1©
σ24 1 1 0 0
σ34 1 0 1 0

σ1234
σ123 1
σ124 1
σ134 1
σ234 1

−→

σ1234
σ123 + σ234 1

σ124 1
σ134 1
σ234 0

and

σ12 σ13 σ14 σ23 σ24 σ34
σ1 1 1 1 0 0 0
σ2 1 0 0 1 1 0
σ3 0 1 0 1 0 1
σ4 0 0 1 0 1 1

y
σ12 σ13 σ14 ∂σ234 σ24 σ34

σ1 1 1 1 0 0 0
σ2 1 0 0 0 1 0
σ3 0 1 0 0 0 1
σ4 0 0 1 0 1 1

The summary of these matrix operations is as follows. In the first case, the
encircled entry must be 1 (else the matching would not be allowed). We
then use the column operations to eliminate all other 1’s in that row. After
this one uses the row operations to eliminate all other 1’s in that column,
which of course simply amounts to replacing all 1’s in that column by 0’s. In
the last matrix transformation, we simply take the column corresponding
to the matched element and replace all the entries there by 0’s.
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15.2. Eliminating the matched part

Let us now put the matrix transformation procedure from the previous
section on the industrial footing. For now, we shall stay with the chain
complexes of vector spaces overZ2, with only finitely many of these vector
spaces being non-trivial. We call such a chain complex a finite Z2-chain
complex. The next definition describes the main characters of this and the
next section.

Definition 15.1. A finite basedZ2-chain complex is a finiteZ2-chain complex
C = (C∗, ∂∗), together with the choice of a basis Ωn, in the Z2-vector space
Cn, for all indices n.

Given a finite basedZ2-chain complex C = (C∗, ∂∗), we setΩ :=
⋃
nΩn,

and then also write the pair (C,Ω) to emphasize that choice of the basis.

Definition 15.2. Assume V is a vector space over Z2, and A is some fixed
basis of V . Then, there is unique scalar product on V in which the basis A is
orthonormal. We use 〈 | 〉A as the notation for this scalar product.

As we are working with Z2-coefficients, when v is any vector, and a is
a basis vector in A, the value of the scalar product 〈v | a〉A simply tells us
whether a is present in the A-decomposition of v or not. When dealing with
chain complexes, the standard piece of information we need is to know
whether a certain basis vector is present in the boundary of another vector.
Accordingly, we need appropriate short-hand notation, which are provided
by the next definition.

Definition 15.3. Assume we are given a finite based Z2-chain complex
(C,Ω), and assume that for some d we have chosen elements b ∈ Cd and
a ∈ Cd−1. Then, we set

(15.1) wΩ(b � a) := 〈∂db | a〉Ωd−1 .

When the choice of the basisΩ is clear from the context, we may skip it
from the notation, and simply write w(b � a).

Note, that Equation (15.1) means

wΩ(b � a) =


1, if a is contained in the linear combination

representing ∂db in basis Ωd−1,
0, otherwise.

We now note, that a finite based Z2-chain complex (C,Ω) can be repre-
sented by a certain poset.

Definition 15.4. Assume (C,Ω) is a finite basedZ2-chain complex. Its basis
poset, which we denote P(C,Ω), is defined as follows:
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• the elements of P(C,Ω) are the elements of Ω;

• the partial order is given by saying that for b ∈ Ωd, a ∈ Ωd−1, b
covers a if and only if wΩ(b � a) = 1.

For future reference, we note that a direct sum of finite based Z2-chain
complexes (C1,Ω1) and (C2,Ω2) is again a finite based Z2-chain complex,
denoted (C1 ⊕ C2,Ω1 ∪Ω2). Furthermore, the associated poset of the basis
elements P(C1 ⊕ C2,Ω1 ∪Ω2) is a disjoint union of the posets P(C1,Ω1) and
P(C2,Ω2).

Definition 15.5. Let (C,Ω) be a finite based Z2-chain complex. A subset
M ⊆ Ω×Ω is called a partial matching on (C,Ω), if (a, b) ∈M implies that b
covers a in the poset P(C,Ω), and no two tuples fromM have an element in
common.

We say that the (partial) matchingM is acyclic, if and only if it is acyclic
as a partial matching in the poset P(C,Ω), see Definition 10.7.

In the simplicial version of the discrete Morse theory, the pairs of
matched simplices simply vanished after each collapse; with the rest of
the simplices being re-glued in a convoluted way. In the algebraic ver-
sion, where we perform a basis change rather than a collapse, the matched
pairs of basis elements leave a residue in form of the following, essentially
simplest possible, chain complex.

Definition 15.6. The chain complex

. . . −→ 0 −→ Z2
id−→ Z2 −→ 0 −→ . . . ,

where the only non-trivial modules are in the dimensions d and d − 1, is
called an atomic chain complex, and is denoted by Atom (d).

Clearly, there is a unique way to pick a basis in the atomic chain complex,
and the associated basis poset will consist of two comparable elements.

The next definition shall provide us with the main operation which we
perform on the bases of chain complexes. Before, we need a little piece of
notation. Assume we are given a finite basedZ2-chain complex (C,Ω), and
assume, that for some d, we have chosen b ∈ Ωd, and a ∈ Ωd−1, so that
wΩ(b � a) = 1. Let ηΩ(a, b) denote the set of elements from Ωd, other
than b, which cover a, in other words, we set

ηΩ(a, b) := {c ∈ Ωd |wΩ(c � a) = 1, c , b} .

Whenever the choice ofΩ is clear, we shall skip the index, and simply write
η(a, b).
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Definition 15.7. In the situation above, we define a new basis Ω̃ = ∪nΩ̃n,
where for each n, the set Ω̃n is a basis for Cn, as follows:

Ω̃d−1 := (Ωd−1 \ a) ∪ {∂db},

Ω̃d := (Ωd \ η(a, b)) ∪ {x+ b | x ∈ η(a, b)} ,

Ω̃n := Ωn, if n , d, d− 1.

We say that Ω̃ is obtained from Ω by bonding b with a, and denote it by
bonda,bΩ, see Figure 15.1.

a

b η(a, b)

x

∂db

b η(a, b)

x+ b

Ω bonda,bΩ

Figure 15.1. The effects of bonding on the basis poset.

Let us formalize a natural bijection between the sets Ω and Ω̃. For each
x ∈ Ω, we let x̃ denote the corresponding element of Ω̃. Specifically, we set

ã := ∂db,

c̃ := c+ b, for all c ∈ η(a, b),
x̃ := x, for all other x ∈ Ω.

(15.2)

For future reference, we let ρ(a, b) denote this bijection between Ω and Ω̃.

Proposition 15.8. Assume we are given a finite based Z2-chain complex (C,Ω),
and assume, that for some d, we have chosen b ∈ Ωd, and a ∈ Ωd−1, such that
wΩ(b � a) = 1. Set Ω̃ := bonda,bΩ. Then Ω̃ is again a basis, in which the
elements b and a have bonded with each other in the following precise sense:

w
Ω̃
(b̃ � ã) = 1,(15.3)

w
Ω̃
(c̃ � ã) = 0, for all c ∈ Ωd, c , b,(15.4)

w
Ω̃
(ã � c̃) = 0, for all c ∈ Ωd−2,(15.5)

w
Ω̃
(b̃ � c̃) = 0, for all c ∈ Ωd−1, c , a,(15.6)

w
Ω̃
(c̃ � b̃) = 0, for all c ∈ Ωd+1.(15.7)

Proof. Let us first verify that Ω̃ is a basis, or, to be more explicit, that Ω̃n is
a basis for Cn, for all n. Here is a case-by-case argument.
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• For n , d, d − 1, we simply have Ω̃n = Ωn, so Ω̃n is still a basis
for Cn.

• For n = d − 1, the set Ω̃d−1 is obtained from Ωd−1 by replacing a
fixed basis element a with another element, that contains a in its
linear expansion. Clearly, this again gives a basis for Cd−1.

• In the last case, when n = d, the set Ω̃d is obtained from Ωd by
adding a fixed basis element b to some other basis elements. Again,
this must result in a basis for Cd.

We now show that the Equations (15.3) to (15.7) are valid.
Verification of Equation (15.3). We have

w
Ω̃
(b̃ � ã) = 〈∂db | ã〉

Ω̃d−1
= 〈ã | ã〉

Ω̃d−1
= 1,

where the last equality follows from the fact ã ∈ Ω̃d−1, and hence ã has
norm 1 in the corresponding scalar product.
Verification of Equation (15.4). Pick a basis element c ∈ Ωd, c , b. Assume
first that c < η(a, b). Then, we have ∂dc ∈ span (Ωd−1 \ {a}). On the other
hand, we have c̃ = c, and x̃ = x, for all x ∈ Ωd−1 \ {a}, so also ∂dc̃ ∈
span (Ω̃d−1 \ {ã}). This in turn implies 〈∂dc̃ | ã〉

Ω̃d−1
= 0, so w

Ω̃
(c̃ � ã) = 0,

as required.
Assume now that instead c ∈ η(a, b). In that case, c̃ = c+ b, hence

wΩ(c̃ � a) = wΩ(c � a) +wΩ(b � a) = 1+ 1 = 0,

and so ∂dc̃ ∈ span (Ωd−1 \ {a}). Just as in the first case, we now use the fact
that x̃ = x, for all x ∈ Ωd−1 \ {a}, to conclude that ∂dc̃ ∈ span (Ω̃d−1 \ {ã}),
and therefore 〈∂dc̃ | ã〉

Ω̃d−1
= 0, again implying w

Ω̃
(c̃ � ã) = 0.

Verification of Equation (15.5). The relevant calculation here is

∂d−1(ã) = ∂d−1(∂db) = 0,

which implies

w
Ω̃
(ã � c̃) = 〈∂d−1ã | c̃〉

Ω̃
= 〈0 | c̃〉

Ω̃
= 0.

Verification of Equation (15.6). This is immediate, since ∂db̃ ∈ Ω̃d−1, so ∂db̃
is orthogonal to all other basis vectors from Ω̃d−1.
Verification of Equation (15.7). This final argument requires a bit of compu-
tation. Let c ∈ Ωd+1, and assume that w

Ω̃
(c̃ � b̃) = 1. This means that we

have sets I ⊆ η(a, b) and J ⊆ Ωd \ (η(a, b) ∪ {b}), such that

(15.8) ∂d+1(c̃) = b̃+
∑
x∈I

x̃+
∑
y∈J

ỹ.
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Now, substituting c̃ = c, b̃ = b, x̃ = b + x, for all x ∈ I, and ỹ = y, for all
y ∈ J, into Equation (15.8) we obtain

(15.9) ∂d+1c = b+
∑
x∈I

(b+ x) +
∑
y∈J

y.

Applying ∂d to Equation (15.9) we then get

0 = ∂d(∂d+1c) = ∂db+
∑
x∈I

(∂db+ ∂dx) +
∑
y∈J

∂dy.

Now take the scalar product 〈 | 〉Ω associated with the basis Ω. By our
hitherto assumptions, the following identities hold:

• 〈∂db | a〉Ω = 1,

• 〈x | a〉Ω = 1, for all x ∈ η(a, b),
• 〈y | a〉Ω = 0, for all y < η(a, b).

As the last step, we evaluate the scalar product 〈 | 〉Ω between a and both
sides of Equation (15.9):

0 = 〈∂d(∂d+1c) | a〉Ω
= 〈∂db | a〉Ω +

∑
x∈I

(〈∂db | a〉Ω + 〈∂dx | a〉Ω) +
∑
y∈J
〈∂dy | a〉Ω

= 1+
∑
x∈I

(1+ 1) +
∑
y∈J

0 = 1.

This is a contradiction, so our initial assumption saying that w
Ω̃
(c̃ � b̃) = 1

was wrong. �

We have shown that the bonding transformation isolates the matched
pair in the poset associated to the new basis. The next proposition describes
what happens to the rest of the basis poset.

Proposition 15.9. Assume again we are given a finite based Z2-chain complex
(C,Ω), and that, for some d, we have b ∈ Ωd, and a ∈ Ωd−1, such that wΩ(b �
a) = 1. Assume that furthermore, we have chosen x ∈ Ωn and y ∈ Ωn−1, for
some n, such that x, y < {a, b}. We then have

(15.10) w
Ω̃
(x̃ � ỹ) =

{
wΩ(x � y) +wΩ(b � y), if x ∈ η(a, b).
wΩ(x � y), otherwise,

where as above we have Ω̃ = bonda,bΩ.

Proof. Set
BΩ(x) := {z ∈ Ωn−1 |wΩ(x � z) = 1} .
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If x̃ = x, and z̃ = z, for all z ∈ BΩ(x), then

∂nx̃ = ∂nx =
∑

z∈BΩ(x)

z =
∑

z∈BΩ(x)

z̃,

and hence Equation (15.10) holds.
So assume from now on, that either x̃ , x, or there exists z ∈ BΩ(x), such

that z̃ , z. In general of course, the definition of the bonding transformation
tells us that if t̃ , t, then t ∈ {a} ∪ η(a, b).

Assume first that x̃ , x. By our choice of x and y, we know that x , a,
so x ∈ η(a, b). At the same time, we know that y , a, so ỹ = y. We compute
the Ω̃d−1-decomposition of ∂dx̃ as follows:

∂dx̃ = ∂d(x+ b) = ∂dx+ ∂db

=
∑

z∈Ωd−1

wΩ(x � z)z+
∑

z∈Ωd−1

wΩ(b � z)z

=
∑

z∈Ωd−1\{a}

(wΩ(x � z) +wΩ(b � z))z

=
∑

z:z̃∈Ω̃d−1\{ã}

(wΩ(x � z) +wΩ(b � z))z̃,

where the penultimate equality follows from the fact that wΩ(x � a) +

wΩ(b � a) = 0. Since ỹ ∈ Ω̃d−1 \ {ã}, we conclude that Equation (15.10)
holds.

Assume next that there exists z ∈ BΩ(x), such that z̃ , z. If z = a,
then x ∈ η(a, b), and that case has just been considered. So we must have
z ∈ η(a, b), and in particular, n = d+ 1.

Set I := Ωd \ ({b} ∪ η(a, b)). In the following calculation it is handy to
use the short-hand notation αt := wΩ(x � t), for all t ∈ Ωd. We then have

(15.11) ∂d+1(x̃) = ∂d+1(x) =
∑
t∈Ωd

αtt =
∑
t∈I

αtt+
∑

t∈η(a,b)

αtt+ αbb

=
∑
t∈I

αtt+
∑

t∈η(a,b)

αt(t+ b) + (αb +
∑

t∈η(a,b)

αt)b

=
∑
t∈I

αtt̃+
∑

t∈η(a,b)

αtt̃+ (αb +
∑

t∈η(a,b)

αt)b̃.

Since y , b, we see that the coefficient of ỹ in the Ω̃d-expansion of ∂d+1(x̃)
is the same as the coefficient of y in the Ωd-expansion of ∂d+1(x), which is
precisely what Equation (15.10) says. �

Corollary 15.10. If the pair (c, d) is isolated in Ω, then (c̃, d̃) is isolated in
Ω̃ = bonda,b(Ω).
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Proof. Clearly, since the pair (c, d) is isolated, we have c, d < η(a, b). By
Proposition 15.9 it follows that

w
Ω̃
(c̃ � z̃) = wΩ(c � z) = 0, and w

Ω̃
(d̃ � z̃) = wΩ(d � z) = 0,

for all z , d in the appropriate dimension.
If z < η(a, b), z < {c, d}, then in the same way we get

w
Ω̃
(z̃ � c̃) = wΩ(z � c) = 0, and w

Ω̃
(z̃ � d̃) = wΩ(z � d) = 0.

Finally, assume z ∈ η(a, b). Of course, we then have z < {c, d}. By Propo-
sition 15.9 we have the following computations:

w
Ω̃
(z̃ � c̃) = wΩ(z � c) +wΩ(b � c) = 0+ 0 = 0,

and the same way

w
Ω̃
(z̃ � d̃) = wΩ(z � d) +wΩ(b � d) = 0+ 0 = 0.

This finishes the proof. �

It is now time to proceed to formulate the first theorem of algebraic
Morse theory. It will bring to light a certain structure in the chain complex C.
Namely, in a different basis, we shall represent C as a direct sum of two chain
complexes, of which one is a direct sum of atomic chain complexes, and the
other one is isomorphic to a certain chain complex, which we denote Cµ,
and which will be described later. For convenience, the choice of a basis can
be performed in several steps, one step for each matched pair of the basis
elements.

Before formulating our main theorem, we need one last piece of nota-
tions. Set R(Ω) := Ω \ {a1, b1, . . . , at, bt}, and Rn(Ω) := R(Ω) ∩Ωn.

Theorem 15.11. Assume that we have a finite based Z2-chain complex (C,Ω),
together with an acyclic matching M on that complex. Then C decomposes as
a direct sum of chain complexes

(15.12) C ' D⊕ T,

where T '
⊕

(a,b)∈MAtom (dimb), and D is some chain complex, such that each
vector space Dn has a basis indexed by the set Rn(Ω).1

Proof. The rough plan of our proof is as follows. Starting with the given
basis Ω, we produce a sequence of bases, such that just looking at the final
basis will make the fact that Equation (15.12) holds obvious. Each next
basis will be produced from a previous one by the bonding transformation
defined above.

1The maps in the chain complex D will be investigated in detail in Theorem 15.14.
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To begin with, we recall that by Theorem 11.9 we can order the pairs in
the acyclic matching M, let us say the order is (a1, b1), . . . , (at, bt), so that,
for each 1 6 k 6 t, the element ak is not covered by any of the elements
ak+1, . . . , at, bk+1, . . . , bt.

The sequence of the chain complex bases, which we aim to produce,
is denoted by Ω[0], Ω[1], . . . , Ω[t]. We start with setting Ω[0] := Ω, and
ai[0] := ai, bi[0] := bi, for all 1 6 i 6 t. The further bases are defined
recursively, by setting

(15.13) Ω[k] := bondak[k−1],bk[k−1]Ω[k− 1],

where
x[k] := ρ(ak[k− 1], bk[k− 1])(x[k− 1]),

for all x ∈ Ω, and all 1 6 k 6 t.
The next fact traces what is happening with the poset associated to the

basis as the latter is being transformed.
Fact. For all 0 6 k 6 t the following two statements hold:

(1) The pairs (a1[k], b1[k]), . . . , (ak[k], bk[k]) are isolated in P(C,Ω[k]).
(2) Whenever m > k+ 1, we have

(15.14) ηΩ[k](am[k], bm[k]) ∩ {ai[k], bi[k] | i ∈ Ik,m} = ∅,

where Ik,m = {1, . . . , k} ∪ {m+ 1, . . . , t}.

Proof. We shall prove this fact by induction onk. To express the dependence
on the parameter k, let us refer to the statements above as Fact (1)[k] and
Fact (2)[k].

For the base of the induction take k = 0. The Fact (1)[0] is tautologically
true, since the considered set of pairs is empty. The Fact (2)[0] is the condi-
tion which we made sure was fulfilled when choosing the ordering on the
matched pairs.

Let us now proceed with proving the induction step. Assume k > 1,
and for all smaller values of k the statements have already been proved.
By Fact (1)[k-1] we know that the pairs (a1[k − 1], b1[k − 1]), . . . , (ak−1[k −
1], bk−1[k − 1]) are isolated in P(C,Ω[k − 1]). By Corollary 15.10 we then
conclude that the pairs (a1[k], b1[k]), . . . , (ak−1[k], bk−1[k]) are isolated in
P(C,Ω[k]). Finally, the last the pair (ak[k], bk[k]) is isolated by Proposi-
tion 15.8, so Fact (1)[k] is proved.

We now show Fact (2)[k]. Take m > k+ 1. First, we have

ηΩ[k](am[k], bm[k]) ∩ {ai[k], bi[k] | 1 6 i 6 k} = ∅,

because these pairs are isolated. Furthermore, we have

ηΩ[k](am[k], bm[k]) ∩ {ai[k], bi[k] |m+ 1 6 i 6 t} = ∅.
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Indeed, if wΩ[k](ai[k] � am[k]) = 1, for some m + 1 6 i 6 t, then by
Proposition 15.9 we would have wΩ[k−1](ai[k− 1] � am[k− 1]) = 1 as well,
yielding a contradiction. Same way, we cannot havewΩ[k](bi[k] � am[k]) =

1, so the statement is proved. �

After performing all the transformations, we end up with the basisΩ[t].
We have shown that the pairs (a1[t], b1[t]), . . . , (at[t], bt[t]) are isolated in
P(C,Ω[t]), and thus, the fact that the direct sum decomposition is valid
follows from the construction of Atom (d). Obviously, D has the basis
R(Ω) := Ω \ {a1, b1, . . . , at, bt}. Now, set Rn(Ω) := R(Ω) ∩Ωn, and the proof
is finished. �

15.3. Algebraic Morse complex

Assume (C,Ω) is a finite based Z2-chain complex. Let M be an acyclic
matching, say the set of matched pairs is (a1, b1), . . . , (at, bt). In this
section we want to expand on the statement of Theorem 15.11 and to give
a precise combinatorial description of the chain complex D.

As before, by Theorem 11.9, we can assume that the order of the pairs
is chosen so that, for each 1 6 k 6 t, the element ak is not covered by any of
the elements ak+1, . . . , at, bk+1, . . . , bt.

We now adapt Definition 13.4 to the setting of finite based Z2-chain
complexes.

Definition 15.12. An alternating path in the basis Ω of the chain complex C

is a sequence
p = (x, ai1 , bi1 , . . . , aip , bip , y),

such that

wΩ(x � ai1) = wΩ(bi1 � ai1) = wΩ(bi1 � ai2) = . . .
= wΩ(bip−1 � aip) = wΩ(bip � aip) = wΩ(bip � y) = 1.

We set p• := x and p• := y.

Given such an alternating path, we remark that the choice of order of
the matched pairs guarantees that i1 < · · · < ip.

Recall the sets R(Ω), and Rn(Ω) from the proof of Theorem 15.11. For
brevity, we shall write Rn and R, whenever the choice ofΩ is clear from the
context.

Definition 15.13. In the situation above, the algebraic Morse complex Cµ:

· · ·
∂
µ
n+2−→ C

µ
n+1

∂
µ
n+1−→ Cµn

∂
µ
n−→ C

µ
n−1

∂
µ
n−1−→ . . . ,

is defined as follows.
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• The Z2-vector space Cµn has a basis indexed by Rn. We shall use
the notation {xµ | x ∈ Rn}.
• The boundary operator is defined by

(15.15) ∂µnx
µ =
∑
p

(p•)
µ,

for all x ∈ Rn, where the sum is taken over all alternating paths p
satisfying p• = x, and p• ∈ Rn−1.

When the degree is clear, we shall simply write ∂µ instead of ∂µn.

Before proceeding with the statement of the main theorem of this section,
let us introduce another piece of notations. For k = 0, . . . , t, we set

R[k] := R ∪ {ak+1, . . . , at, bk+1, . . . , bt} = Ω \ {a1, . . . , ak, b1, . . . , bk},

and Rn[k] := R[k] ∩ Ωn. Furthermore, we say that the alternating path
p = (x, ai1 , bi1 , . . . , aip , bip , y) has depth k if ip 6 k.

Theorem 15.14. The chain complex D in Theorem 15.11 is isomorphic to Cµ, with
a specific isomorphism given by x[t] 7→ xµ, for all x ∈ R.

Proof. Let us go back to the proof of Theorem 15.11 and let D[k] be the chain
subcomplex of C generated by {x[k] | x ∈ R[k]}. In particular, D[0] = C, and
D[t] = D. As a counterpart, to the family D[0], . . . , D[t], define a family of
chain complexes Cµ[0], . . . , Cµ[t] as follows.

• The Z2-vector space Cµn[k] has a basis indexed by Rn[k], this time
we denote it by {xµ[k] | x ∈ Rn}.
• The boundary operator is defined by

∂µn(x
µ[k]) =

∑
p

(p•)
µ[k],

for all x ∈ Rn[k], where the sum is taken over all alternating paths
p of depth k, satisfying p• = x, and p• ∈ Rn−1[k].

Clearly, Cµ[0] = C and Cµ[t] = Cµ.
Let us show that the chain complex Cµ[k] is isomorphic to D[k], for all

0 6 k 6 t. For k = 0 we already know that, since both chain complexes are
isomorphic to C. We now proceed by induction on k. We want to show that
an isomorphism is given by

ϕk : Cµ[k] −→ D[k]

xµ[k] 7−→ x[k]
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Obviously, this is a bijection between the sets of generators, so we just need
to check that the map is compatible with the boundary operators. The latter
are given by the formulae

(15.16) ∂n(x[k]) =
∑

y∈Ωn−1[k]

wΩ[k](x � y)y,

and

(15.17) ∂µn(x
µ[k]) =

∑
p

(p•)
µ[k],

where the last sum is taken over all alternating paths p of depth k, satisfying
p• = x, and p• ∈ Rn−1[k].

By induction assumption we know that ϕk−1 is an isomorphism, so
we need to see how Equations (15.16) and (15.17) change when passing
from k − 1 to k. The transformation of Equation (15.16) is governed by
Equation (15.10), which in a nutshell says that nothing changes except for
one case: when x ∈ η(ak[k], bk[k]) and wΩ[k−1](bk[k − 1] � y[k − 1]) = 1, in
which case 1 is added to wΩ[k−1](x[k− 1] � y[k− 1]).

On the other hand, the transformation of Equation (15.16) is described
by the fact that we now additionally consider alternating paths p of depth
k, which do not have depth k−1, so were previously unaccounted for. Such
a path must necessarily contain the elements ak, bk, so it can be written as

(15.18) p = (x, ai1 , bi1 , . . . , aim , bim , ak, bk, y),

for some m > 0, and i1 < · · · < im < k. For such a path to exist at all, we
must have wΩ(bk � y) = 1, so assume that this is the case. Since we also
know that wΩ(bk � ak) = 1, we conclude that the number of alternating
paths of the type given by Equation (15.18) is equal to the the number of
alternating paths of depth k − 1 from x to ak. This number is given by
the coefficient wΩ[k−1](x[k − 1] � ak[k − 1]). Note furthermore, that there
are no non-trivial alternating paths of depth k − 1 between bk and y, so
wΩ(bk � y) = wΩ[k−1](bk[k− 1] � y[k− 1]).

We can return to interpreting Equation (15.10). The term wΩ[k−1](x[k−

1] � y[k− 1]) counts all the alternating paths of depth k− 1 from x to y. The
interesting case above happens when x ∈ η(ak[k], bk[k]) andwΩ[k−1](bk[k−

1] � y[k−1]) = 1. First, x ∈ η(ak[k], bk[k]) is equivalent towΩ[k−1](x[k−1] �
ak[k − 1]) = 1, second wΩ[k−1](bk[k − 1] � y[k − 1]) = 1 is equivalent to
wΩ(bk � y) = 1. We conclude that adding a new alternating path of depth
k (but not of depth k − 1) transforms Equation (15.17) in the same way as
Equation (15.10) transforms Equation (15.16). This proves the induction
step.
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Since Cµ[t] = Cµ, D[t] = D, and we have shown that Cµ[k] is isomorphic
to D[k], for all 0 6 k 6 t, the theorem is now proved. �

15.4. An example

Let us now illustrate the usage of Theorems 15.11 and 15.14. Our main
source of examples is the following family of combinatorial chain com-
plexes.

Definition 15.15. Given any set S, we define a wordw in the alphabet S to be
any finite ordered tuple (a1, . . . , an) of elements of S; we allow repetitions
in that tuple. For brevity, we also write a1, . . . , an or even a1 . . . an.

The elements a1, . . . , an are referred to as letters of w. The number
n is called the length of w, which we denote by l(w). We set supp (w) :=

{a1, . . . .an}, and call it the support set of w.
Here we simply take S to be the regular latin alphabet, so strings like

aba and abaaa are valid words. For brevity we can use the power notation
and write aba3 instead of abaaa.

Definition 15.16. Assume we are given a wordw = a1, . . . , an, and a subset
I ⊆ [n], say I = {i1, . . . , ik}, where i1 < · · · < ik. We set wI := ai1 . . . aik , and
call it the I-subword of w.

aba

a b

a2 ab ba

Figure 15.2. The poset associated to the standard basis of the chain com-
plex W(aba).

Definition 15.17. Given a word w = a1, . . . , an we define a chain complex
W(w) as follows:

• theZ2-vector spaceWt(w) is generated by all the subwordswI, for
|I| = t+ 1;
• the boundary operator is given by

∂(wI) =
∑
i∈I

wI\{i}.
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We also call the vectors wI, the standard basis in W(w).

Let us now take the word w = aba, and the standard basis in the chain
complex W(aba). The associated basis poset, which we call Paba, is shown
in Figure 15.2. There we also mark with fat edges a certain fixed matching.
We can verify directly that this matching is acyclic.

aba

a b

a2 + ab+ ba ab ba

Figure 15.3. The poset associated to the basis Ω[1].

The proof of Theorem 15.11 is actually an algorithm. Let us now see
how this algorithm transforms the poset Paba. The first step is bonding
of a2 and aba, with the resulting basis poset shown in Figure 15.3. The
second, and the final step is bonding of b and ab, with the resulting basis
poset shown in Figure 15.4. The critical chain complex in this case is

0 〈ab+ ba〉 〈a〉 0.

The boundary operator is trivial because there are two alternating paths
from ba to a, so we have homology of rank 1 in dimensions 1 and 0.

aba

a a+ b

a2 + ab+ ba ab ab+ ba

Figure 15.4. The poset associated to the basis Ω[2].

As an alternative, we could take the same chain complex W(aba),
though this time equipped with the matching consisting of a single pair
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(b, ab). In this case, bonding of b and ab results in the chain complex
whose poset is shown in Figure 15.5. In this case, the critical chain complex
is

0 〈aba〉
〈
a2, ab+ ba

〉
〈a〉 0,

it does yet not trivially compute the homology of C. One of the boundary
maps is trivial, but the other one is not. Instead, it takes aba to a2+(ab+ba).

aba

a a+ b

a2 ab ab+ ba

Figure 15.5. The poset obtained by bonding b and ab.

As two final examples, we take the chain complexes associated to the
words aba2 and aba3, with acyclic matchings as shown in Figures 15.6
and 15.7. In the first case, the matching is almost complete. The critical
chain complex will consist of a single chain group generated by a. This is
the situation corresponding to the collapsible complexes in the simplicial
setting.

In the second case, there are two critical elements a and ba3. The critical
chain complex will therefore have two generators: a[5] = a in dimension 0,
and ba3[5] = ba3 + aba2 in dimension 3. These generators are not in
neighboring dimensions, so all the boundary operators are trivial.

15.5. Algebraic Morse theory for based free chain complexes of
R-modules

In this section we describe the general framework of algebraic Morse theory.
The group Z2 will from now on be replaced by an arbitrary commutative
ring with a unit, which, as before, is denoted by R. Accordingly, we now
consider a chain complex C consisting of finitely generated R-modules

C = ( . . . Cn+1 Cn Cn−1 . . .
∂Cn+2 ∂Cn+1 ∂Cn ∂Cn−1

)
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a b

aba2

a3

ba

ba2

a2
ab

aba

Figure 15.6. An acyclic matching for w = aba2.

a b

a3

ba

ba2

a2
ab

aba

aba3

aba2

a4
ba3

Figure 15.7. An acyclic matching for w = aba3.

We shall now reasonably quickly go through the previous developments
in this more general setting. For brevity, we shall skip some of the parts,
when the arguments are really verbatim to the previous ones.

Recall that C is called free if Cn is a finitely generated free R-module for
all n. When no confusion can occur, we simply write ∂ instead of ∂n. Again,
we assume that only finitely many of the chain groups of C are non-trivial.
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As before, a free chain complex is called based if we have chosen a basis
in each of the chain groups. These bases are again denoted byΩn, and their
union is denoted by Ω.

The scalar product from Definition 15.2 can easily be extended to the set-
ting of free modules over a commutative ring. Accordingly, given a based
free chain complex (C,Ω), and two elements α ∈ Ωn−1, and b ∈ Ωn, the
element wΩ(b � a), or simply w(b � a) can be defined in the same way as
before, the only difference being that it is now an element of the commuta-
tive ring R.

A based free chain complex (C,Ω) of R-modules can still be represented
as a ranked poset P(C,Ω), though now, we need to add R-valued weights
on the order relations.

Definition 15.18. An acyclic matching M in a based free chain complex
(C,Ω), is an acyclic matching in the corresponding base poset P(C,Ω), with
the additional condition that, whenever a ∈ Ωn−1 is matched with b ∈ Ωn,
the element wΩ(b � a) has an inverse in R.

Of course, whenR is a field, the invertibility condition in Definition 15.18
gets replaced by the requirement that wΩ(b � a) , 0.

The definitions of the sets R(Ω) and Rn(Ω) do not change. Also the
notion of an alternating path is the same as before. However, we do need
a new notion of the weight of an alternating path.

Definition 15.19. Given two basis elements s ∈ Ωn and t ∈ Ωn−1, the weight
of an alternating path

(15.19) p = (s � µ(b1) ≺ b1 � µ(b2) ≺ b2 � · · · � µ(bn) ≺ bn � t),

where n > 0, and all bi ∈M↑ are distinct, is defined to be the quotient

(15.20) w(p) := (−1)n
w(s � µ(b1)) ·w(b1 � µ(b2)) · · · · ·w(bn � t)

w(b1 � µ(b1)) ·w(b2 � µ(b2)) · · · · ·w(bn � µ(bn))
.

The reader is invited to compare (15.20) with formula (14.2). Addition-
ally, we shall use the notations p• = s and p• = t.

Definition 15.20. Let (C,Ω) be a based free chain complex, and let M be
an acyclic matching. The Morse complex

Cµ : . . . C
µ
n+1 C

µ
n C

µ
n−1 . . .

∂
µ
n+2 ∂

µ
n+1 ∂

µ
n

∂
µ
n−1

is defined as follows. The R-module Cµn is freely generated by the elements
indexed by the set Rn. The boundary operator is defined by

∂µn(s) =
∑
p

w(p) · p•,
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for all s ∈ C
µ
n(Ω), where the sum is taken over all alternating paths p

satisfying p• = s. Again, if the degree is clear, we simply write ∂µ instead
of ∂µn.

Given a based free chain complex (C,Ω), we can choose a different basis
Ω̃ by replacing each a ∈M↓ by ã = w(µ(a) � a) · a, because w(µ(a) � a) is
required to be invertible. Since

(15.21) 〈x | a〉
Ω̃

= 〈x | a〉Ω /w(µ(a) � a),

for any x ∈ Ωn, we see that the weights of those alternating paths, which
do not begin with or end in an element from M↓, remain unaltered, as the
quotient w(x � z)/w(y � z) stays constant as long as x, y , a. In partic-
ular, the Morse complex will not change. On the other hand, by (15.21),
w
Ω̃
(µ(a) � a) = 1, for all a ∈M↓, so the total weight of the alternating path

in (15.19) will simply become

w
Ω̃
(p) = (−1)nw

Ω̃
(s � µ(b1)) ·wΩ̃(b1 � µ(b2)) · · · · ·wΩ̃(bn � t).

Because of these observations, we may always replace any given basis of C
with the basis Ω̃ satisfying w

Ω̃
(µ(a) � a) = 1, for all a ∈M↓.

The atomic chain complex is defined as:

Atom (d) : . . . 0 R R 0 . . . ,
id

where the only non-trivial modules are in the dimensions d and d− 1. The
choice of a basis is no longer unique, but any basis poset will again consist
of two comparable elements with the R-weight on that unique edge equal
to 1.

After all these reformulations, the main theorem of algebraic Morse
theory has a pretty much identical formulation to the Z2-case.

Theorem 15.21.
(Main theorem of algebraic Morse theory for free chain complexes)
Assume that R is a commutative ring with a unit, and (C,Ω) is a based free chain
complex with an acyclic matching M. Then C decomposes as a direct sum of chain
complexes

(15.22) C ' Cµ ⊕ T,

where Cµ is the corresponding Morse complex, and T '
⊕

(a,b)∈MAtom (dimb).

Proof. The proof is essentially the same as that of Theorem 15.11. The
transformation described by Equation (15.2) becomes now

Transformation of the basis Ω[k− 1] into the basis Ω[k]:
we set
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• ak[k] := ∂(bk[k− 1]);
• x[k] := x[k − 1] − w(x[k − 1] � ak[k − 1]) · bk[k − 1], for all x ∈ Ωd,
x , bk, where d = dimbk.
• x[k] := x[k− 1], for all other x.

Furthermore, we get

w(x[k] � y[k]) = w(x[k− 1] � y[k− 1])
−w(x[k− 1] � ak[k− 1]) ·w(bk[k− 1] � y[k− 1]),

for x ∈ Ωn[k], y ∈ Ωn−1[k], x , bk, y , ak. �

Until now we have assumed that the chain complexes have only finitely
many non-trivial chain groups, and that each of these chain groups is finitely
generated. As a final remark, we note that both can be relaxed as long as
we keep the requirement that the acyclic matching itself is assumed to be
finite. The proof repeats verbatim the proof in the final case.

Exercises

(1) Compute homology groups ofW(aba3)by explicit use of bonding trans-
formations defined in this chapter.

(2) Give a precise formulation for a relaxed version of Theorem 15.21 for
a chain complex C with possibly infinitely many non-trivial, not neces-
sarily finitely generated chain groups, with µ being finite. Prove your
statement.





Chapter 16

Discrete Morse Theory
for Posets

Recalling what we did in Chapter 10, where a connection was drawn be-
tween discrete Morse theory and the acyclic matchings in the Hasse dia-
grams of the face posets of the simplicial complexes, it is tempting to step
back, and to try to re-develop everything within a purely combinatorial, or
better yet, categorical framework. This is what we do in the current chap-
ter. The main idea is to recast acyclic matchings in functorial terms. The
following three points illustrate some of the most important advantages of
such an approach.

First, there is a one-to-one correspondence between acyclic matchings
and sets of fibers of poset maps with small fibers, see Theorem 16.2. This
provides a functorial tool to generate families of matchings, which are
automatically acyclic.

Second, given an acyclic matching, one can construct a certain universal
object. This object is a poset whose linear extensions enumerate all legal
collapsing orders associated to this acyclic matching.

Third, using poset maps with small fibers allows us to gain a conceptual
understanding of a very useful technique, the so-called Patchwork Theo-
rem, see Theorem 16.8, for gluing a number of small acyclic matchings
together, in order to form a larger one.

16.1. Poset maps with small fibers

In what follows there is no real reason to restrict ourselves to exclusively
considering the Hasse diagrams of face posets of simplicial complexes, so let

269
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us work with arbitrary posets from now on. Providing an acyclic matching
in such a poset is an ad hoc construction which may or may not behave
very naturally with respect to operations involving maps between posets.
It is therefore rather useful to shift our attention from acyclic matchings to
a special class of poset maps, which is described in the following definition.

Definition 16.1. Assume we are given two arbitrary posets P and Q, and
a poset map ϕ : P → Q. The map ϕ is called a poset map with small fibers, if
for any q ∈ Q, one of the following three statements is true:

• the fiber ϕ−1(q) is empty;
• the fiber ϕ−1(q) consists of a single element;
• the fiber ϕ−1(q) consists of two comparable elements.

d

b c

a
a

d

b c

Figure 16.1. A poset map with small fibers.

An example of a poset map with small fibers is shown in Figure 16.1.
We remark, that if ϕ is a poset map, and for some q ∈ Q the fiber ϕ−1(q)

consists of two comparable elements, then one of these two elements must
necessarily cover the other one. Therefore, to any given poset map with
small fibers ϕ : P → Q, we can associate a partial matching M(ϕ) such that

• the matched pairs of M(ϕ) are all fibers of ϕ of cardinality 2;
• the fibers of ϕ of cardinality 1 correspond to the critical elements

of M(ϕ); their set is denoted C(P,M).

It turns out that poset maps with small fibers and acyclic matchings are
equivalent as mathematical concepts. This is made precise by the following
theorem.

Theorem 16.2. (Acyclic matchings via poset maps with small fibers)
The following two statements describe the close relation between poset maps with
small fibers and acyclic matchings.
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(1) For any poset map with small fibers ϕ : P → Q, the partial matching
M(ϕ) is acyclic.

(2) Any acyclic matching on P can be represented as M(ϕ) for some poset
map with small fibers ϕ : P → Q. In fact, the poset Q can be chosen to be
a totally ordered set.

Proof. The fact that ϕ : P → Q is a poset map implies that the induced
matching M(ϕ) is acyclic: for if it was not, there would exist a cycle as
in (10.1), and ϕ would be mapping this cycle to a set of distinct elements
q1 > q2 > · · · > qt > q1 of Q, for some t, yielding a contradiction.

On the other hand, by Theorem 11.9, for any acyclic matching on P

there exists a linear extension L of P, such that the elements a and b, where
(a, b) ∈M, follow consequently in L. Gluing together such a and b, in this
order, yields a poset map with small fibers from P to a chain. �

As an example, let n > k > 1, and let K be the (k − 1)-skeleton of the
n-simplex, whose n+ 1 vertices are indexed by the set [n]. Let P denote the
face poset of K. Clearly, the poset P consists of all subsets S of the set [n],
which have cardinality at most k. Let Q the poset consisting of all subsets
T of the set [n − 1], which have cardinality at most k. Consider the map
ϕ : P → Q mapping each S to its restriction to the set [n− 1]. Obviously, the
map ϕ is order-preserving and a direct check shows that ϕ has small fibers.
In fact, the acyclic matching associated to ϕ is precisely the one described
in Proposition 11.6. Figure 16.1 shows the case n = 2, k = 2.

16.2. Collapsing orders and the universal object associated to
an acyclic matching

In Theorem 16.2 we have actually constructed a poset map with small
fibers into a chain. These maps are especially important and we give them
a separate name.

Definition 16.3. A poset map with small fibers ϕ : P → Q is called a collaps-
ing order if ϕ is surjective as a set map, and Q is a chain.

It is possible to drop the requirement that ϕ is surjective. For our
purposes, for example, for the description of the universal object, we find
it more convenient to keep that assumption.

Given an acyclic matching M, we say that a collapsing order ϕ is a col-
lapsing order for M, if it satisfies M(ϕ) = M. The etymology of this termi-
nology is fairly clear: the chain Q gives us the order in which it is allowed
to perform the prescribed collapses.
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Clearly, such a collapsing order may not be unique. In fact, most of
the time there are quite a few possible collapsing orders. There arises
a natural question of developing an appropriate context for dealing with
the totality of the collapsing orders. It turns out that, for any poset P, and
any acyclic matching on P, there exists a universal object - a poset whose
linear extensions enumerate all allowed collapsing orders.

Definition 16.4. Let P be a poset, and let M be an acyclic matching on P.
The poset U(P,M) is defined as follows:

• the set of all elements of U(P,M) is indexed by the union M ∪
C(P,M);
• the partial order in U(P,M) is the transitive closure of the elemen-

tary relations given by:
S1 6U(P,M) S2, for S1, S2 ∈ U(P,M) if and only if x 6 y, for
some x ∈ S1, y ∈ S2. We also write S1 6U S2 for brevity.

We call the poset U(P,M) the colimit of the matching M.

Note, that in the formulation of Definition 16.4, each pair of elements
matched in M indexes a single element of U(P,M). One can loosely say
that Definition 16.4 states that U(P,M) is obtained from P by gluing each
matched pair together, to form a single element, with the new partial order
induced by the partial order of P in a natural way.

Of course, the first natural question is whether this new order is actually
well-defined. The next theorem answers that question and also explains in
what sense U(P,M) is a universal object: its linear extensions encode all the
collapsing order for M.

Theorem 16.5. (Universality of the colimit of a matching)
For any poset P, and for any acyclic matching M on P, we have:

(1) the partial order on U(P,M) is well-defined;
(2) the induced quotient map q : P → U(P,M) is a poset map with small

fibers;
(3) the linear extensions of U(P,M) are in 1-to-1 correspondence with col-

lapsing orders for M; this correspondence is given by the composition of
the quotient map q with a linear extension map.

Proof. To prove (1) we need to check the 3 axioms of being a partial order.
The reflexivity is obvious, and the transitivity is automatic, since we have
taken the transitive closure. The only property which needs to be proved
is the antisymmetry. So assume it does not hold, and take X, Y ∈ U(P,M),
such that X 6U Y, Y 6U X, and X , Y. Choose a sequence

(16.1) X <U S1 <U · · · <U Sp <U Y <U T1 <U · · · <U Tq <U X,
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with the minimal possible p and q. Since p and q are chosen to be minimal,
all the sets S1, . . . , Sp and T1, . . . , Tq must have cardinality 2.

Let us first deal with the case p = q = 0 separately. If |X| = |Y| = 1, say
X = {x}, Y = {y}, then we have x 6 y and y 6 x, hence x = y, since P itself is
a poset. If |X| = 1, and |Y| = 2, say X = {x}, Y = {a, b}, then b > x and x > a,
since x , b, x , a. This gives b > x > a yielding a contradiction to the
assumption that b covers a. By symmetry of (16.1) this argument covers the
case |X| = 2, |Y| = 1 as well, so we can assume that |X| = |Y| = 2. In this case
X 6U Y 6U X is a cycle, contradicting the assumption that our matching is
acyclic.

From now on, we have p + q > 1. Assume first that |X| = |Y| = 1, say
X = {x}, Y = {y}. If p = 0 and q = 1, let T1 = (a, b), with b � a. On one hand,
we have x 6 y, on the other, b > y, x > a. Combining, we get b > y > x > a,
implying x = y, since b covers a. Again, by symmetry this takes care of the
case p = 1 and q = 0 as well.

Without loss of generality we may now assume that either p+ q > 2, or
|Y| = 2 and p+ q > 1. In the first case

S1 <U · · · <U Sp <U T1 <U · · · <U Tq

yields a cycle, contradicting the assumption that our matching was acyclic;
in the second case such a cycle is given by

S1 <U · · · <U Sp <U Y <U T1 <U · · · <U Tq.

Part (2) is straightforward. If x < y in P and x ∈ X, y ∈ Y, for X, Y ∈
U(P,M), then X 6 Y in U(P,M) by the definition of the partial order on
U(P,M), though we may actually get equality. So q is a poset map, and
the fibers are small, since we have just proved that X 6U Y together with
Y 6U X implies X = Y.

Let us now show (3). Given a linear extension l : U(P,M) → Q, the
composition l ◦ q : P → Q is of course a poset map with small fibers, and it
is surjective since both l and q are surjective.

Conversely, assume ϕ : P → Q is a collapsing order for M. Since ϕ is
surjective, ϕ−1(x) is non-empty for every x ∈ Q; in fact we have a bijection
between the sets ϕ−1(x), for x ∈ Q, and elements of U(P,M). To factor
ϕ through U(P,M), we set l(q(ϕ−1(x))) := x, for each x ∈ Q. We have
l ◦ q = ϕ as set maps. To see, that the map l is order-preserving, notice
that an elementary relation S > T , for S, T ∈ U(P,M), implies there exist
x ∈ S, y ∈ T , such that x > y, which in turn implies ϕ(x) > ϕ(y), since ϕ
is order-preserving, and notice furthermore that all relations S > T are just
the transitive closures of the elementary ones.
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Thus, we get the desired 1-to-1 correspondence between linear exten-
sions of U(P,M), and collapsing orders for M. �

Let us return to our example of the standard matching on the (k − 1)-
skeleton of the simplex with n vertices. The universal poset U(P,M) for
that matching is the Boolean algebra Bk. Figure 16.1 shows the universal
quotient map q : P → U(P,M).

16.3. Poset fibrations and Patchwork Theorem

In this section we will see that viewing the posets with small fibers as
the central notion of the combinatorial version of discrete Morse theory is
also invaluable for the structural explanation of the so-called patchwork
technique: a standard way to construct acyclic matchings as unions of
acyclic matchings on fibers of a poset map. We start by defining a very
simple notion.

Definition 16.6. A poset fibration is a pair (B, F), where

• B is a poset, thought of as the base of the fibration;
• F = {Fx}x∈B is a collection of posets, indexed by the elements of B,

thought of as individual fibers.

Assume now we have such a fibration and define a poset E(B, F), which
is called the total space of the fibration, as follows:

• the set of elements of E(B, F) is the union ∪x∈BFx;
• the order relation in E(B, F) is given by requiring that α > β if

– either α,β ∈ Fx, and α > β in Fx, for some x ∈ B,
– or α ∈ Fx, β ∈ Fy, and x > y in B.

In addition, we have a structural projection map of the total space to the
base space, whose preimages are the fibers. This is a poset map p : E(B, F)→
B, defined by p(α) := x, if α ∈ Fx. In particular, we have p−1(x) = Fx, for all
x ∈ B.

The next theorem describes a universality property which the notion of
poset fibrations satisfies.

Theorem 16.7. (Decomposition Theorem)
For an arbitrary poset fibration (B, F), where F = {Fx}x∈B, and an arbitrary poset P,
there is a 1-to-1 correspondence between

• poset maps ϕ : P → E(B, F);
• pairs (ψ, {gx}x∈B), where ψ and the gx’s are poset maps ψ : P → B, and
gx : ψ−1(x)→ Fx, for each x ∈ B.
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Under this bijection, the fibers of ϕ are the same as the fibers of the maps gx.

Proof. One direction of this bijection is trivial: given a poset map ϕ : P →
E(B, F), we obtain the poset map ψ : P → B by composing ϕ with the
structural projection map p : E(B, F)→ B, and we obtain the poset maps gx
by taking the appropriate restrictions of the map ϕ.

In the opposite direction, assume that we have a poset map ψ : P → B

and a collection of poset maps gx : ψ−1(x) → Fx, for all x ∈ B. Define
ϕ : P → E(B, F) by taking the value of the appropriate fiber map:

ψ(α) := gϕ(α)(α),

for all α ∈ P. Let us see that this defines a poset map. For α > β, α,β ∈ P, we
have ϕ(α) > ϕ(β), since ϕ is a poset map. If ϕ(α) = ϕ(β), then gϕ(α)(α) >
gϕ(β)(β), since gϕ(α) (= gϕ(β)) is a poset map. Else, we have ϕ(α) > ϕ(β),
and hence gϕ(α)(α) > gϕ(β)(β), by the definition of the partial order on the
total space E(B, F). �

The Decomposition Theorem 16.7 provides us with a blueprint to con-
struct an acyclic matching on a poset P in two steps as follows:

• first, map P to some other poset Q,
• second, construct acyclic matchings on the fibers of this map.

As was mentioned earlier, these acyclic matchings will automatically patch
together to form an acyclic matching for the whole poset. The next theorem
makes this observation formal.

Theorem 16.8. (Patchwork of acyclic matchings)
Assume that ϕ : P → Q is an order-preserving map, and assume that we have
acyclic matchings on subposets ϕ−1(q), for all q ∈ Q, then the union of these
matchings is itself an acyclic matching on P.

Proof. The role of the base space here is played by the posetQ, and the fiber
maps gq are given by the acyclic matchings on the subposets ϕ−1(q). The
Decomposition Theorem 16.7 tells us that there exists a poset map from P

to the total space of the corresponding poset fibration, and that the fibers of
this map are the same as the fibers of the fiber maps gq. Since the latter ones
are given by acyclic matchings, we conclude that we have a poset map from
P with small fibers, which corresponds precisely to the patching of acyclic
matchings on the subposets ϕ−1(q), for q ∈ Q. �

Note, that viewing acyclic matchings as preimages of poset maps with
small fibers yields a special case of Theorem 16.8. The fibers in this case
consist of either one element or two comparable elements. Accordingly, the
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acyclic matchings on these fibers are either empty or consist of a single pair
of matched elements.

As an example, let us return to the order complex of the partition lattice,
considered in Subsection 11.5.2. First, let n be a positive integer, say n > 2.
The partition lattice for the base set [n] was denoted by Πn. Its reduced
order complex was denoted by ∆̃(Πn), and, for brevity, let Pn denote the
face poset of ∆̃(Πn). The elements of Pn are chains of Πn, that are refining
sequences of partitions of the set [n].

Given such a chain σ, we have introduced in Subsection 11.5.2 the
notions special prefix and prefix height h(σ). According to this notation,
setting h := h(σ), we have

σ = (α1n) < (α1α2n) < · · · < (α1 . . . αhn) < πh+1 < . . . ,

such that πh+1 , (α1 . . . αh+1n), for any αh+1. We then call the chain

(α1) < (α1α2) < · · · < (α1 . . . αh),

the pivot chain of σ, and denote it by Piv(σ). Note that it is allowed for the
pivot chain to be empty.

Let B[n−1] be the Boolean algebra with the basis set [n − 1], and set
Bd (B[n−1]) := F(BdK), where K is a simplex with n vertices. This poset is
called the barycentric subdivision of B[n−1]. The elements of Bd (B[n−1]) are
sequences (S1, . . . , Sm) of subsets [n − 1] such that S1 ⊂ · · · ⊂ Sm. Let Qn
denote the subset of Bd (B[n−1]) consisting of all such sequences satisfying
the additional condition |Si| = i, for 1 6 i 6 m.

The pivot chain Piv(σ) can be considered as an element of the posetQn,
so Piv is map from Pn to Qn. The order relation in Pn is given by deletion
of partitions from the chain. Clearly, deleting some partitions from σ either
preserves Piv (σ) or decreases the prefix height of σ while truncating its
pivot chain. This observation shows that Piv is a poset map.

In order to apply the patchwork theorem we need to investigate the
preimages of this map. Let us fix an element of Q, say

q := ((α1) < · · · < (α1 . . . αm)),

and describe the poset Piv−1(q). Each element α of this poset has the form

(16.2) α := (α1n) < (α1α2n) < · · · < (α1 . . . αmn) < πm+1 < · · · < πt,

such that πm+1 , (α1 . . . αm+1n), for any αm+1 ∈ [n − 1] \ {α1, . . . , αm}.
We have |[n] \ {α1, . . . , αm}| = n −m + 1, so let ν denote the unique order-
preserving bijection ν : [n] \ {α1, . . . , αm}→ [n−m].

Assume π is a partition of [n] such that the elements α1, . . . , αm and
n are all contained in the same block. Let ν(π) denote the partition of
[n −m] obtained by deleting the elements α1, . . . , αm, and replacing each
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x ∈ [n] \ {α1, . . . , αm} with ν(x). This can be extended by taking the element
α ∈ Piv−1(q), as in Equation (16.2), and mapping it to

ν(α) := (ν(πm+1) < · · · < ν(πt)).

This is well-defined, since the elements α1, . . . , αm and n are all contained
in the same block in each of the partitions πm+1, . . . , πt.

Furthermore, if α , β, then ν(α) , ν(β), so the map ν is injective. It is
however not surjective. The reason for this is our condition that πm+1 ,
(α1 . . . αm+1n), for any αm+1 ∈ [n − 1] \ {α1, . . . , αm}. This translates into
saying that in the image of ν we will get all the chains ρ1 < · · · < ρs, such
that ρ1 , (a, n −m), for any a ∈ [n −m − 1]. This also includes the empty
chain.

We can therefore conclude that ν is a poset isomorphism between
Piv−1(q) and the face poset of Πn−m \ {τ1, . . . , τn−m−1}, where τ1 = (1, n−

m), τ2 = (2, n−m), . . . , τn−m−1 = (n−m−1, n−m). Note now thatΠn−m is a
lattice, and that the set of elements {τ1, . . . , τn−m−1} is precisely the set of all
the complements of the coatom indexed by the partition (n−m)([n−m−1]).
These complements are atoms. It is well-known that removing an atom from
a lattice will again yield a lattice. So the obtained poset is a lattice where
one of the elements, namely the coatom (n−m)([n−m− 1]), does not have
any complements. These were called noncomplemented lattices in Sub-
section 10.7.2, where we have seen that the order complexes of non-empty
noncomplemented lattices are collapsible. Specifically, the complete acyclic
matching is given by taking the meet with the non-complemented coatom,
see Theorem 10.31.

We can now use the patchwork Theorem 16.8 to glue these matchings
together and to recover our acyclic matching from Subsection 11.5.2. Note,
that the critical elements will correspond to those fibers of the map νwhich
have cardinality 1. This is the case precisely when the noncomplemented
lattice above is empty, i.e., whenm = n− 1. Thus we recover our enumera-
tion of the critical elements by all possible permutations of the set [n− 1].

As a final remark of this chapter, let us note that there is a certain
degree of flexibility connected to our choice of the set of allowed fibers. For
instance, we can take any Boolean algebra as a fiber. This would correspond
to the theory of all collapses, not just the elementary ones, which we get
when considering the small fibers.
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Exercises

(1) Show that for the simplicial complex of all disconnected graphs on 4
vertices, the poset U(P,M) will be the face poset of the complete graph
on 5 vertices.



Chapter 17

Discrete Morse Theory
for CW Complexes

17.1. Cellular collapses and topological consequences

Let us recall that collapses of abstract simplicial complexes, as defined in
Chapter 9, had two aspects. On the combinatorial side, a simplicial collapse
corresponds to the removal of a pair of simplices σ and τ in neighboring
dimensions, subject to two conditions: σ is a maximal simplex, and it is
the only simplex containing τ. On the topological side, this could be seen
as a strong deformation retraction which removed the two simplices in the
geometric realization of the original abstract simplicial complex.

It is tempting to generalize this topological picture to encompass a larger
class of strong deformation retractions, so that Definition 9.1 becomes a spe-
cial case. For the purposes of the current text, we feel this is best done in the
context of CW complexes. In that case, we could talk about cellular, rather
than simplicial collapses.

For the sake of brevity, this short chapter is not self-contained and the
interested reader is invited to check other sources for the concepts which
we use, but do not define here.

Intuitively, a cellular collapse should be a strong deformation retract
which pushes the interior of a maximal cell in, using one of its free boundary
cells as the starting point, much like compressing a body made of clay. The
highest generality is clearly achieved by the following definition of what
we call an elementary topological collapse.

279
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Definition 17.1. Let X be a topological space and let Y be a subspace of X.
We say that Y is obtained from X by an elementary topological collapse if X
can be represented as a result of attaching a ball Bn to Y along one of the
hemispheres. In other words, if there exists a map ϕ : Bn−1− → Y, such that
X = Bn ∪ϕ Y, where Bn−1− denotes one of the closed hemispheres on the
boundary of Bn.

For practical reasons, it useful to restrict ourselves to the cellular col-
lapses for arbitrary CW complexes, see Definition 3.10.

Definition 17.2. Let X be a CW complex, and Y its subcomplex. We say that
X cellularly collapses to Y if X is obtained from Y by attaching a (d − 1)-cell
ed−1 and a d-cell ed, subject to certain restrictions.

Specifically, let ∆d denote the standard d-simplex, let ∆̃ be one of its
boundary (d − 1)-simplices, and set Λ := ∆d \ Int ∆̃. We require that there
exists a continuous map f : ∆d → X such that the following conditions are
satisfied:

(1) f is a characteristic map for the cell ed, and f|∆̃ is a characteristic
map for the cell ed−1;

(2) f(Λ) ⊆ Yd−1.

Cellular collapses generalize the simplicial ones, but they also include
cubical and more generally polyhedral collapses.

Proposition 17.3. A cellular collapse yields a strong deformation retraction.

Proof. Exercise (1) �

When one is only interested in the homological conclusions, there is no
difference between the simplicial and the cellular setting. One can simply
consider the cellular chain complex of the corresponding CW complex. On
one hand, it is a standard fact of algebraic topology, that this cellular chain
complex computes the homology groups of the original complex. On the
other hand, the developments of Section 15.1 can be applied to this chain
complex directly, bypassing the topological framework.

However, if one would like to understand the homotopy type of a cer-
tain CW complex, given some matching on the set of its cells, one cannot
make use of the chain complexes in the same way. Instead, we need to
carefully proceed forward, checking what remains true under appropriate
conditions.

It is easy to see that the proof of Theorem 14.5 (b) actually works in
greater generality: one can take arbitrary CW complexes, at the same time
replacing cellular collapses by arbitrary homotopy equivalences. Let us
note down the following result.
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Theorem 17.4. Let X be a CW complex, and let

F0(X) ⊂ F1(X) ⊂ · · · ⊂ Ft(X) = X

be a CW filtration of X, such that the subcomplex F0(X) is just a single vertex, and,
for all i = 1, . . . , t, either Fi(X) \ Fi−1(X) consists of a single cell, in which case we
call such a cell critical, or the inclusion map fi : Fi−1(X) ↪→ Fi(X) is a homotopy
equivalence.

Then X is homotopy equivalent to a CW complex, whose cells are in dimension
preserving bijection with the critical cells of X.

Proof. If the inclusion map fi : Fi−1(X) ↪→ Fi(X) is a homotopy equivalence,
then there exists gi : Fi(X) → Fi−1(X) which is a homotopy equivalence as
well. After this observation the proof of Theorem 14.5 (b) can be repeated
verbatim, with critical cells being replaced with Fi(X) \ Fi−1(X), whenever
the latter consists of a single cell, and with collapses being replaced by such
maps gi. �

17.2. Acyclic matchings yielding a wedge of spheres

Next, we are interested in acyclic matchings which allow us to conclude
that the considered complex is in fact homotopy equivalent to a wedge
of spheres which are enumerated by critical cells. First, we need some
terminology.

Definition 17.5. AssumeM is an acyclic matching on a posetP. A generalized
alternating path is a sequence (x1, . . . , xt) of elements of P such that

(1) x2k < x2k+1, whenever 2 6 2k 6 t− 1.

(2) x2k−1 > x2k, whenever 2 6 2k 6 t,

(3) µ(x2k+1) = x2k, whenever 2 6 2k 6 t− 1,

where µ is the matching function associated to M.

The alternating paths as well as the reaching paths defined before are
generalized alternating paths.

Definition 17.6. Assume as above thatM is an acyclic matching on a poset
P, and let x ∈ P. The feasibility domain of x is the set of all endpoints of
generalized alternating paths emanating from x.

We let F(x) denote the feasibility domain of x. The following theorem
gives a sufficient condition on an acyclic matching for the critical Morse
complex to be homotopy equivalent to a wedge of spheres enumerated by
critical cells.
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Theorem 17.7. Let X be a connected regular CW complex, and let µ be an acyclic
partial matching on F(X). Assume that for every critical cell c of dimension larger
than 0, its feasibility domain F(c) contains precisely two critical cells: c itself and
one critical cell of dimension 0. Then X is homotopy equivalent to a wedge of
spheres enumerated by critical cells.

Proof. Recall, that the main theorem of discrete Morse theory for simplicial
complexes was proved by considering a sequence of attachments, where
at each step we either attached a critical simplex, or, a pair of simplices
matched by µ. The study of this sequence was accompanied by a paral-
lel explicit construction of a Morse homotopy map. Let us do the same
here. The corresponding stepwise attachment is done along a certain linear
extension of the face poset of X, which we denote by l. When a pair of
matched cells is attached, we simply have a strong deformation retraction
of the obtained complex to what we have had before that attachment, so we
just need to understand the case of attaching a critical cell.

Assume now that a critical cell c of dimension at least 1 is being attached.
The cells in F(c) \ {c} form a subcomplex C of X. The assumption of the
theorem implies that C is collapsible along the matching µ. It means that
prior to the attachment of c, the Morse homotopy has already shrunk the
complex C to a point a, where a is the critical 0-dimensional cell of F(c)\ {c}.
Since the image of the attaching map of the cell c lies inside C, we conclude
that in the critical Morse complex the attaching map of c will simply map
everything to the point a. Thus we can conclude that all the attaching maps
in the critical Morse complex are trivial.

Finally, we need to see that under the assumptions of the theorem, that
the matching µ has exactly one 0-dimensional critical cell, which will imply
that all the critical cells will be attached to the same vertex. Assume we have
another critical 0-dimensional cell b, and assume that b occurs after a in the
linear extension l. Then, when b is added, it will form a new connected
component. So, since the total complex X is connected, at some point in the
inductive process of adding critical cells and pairs of matched cells we will
have to connect that connected component to the connected component
containing a. This can only be achieved by adding a critical 1-dimensional
cell, which we call e. The set F(e) cannot contain any critical 0-dimensional
cells other than b. Let v1 denote the vertex of e which does not lie in the
same connected component as b. The vertex v1 is not critical, and we set
e1 := µ(v1). Both v1 and e1 were added before e. We now proceed, starting
with k = 1 by letting vk+1 be the vertex of ek other than vk. Since vk+1 ∈ F(e),
we see that vk+1 is not critical, and set ek+1 := µ(vk+1). Both vk+1 and ek+1
were added before e. Eventually we will have to conclude that for some
k > 1 the vertex vk+1 lies in the same connected component as b. But this
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means that bwas connected to the vertex v1 even before adding e, yielding
a contradiction to the choice of e. �

17.3. An example using Hopf fiber bundles

Counter to what one might intuitively believe, having an acyclic matching
with no critical cells in neighboring dimensions will not guarantee that
the CW complex X is homotopy equivalent to a wedge of spheres. A
counterexample which is describe below makes use of the fact that the third
homotopy group of S2 is isomorphic to Z.

Start by considering the set A := {(z1, z2) | z1, z2 ∈ C, |z1|2 + |z2|
2 = 1},

equipped with the diagonal action z : (z1, z2) 7→ (zz1, zz2) by the multi-
plicative group G = {z | |z| = 1} ⊆ C. Note that A is homeomorphic to the
3-sphere, while G is homeomorphic to the circle. The quotient space A/G is
a naturally occurring model for the complex projective line CP1, and it is
homeomorphic to the 2-sphere. The canonical quotient map q : A → A/G

is given by q : (z1, z2) 7→ (z1 : z2).
As a side remark, in the situation of this sort one says that one has a

fiber bundle, which is denoted by S1 → S3 → S2, with S1 called the fiber, S2

the base space, and S3 the total space of the bundle. What we have here is the
first example of the so-called Hopf bundle.

A CW structure on the space A is obtained by intersecting it with the
real coordinate hyperplanes Re z1 = 0, Im z1 = 0, Re z2 = 0, and Im z2 = 0.
What we obtain, is a regular CW complex with the face vector (8, 24, 32, 16).
Furthermore, consider the CW structure on A/G consisting of the two
vertices v1 = (1 : 0) and v2 = (0 : 1), four edges e1 = {(1 : r) | r > 0},
e2 = {(1 : ir) | r > 0}, e3 = {(1 : −r) | r > 0}, e4 = {(1 : −ir) | r > 0}, and four
2-cells denoted s1, s2, s3, s4, where si is bound by ei and ei+1, for i = 1, 2, 3,
and s4 is bound by e1 and e4. This describes a regular CW complex with
the face vector (2, 4, 4). It is easy to see that q is a cellular map.

Now, we choose a CW structure on the mapping cylinder Cyl q, by
taking all the cells of the cylinder base A/G, then subdividing A × {0}, the
top copy ofA, as described above, and taking the open cells σ̃ := Intσ×(0, 1),
for all cells σ of A. Finally, let X be the regular CW complex obtained from
Cylq by attaching a 4-cell k along A× {0} � S3.

Consider the following acyclic matching: µ(σ̃) = σ, whenever σ is a cell
of A × {0}, µ(si) = ei, for i = 1, 2, 3, µ(e4) = v2. This partial matching has
three critical cells: v1, k, and s4, in dimensions 0, 2, and 4. It is easily verified
directly that all the matched pairs are cellular collapses. In particular, the
main theorem of discrete Morse theory, can be applied and we can conclude
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that X is homotopy equivalent to a CW complex with one cell in each of the
dimensions 0, 2, and 4.

The crucial observation now is that the space X is not homotopy equiv-
alent to S2 ∨ S4. One way to see that is to show that X and S2 ∨ S4 have
different π3 groups. Namely π3(X) = 0, while π3(S2 ∨ S4) = Z. We leave
the verification of this as an exercise for the reader who is familiar with
homotopy groups.

The technique using fibrations can be used to produce further examples
which might be needed to test various hypotheses.

Exercises

(1) Prove Proposition 17.3.
(2) Give an example showing that the condition of Theorem 17.7 is not

necessary for getting a wedge of spheres enumerated by critical cells.
(3) Finish the justification for our counterexample in Section 17.3 by show-

ing that π3(X) = 0 and π3(S2 ∨ S4) = Z.
(4) Take the barycentric subdivision of X in the counterexample above.

Show that the obtained simplicial complex has an acyclic matching with
one critical cell of dimensions 0, 2, and 4 each. Of course the underlying
topological spaces is still not homotopy equivalent to S2 ∨ S4.



Chapter 18

Discrete Morse Theory
and Persistence

18.1. Persistent homology of filtered simplicial complexes

In this section we touch upon persistence which is a central object of study
in applied topology. The idea of persistence is to measure the change of
algebraic invariants in a 1-parameter indexed family of topological spaces.

For simplicity of the presentation, we shall limit ourselves to the case
of based chain complexes. All of the cases occurring in applications are of
this type.

As a toy example, assume we are given S - a set of points in a Euclidean
space. Fix a nonnegative number λ. We can then construct a simplicial
complex ∆λ(S) whose vertices are the elements of S, and whose simplices
are all sets of points from S which can be fit into a ball of radius λ. When
λ = 0we shall just get the set of isolated vertices. On the other hand, when λ
is sufficiently large, we will get the whole simplex whose vertex set is S. As
λ varies between these two extremes, we can observe an evolution of a sim-
plicial complex, as simplices get added one after another. The homology
groups of these complexes will come and go, and the persistent homology
will try to measure how long the specific homology classes survive. Those
classes which are present for a long time will reflect some kind of persistent
features of the original set S.

Formally, the process of consequent growing is reflected in the abstract
notion of a filtration. To start with, assume S is a finite set. A filtration1 on

1All considered filtrations will be finite.

285
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S is a sequence of subsets {Sk}
t
k=0, where t is a nonnegative integer, such

that ∅ = S0 ⊆ · · · ⊆ St = S. Consider now the free abelian group generated
by S, denoted by 〈S〉 earlier in the book. A filtration on S induces one
on 〈S〉 in the sense that we have a nested sequence of abelian subgroups
0 = 〈S0〉 ⊆ · · · ⊆ 〈St〉 = 〈S〉. Of course, given a commutative ringR, the same
can be done for any free R-modules, but we restrict ourselves to considering
the free abelian groups.

This can be generalized to the based chain complexes as follows.

Definition 18.1. Let C = (C∗, ∂∗) be a based chain complex of free abelian
groups, where for each d we have fixed a basis Sd for Cd. Assume further-
more that there is a filtration ∅ = S0d ⊆ · · · ⊆ Std = Sd, for each d.

We say that we have a base filtration on C, if the following condition is
satisfied:

∂Skd ⊆
〈
Skd−1

〉
, for all k and d.

Note, that in Definition 18.1 we require that t does not depend on d, but
of course we allow that Skd = Sk+1d for some d and k.

Given a base filtration on C, set FkCd :=
〈
Skd
〉
, for all k and d. In this

notation, we have 0 = F0Cd ⊆ · · · ⊆ FkCd ⊆ · · · ⊆ FtCd = Cd, for all d > 0,
and ∂d(FkCd) ⊆ FkCd−1, for all k and d.

For each k, the last property allows us to define the chain complex FkC,
by setting

FkC := ( . . . FkCd+1 FkCd FkCd−1 . . . ),

where the boundary operators are the restrictions of those in C. It is then
customary to say that we have a nested sequence of chain complexes 0 =

F0C ⊆ · · · ⊆ FtC = C, which we denote by FC.
In the example above, increasing the parameter λ results in a series of

discrete transformations, corresponding to a filtration of the chain complex
of a simplex by chain complexes of ∆λ(S).

Definition 18.2. Given a d-chain γ ∈ Cd, we set h(γ) to be the minimal
0 6 k 6 t, such that γ ∈ FkCd.

We shall refer to h(γ) as the height of γ in the filtration FC. For future
reference, we make the following remarks.

Remark 18.3. For any γ ∈ Cd, and any α ∈ suppγ, we have h(γ) > h(α), in
fact,

(18.1) h(γ) = max
α∈suppγ

h(α).

Remark 18.4. For any γ ∈ Cd, we have h(γ) > h(∂dγ).
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These can be combined to obtain our last remark.

Remark 18.5. If we are given α ∈ supp (∂γ), then h(γ) > h(α).

Let us now proceed with defining the actual persistent homology groups.
We set

Z
p
d := Ker∂d ∩ FpCd = {α ∈ Cd |∂α = 0, h(α) 6 p} ,

and

B
p,q
d := ∂d+1(Fp+qCd+1) ∩ FpCd =

{∂β |β ∈ Cd+1, h(β) 6 p+ q, h(∂β) 6 p} .

In words, the group Zpd consists of all d-cycles which are present in FpC.
Sometimes one says that these d-cycles are detected by the p-th layer of
filtration; note that any d-cycle detected by an earlier layer is included in
this set. Similarly, the elements of Bp,qd are the boundaries of (d+ 1)-chains,
such that the chains themselves are present at the (p + q)th filtration step
Fp+qC, while their boundaries are in FpC. One can imagine that we are
increasing q and trying to see whether some d-cycle σ in FpC is actually a
boundary. We then proceed through layers p + 1, p + 2, . . . , p + q etc, and
try to find a chain which will have σ as its boundary. This procedure gives
an answer to the question how long the cycle σ survives.

Definition 18.6. Assume we are given a based chain complex C equipped
with a base filtration {Sk}k. The persistent homology groups of FC are defined
by the formula

PH
q,p
d (FC) := Zpd/B

p,q
d .

Following our intuition above, the persistent homology groupPHq,pd (FC)

is obtained by taking all the d-cycles detected in FpC and dividing by the all
the boundaries of the elements detected in Fp+qC, such that these bound-
aries themselves are present in FpC.

Accordingly, when q = 0, we simply recover the homology groups of
the chain complex FpC. At the other extreme, when q is large, we are
looking at the group of all d-cycles in FpC quotiented by the group of all d-
chains which are boundaries of some chain, not necessarily at the filtration
level p. In algebraic topology, the standard way to visualize this last group
is to view it as the image of the d-th homology group of FpC in the d-th
homology group of C under the homology map which is induced by the
inclusion map of the chain complexes.

The last observation can be generalized as follows. For any nonnegative
integers p and q we have an inclusion chain map FpC ↪→ Fp+qC. It induces
a homology map fp,qd : Hd(FpC) → Hd(Fp+qC). Unfolding the definition
tells us that the persistent homology group PHp,qd (FC) is precisely the image of the
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map fp,qd . This is sometimes taken as an alternative definition of persistent
homology.

18.2. Combining persistence with discrete Morse theory

Let us now investigate the interplay of filtrations and discrete Morse theory.
Assume C is a based chain complex, with the bases Sd, for all d, as above.
Set PC := P(C,∪dSd) to be the basis poset, as described in Definition 15.4. Its
elements are ∪dSd, and x covers y if and only if y is contained in supp∂x.
Let µ be an acyclic matching on PC.

Definition 18.7. We say that the matching µ respects the given filtration FC

if for all γ ∈ PC we have h(γ) = h(µ(γ)), in other words, γ ∈ FkCd if and
only if µ(γ) ∈ FkCd, for all k.

When the matching respects filtration, following a reaching path will
not increase the height function. This is formalized by the following lemma.

Lemma 18.8. Assume µ is an acyclic matching which respects the filtration FC,
and assume p is a reaching path with respect to that matching. Set α := p• and
β := p•. Then, we have h(α) > h(β).

Proof. Assume that the reaching path in question is

α � µ(β1) ≺ β1 � µ(β2) ≺ β2 � · · · � µ(βm) ≺ βm = β.

Applying Remark 18.5, we then have

h(α) > h(µ(β1)) = h(β1) > h(µ(β2)) =

h(β2) > · · · > h(µ(βm)) = h(βm) = h(β),

which proves the lemma. �

In Chapter 12 we have associated a closure function ϕ to an arbitrary
acyclic matching µ. It turns out that when the matching respects the given
filtration, the closure function preserves the height.

Lemma 18.9. For γ ∈ Sd, we have γ ∈ FkCd if and only if ϕ(γ) ∈ FkCd. In
other words h(γ) = h(ϕ(γ)).

Proof. Assume first ϕ(γ) ∈ FkCd. We know that γ ∈ supp (ϕ(γ)), hence,
by Remark 18.3, we have γ ∈ FkCd.

Reversely, assume γ ∈ FkCd. By Proposition 12.7 we have ϕ(γ) =∑
p p
•, where the sum is taken over all reaching paths p, such that p• = γ.

By Lemma 18.8 we then have h(γ) > h(p•), for each such reaching path p,
and hence ϕ(γ) ∈ FkCd. �
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Recall the Morse complex Crit(K, µ) ≈ Cµ(K;Z2), that was defined in
Section 13.4. Its chain groups are generated by the critical basis elements,
and the boundary operator is defined in a combinatorial way.

Let us now see that when the original based chain complex C has a base
filtration {Sk}, and the acyclic matching respects FC, then the base filtration
can be extended to that Morse complex as well.

Definition 18.10. By construction, the group Critd(K, µ) is generated by
ϕ(γ), for all γ ∈ Rd. We define a filtration on Critd(K, µ) by taking
FkCritd(K, µ) to be the group generated by ϕ(γ), for γ ∈ Rd, such that
h(γ) = k.

Note, that since h(γ) = h(ϕ(γ)), the group FkCritd(K, µ) is generated
by ϕ(γ), such that γ ∈ Rd and h(ϕ(γ)) = k.

In general it is possible that taking the boundary will lower the filtration
height of the element. This however cannot happen if our element is a linear
combination of the basis elements which are matched downwards, as the
next lemma explains.

Lemma 18.11. Let C be the chain complex as above. Assume γ ∈ Cd+1, such that
suppγ ⊆M↑, then h(∂γ) = h(γ).

Proof. For brevity, set k := h(γ). By Remark 18.4, we already know that
h(∂γ) 6 h(γ). What we need is to find w ∈ supp∂γ, such that h(w) = k.

By construction, the element γ is a linear combination of basis elements
of Cd+1. Let us split it as a sum γ = γ1 + γ2, where γ1 is the part of that
linear combination corresponding to the basis elements of height k, and γ2
is the part corresponding to the basis elements of height less than k.

Clearly, we still have suppγ1 ⊆ M↑, so Proposition 12.2(2) can be ap-
plied. We obtain supp∂γ1∩µ(suppγ1) , ∅, so there exists v ∈ suppγ1, such
that µ(v) belongs to supp∂γ1. Since the matching µ respects the filtration,
we have h(µ(v)) = h(v) = k.

On the other hand, by construction γ2 ∈ Fk−1Cd+1, hence ∂γ2 ∈
Fk−1Cd. It follows that µ(v) ∈ supp∂(γ1 + γ2) = supp∂γ. We can now
set w := µ(v) and the proof is finished. �

We are now ready for the main result of this chapter. So let C be a chain
complex with a base filtration {Sk}k as above, and letµbe an acyclic matching
respecting the filtration FC. To start with, assume k is an arbitrary index
between 0 and t. The matching µ gives us a decomposition

Sd = Rd ∪M↑d ∪M
↓
d.
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Furthermore, since the matching µ respects our filtration, it can be restricted
to FkC, so we have a decomposition

Skd = Rd(k) ∪M↑d(k) ∪M
↓
d(k),

where Rd(k) = Rd ∩ FdCk, M↑d(k) =M
↑
d ∩ FdCk, and M↓d(k) =M

↓
d ∩ FdCk.

In Chapter 13 we described a change of bases. The new basisBRd∪B
↑
d∪B

↓
d

was obtained from the old one using the formulae

BRd := {ϕ(γ) |γ ∈ Rd} , B
↑
d :=M↑d, B

↓
d :=

{
∂β |β ∈M↑d+1

}
.

As the filtered analog we define three sets. First, we set

(18.2) BRd(k) := {ϕ(γ) |γ ∈ Rd ∩ FkCd} = BRd ∩ FkCd,

where the second equality is a consequence of Lemma 18.9. Second, we set

(18.3) B
↓
d(k) :=M

↓
d(k) ∩ FkCd = B

↓
d ∩ FkCd.

Third, we set

(18.4) B
↑
d(k) :=

{
∂β |β ∈M↑d+1(k)

}
= B

↑
d ∩ FkCd,

where the second equality is a consequence of Lemma 18.11.
Since the matching µ respects our filtration, it can be restricted to FkC.

Considering the first equality in Equations (18.2) to (18.4) tells us that the
set BRd(k) ∪B

↑
d(k) ∪B

↓
d(k) is a basis for FkCd. On the other hand, using the

second equality in Equations (18.2) to (18.4) allows us to extend the original
filtration to this new basis, so that the formula (18.1) still holds.

Recall that we have Zpd = Ker∂d ∩FpCd and Bp,qd := ∂d+1(Fp+qCd+1)∩
FpCd. We let Z̃pd and B̃

p,q
d denote the analogs of Zpd and B

p,q
d for the

extension of our initial filtration to the Morse complex Cµ. Accordingly, the
persistence homology PHp,qd (Cµ) is well-defined.

Theorem 18.12. The persistent homology of the filtered Morse complex is isomor-
phic to the persistent homology of the original complex, i.e.,

(18.5) PH
p,q
d (FC) ≈ PHp,qd (Cµ),

for all p, q, and d.

Proof. As mentioned above, we have the direct sum decomposition

(18.6) FpCd =
〈
BRd(p)

〉
⊕
〈
B
↑
d(p)

〉
⊕
〈
B
↓
d(p)

〉
.

Take σ ∈ Zpd and split it as a sum σ = α+ β+ γ, according to the decompo-
sition (18.6), i.e., α ∈

〈
BRd(p)

〉
, β ∈

〈
B
↑
d(p)

〉
, and γ ∈

〈
B
↓
d(p)

〉
.

We have 0 = ∂σ = ∂α+ ∂β+ ∂γ. By definition of B↓d(p), we have ∂γ = 0

independently of the actual γ. Furthermore, the sum of chain complexes in
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decomposition (13.1) is direct, so ∂α+∂β = 0 implies ∂α = 0 and ∂β = 0. By
Proposition 12.2(1), ∂β = 0 implies β = 0. We thus conclude that α ∈ Z̃pd and
γ ∈ L, where L = ∂

〈
B
↑
d+1(p)

〉
. Indeed we have a direct sum decomposition

Z
p
d = Z̃pd ⊕ L.

Next, we show that Bp,qd = B̃
p,q
d ⊕ L. An arbitrary element of Bp,qd can

be written as ∂(σ) ∈ FpCd, where σ ∈ Fp+qCd+1. Write σ = α + β + γ,
such that α ∈

〈
BRd+1(p+ q)

〉
, β ∈

〈
B
↑
d+1(p+ q)

〉
, and γ ∈

〈
B
↓
d+1(p+ q)

〉
.

By construction, ∂γ = 0, so ∂σ = ∂α + ∂β. By Lemma 18.11, we have
h(∂β) = h(β). Again using the fact that the decomposition in (13.1) is
direct, and that h(∂σ) 6 p, we conclude that β ∈ ∂

〈
B
↑
d+1(p)

〉
. It follows

that Bp,qd ⊆ B̃p,qd ⊕ L, and the reverse inclusion is obvious.
We can now summarize the argument by writing

PH
p,q
d (FC) = Zpd/B

p,q
d = (Z̃pd ⊕ L)/(B̃

p,q
d ⊕ L) ≈ Z̃pd/B̃

p,q
d = PHp,qd (Cµ),

and the proof is finished. �

Exercises

(1) Consider the simplicial complex introduced as sample application in the
preface. Take the filtration obtained by adding one vertex at a time in
their indexing order. Compute the corresponding persistent homology.
Can you simplify the calculations using discrete Morse theory?

(2) Generalize the results of this chapter to integer coefficients.





Suggested further
reading for Part 4

Original sources on algebraic Morse theory are [Ko05b, SK06, JW09]. Our
presentation here follows [Ko05b], focusing on the sequence of basis changes
as the essence of the subject. Further references are [BW02, We07].

The reader who is intrigued by the notion of poset maps with small
fibers is invited to consult [Ko08, Section 11.1]. Furthermore, it would help
to get immersed into the functorial way of thinking. Here any standard text
in category theory, such as [McL98], is helpful.

Interesting developments on the crossroads between discrete Morse
theory and combinatorics can be found in, e.g., [AMSSS, AFFV].

We recommend [LW69] as a standard, and still excellent, reference for
topology of CW complexes. In addition to that, much of Chapter 17 is
adapted from [Koz11], and the reader may want to look at the original
paper.

The standard reference on the subject of persistent homology is [EH10],
but see also [Zo09]. A very readable introduction can also be found in
[Ca09]. There is a number of papers, many of them recent, considering the
mixture of persistent homology and discrete Morse theory. We recommend
[MN13] as a good starting point.

Further sources for discrete Morse theory and persistence, shape anal-
ysis, and computational complexity include [BE17, BLPS, FFI16, HMMN,
KKM17, MS19, RGHPH].
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Separately, we would like to mention recent applications of discrete
Morse theory to stochastic geometry, see, e.g., [ENÖS, ENR17].

Finally, for reasons of space, several very interesting developments
involving discrete Morse theory were not treated in this book. For in-
stance, the reader interested in random discrete Morse theoy should con-
sult, [ABL17, BL14]. Further, scattered reading recommendations are [Be16,
Be12, Fo02b, Fr09, GBMR, Ku13, Na19].
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[KST] J. Köbler, U. Schöning, J. Torán, The graph isomorphism problem: its structural
complexity, Progress in Theoretical Computer Science. Birkhäuser Boston, Inc.,
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